用户名: 密码: 验证码:
贵州凉风洞石笋的古气候记录与古生态环境意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自20世纪60年代以来,探索全球性气候变化规律和环境变迁史的研究工作在世界各国广泛开展。大规模的深海岩芯的研究、中国北方黄土的系统研究、大型湖泊沉积岩芯的研究及对树木年轮、泥炭、珊瑚、冰芯等“自然环境历史档案”开展的研究工作,都为重建古气候和古生态环境提供了大量的资料。
     洞穴化学沉积物(石笋)由于其特有的微层结构及其内的稳定氧、碳同位素和微量元素所蕴含的古气候与古生态环境信息,并且具有分布广、时间长、信息保存完整等特点,因此,它是研究地球环境变化很好的自然环境历史档案。本论文通过对凉风洞洞穴体系的综合研究和对凉风洞石笋(微层)生长特征及石笋的碳、氧稳定同位素组成的研究,系统探讨了贵州凉风洞石笋的古气候记录和古生态环境意义,得出以下主要结论:
     1.地表植被的类型及生物量等信息可综合反映于洞穴体系的不同组分(气样、土样、水样)中。而洞穴的水动力条件也能很好的被洞穴滴水中所含微量(常量)元素记录。根据分析,洞穴综合体系对外界气候与生态环境的响应关系存在一定规律性。通过对比说明,我们所选的凉风洞基岩的溶蚀和缓冲对水体中的信息影响不大,即洞穴滴水较好的继承了土壤水所携带的地表气候与生态环境信息,是理想的研究对象。
     2.凉风洞石笋具有多个沉积旋回,不同沉积旋回的纹层组合及纹层结构存在一定的差异,指示不同的沉积环境。根据年龄数据判断,旋回①至旋回⑧之间年龄跨度为1570—8000 aBP,以呈缓平顶(柱)对称叠复状的沉积形态组合为主,示洞项滴水量较大,滴水点相对稳定,且均匀,与全新世较为稳定的气候与环境变化的主旋律相一致。旋回⑧以下至底部石葡萄状沉积物之上部分之间年龄跨度为8000—14220 aBP,期间经历末次冰期晚期向全新世大暖期过渡,受诸如新仙女木事件(Younger Dryas)等的影响,气候变化幅度大,且经历多次反复,石笋生长的沉积学特征表现为斜锥(柱)、尖项锥不对称叠复纹层组合,示洞顶滴水水量较小但变化较大,且洞穴滴水不稳(固)定。与此时间段内不稳定的气候与环境变化的主旋律也相一致。
     3.凉风洞石笋上段微层具有典型南方石笋微层发育的特性:微层发育较差,层面多弯曲,层间界面模糊等。下段因为沉积间断较多、风化层面厚及受到若干时段内碳酸钙重结晶而导致晶体穿插层位生长的影响,尽管在某些层位有微层发育,但无法对石笋微层作连续观察记录。根据高精度的石笋TIMS、ICP-MS测年数据和在显微镜下所数石笋微层数量的对比,扣除若干个沉积间断及风化层导致的微层缺失,以及显微镜下肉眼对细小微层计数的误差,我们认为,凉风洞石笋微层是年生长层的可能性较大。
    
    4.由于部分测年数据仍在测试中,目前无法精确控制石笋中沉积间断的存在导致的信息缺失,因
     此,我们仅仅根据部分石笋测年数据,建立了凉风洞石笋在不同时段的生长速率。全新世以来
     石笋的生长速率在22卿/yr一51”m/yr之间,明显高于末次冰期晚期向全新世过渡这一时间段
     内的石笋生长速率(16林m/yr).这些数据间接印证了石笋生长响应于外界气候,尤其是降雨的
     变化。
    5.通过对洞穴体系的综合分析对比,我们判断凉风洞洞穴综合体系相对完整,洞穴化学沉积物的
     6’3c值较为直接的响应了土壤c压的6’3c值变化,即反映了地表的植被(。植物和c.植物)的
     组成状况。贵州地区降雨80%集中在5一10月份,在此期间,基本受西南季风和东亚季风所控
     制。西南季风盛行时贵州各地的降雨频繁,是一年中雨量最集中的时期,在东亚季风影响时期,
     贵州多晴少雨,往往形成干早的天气。又西南季风控制区大气降雨6’勺值的加权平均值明显低
     于东亚季风控制区大气降雨6勺值的加权平均值。因此,贵州地区年均降雨量和年均降雨6’.0
     值主要取决于西南(印度洋)季风的强弱:西南季风加强,降雨量增加,年均降雨6’勺值偏负:
     西南季风减弱,降雨量减少,年均降雨6’勺值偏正。洞穴滴水的6’勺值变化基本继承了大气降
     水的6’勺值变化.因此,对地处我国西南地区贵州南部的凉风洞,源于洞穴滴水的凉风洞石笋
     的6’80值变化直接响应了外界的大气降雨量的变化和西南季风与东亚季风相互的强弱交替。
    6.对凉风洞石笋碳、氧同位素组成的时间序列曲线作20点移动平均,发现,特别是进入全新世后,
     石笋的6’3c值和6‘.0值几乎具有完全一致的同步变化,只是在变化幅度上在某些时段存在差
     异。说明在凉风洞石笋反映的14220一1570 aBP时间段内,尤其是10500一1570 aBP期间,本区
     域气候具有雨热(或干冷)同期的气候特征:在气温较高时间段,西南季风增强,气候湿润多
     雨,更有利于地表C3植物的生长。气温降低时,随着东亚季风增强,西南季风减弱,气候干早
     少雨,地表C。植物的生长占有一定的比例。据此重建和恢复了本地区14220一1570 aBP期间的
     古气候和古生态环境:
     (1).14220一10500aBP,处于末次冰期晚期,气温较低。凉风洞石笋此时段的6’,c值都
     大于一9、8%0,最小值为沟.314%0,最大值达一7.290喻,平均值为一8.552%a。说明凉
It's an important task to reconstruct Paleoclimatic and Paleoecological-Paleoenvironmental changes of global change. Based on the microbanding structure, stable oxygen carbon isotope and trace elements, like other natural materials (loess, ice-core, tree rings, sea deposits and peat), Speleothems especially stalagmite are important repositories of Paleoclimatic and Paleoecological-Paleoenvironmental data. In recent decades, the paleoclimatic records and paleoecological-paleoenvironmenlal meanings of speleothems achieved significiant progress. The stable oxygen isotopic sequences of speleothems can give information about precipitation and temperature, the history of changing vegetation can be traced by the stable carbon isotopic sequences of speleothems, and much high resolution climatic-environment information, such as precipitation, temperature, soil and vegetation are involved in microbanding type and trace elements character of stalagmite.
    Based on the systematical studies of the sedimentary characteristics and the carbon (oxygen) isotopes of stalagmite from Liangfeng cave, Guizhou, China, the following conclusions we have been drawn:
    1. Based on the systematical studies of the water, gas and soil above Liangfeng cave, the results indicated that some information about climatic and ecological-environmental changes have been recorded well by cave drip water. The Liangfeng cave is a good place to study Paleoclimatic and Paleoecological- Paleoenvironmental changes of global change by stalagmite.
    2. The combinations, thickness, grain size and bedding plane structure of depositional laminates in stalagmite are material bases of resuming drip water trends forming stalagmite and the relative paleo-hydrological condition. The sedimentary characteristics and trend changes of paleo-drip water records in stalagmite from Liangfeng cave are studied by examing composition of calcite, rock chemistry, texture, bedding-stucture, as well as typical marks of depositional break or weathering crust ect. Based on the TIMS dating along the axis cores of the stalagmite, during 8000-1570 aBP, the depositional laminates is the smooth peak (or column) shape of the symmetrical superimposed laminates, indicating the drip water amount is great and steady, the growth rate of the stalagmite varies from 22um/yr to 51um/yr. During 14220-8000 aBP, the depositional laminates is the peak (or oblique) cone shape of
    the unsyrnmetrical superimposed laminates, indicating the drip water amount is small
    and unsteadily, the growth rate of the stalagmite is 16um/yr.
    
    
    
    3. Great difference exists between the development of microbanding of stalagmite in the north part of China and that in the south. Microbanding of stalagmite in Northern China usually are thin, with the dark impurities dispersed as a very thin layer. However, the microbanding of stalagmite in Southern China are much thicker, with a high content of dark impurities and high variation of porosity. The difference of these microbanding of stalagmite was controlled by the differently combined seasonality of precipitation and temperature. Comparing TIMS (ICP-MS) dating with microbanding of stalagmite, it is possibly that microbanding of stalagmite equal to annual band.
    4. In Guizhou province, the oxygen isotopic characteristics of rainwater are mainly controlled by the monsoon type and the precipitation cloud cluster origins and the amount of rainwater. There is a quite good normal correlation between the δ 18O values of the drip water of cave and the average δ 18O values of the rainwater, which shows that the characteristics of the δ 18O values of the drip water for forming stalagmite can reliably reflect the δ 18O values characteristics of rainwater, and then, the climate characteristics.
    Based on the systematical studies of the water, gas and soil above Liangfeng cave, the δ 13C values of stalagmite can be regarded as an ecological-environmental proxy, namely, the smaller the 5 13C values, the larger the proportion o
引文
1.Galston A.等著,戴尧仁等译。新编植物生理学。北京:北京大学出版社。1989。
    2.蔡演军 彭子成 安芷生 张兆峰 曹蕴宁。贵州七星洞全新世石笋的氧同位素记录及其指示的季风气候变化。科学通报,2001,46(16),1398-1402。
    3.程星。滴石形态组合及滴石类—以贵州洞穴为例。中国岩溶,1990,9(2):119-128。
    4.何师意 徐胜友 张美良。岩溶土壤中CO2浓度、水化学观测及其与岩溶作用关系。中国岩溶,1997,16(4),319-324。
    5.侯居峙 谭明 程海等。本溪水洞石笋微层年代学初步研究。中国科学,2001,31(5):387-392。
    6.孔兴功 汪永进 吴江滢等。末次盛冰期连续3ka南京降水记录中ENSO周期。科学通报,2003,48(3),277-281。
    7.黎廷宇。贵州岩溶地区土壤CO2的分布特征及其稳定同位素组成,中国科学院地球化学研究所硕士论文,2000,贵阳
    8.李彬 袁道先 林玉石 李红春 覃嘉铭。洞穴次生化学沉积物中Mg、Sr、Ca、及其比值的环境指代意义。中国岩溶,2000,19(2),115-122。
    9.李彬 袁道先 林玉石 覃嘉铭 张美良。桂林地区降水、洞穴滴水及现代洞穴碳酸盐氧碳同位素研究及其环境意义。中国科学(D),2000,30(1),81-87。
    10.李彬 袁道先 林玉石 张美良。桂林地区4万年来石笋高分辨率古生态变化记录。第四纪研究,2000,20(4)。
    11.李彬 袁道先 林玉石等。桂林盘龙洞石笋发光特性及其古环境记录的初步研究。地球学报,1997,18(4):400-406。
    12.李彬。不同环境下岩溶发育特征的差异及其古环境研究意义——以中国南方与挪威极地岩溶为例。中国岩溶,1997,16(4),313-318。
    13.李彬。洞穴化学沉积物中δ~(13)C、δ~(18)O对环境变迁的示踪意义。中国岩溶,1994,13(1),17-24。
    14.李红春 顾德隆Lowell D.Stott陈文寄。高分辨率洞穴石笋稳定同位素应用之——京津地区5000a来的气候变化——δ~(18)O记录。中国科学(D),1998,28(2):181-186。
    15.李红春 顾德隆Lowell D.Stott袁道先 陈文寄 李铁英。北京石花洞石笋500年来的δ~(13)C记录与古气候变化及大气CO2浓度变化的关系。中国岩溶,1997,16(4),286-295。
    16.林华颜,西农科技,1986,2,42~55。
    17.林玉石 张美良 覃嘉铭。洞穴石笋沉积速率研究中值得注意的几个问题。中国岩溶,2001,20(2):131-136。
    18.刘东生 陈正明 罗可文。桂林地区大气降水的氢氧同位素研究。中国岩溶,1987,6(3),225-231。
    19.刘东生 谭明 秦小光 赵树森 李铁英 吕金波 张德二。洞穴碳酸钙微层理在中国的首次发现及其对全球变化研究的意义。第四纪研究,1997,17(1),41-51(with paper)。
    20.刘启明 王世杰 朴河春 欧阳自远。农林生态系统的转变对土壤有机质影响的碳同位素示
    
    踪研究,第四纪研究,2001,21(5):479。
    21.刘启明 王世杰 欧阳自远。洞穴化学沉积物的古气候记录与古生态环境意义。地理科学进展,2001,20(4):384-390。
    22.刘启明 王世杰 欧阳自远。高分辨率气候环境变化研究中的石笋微层。地球科学进展,2002,17(3):396-401。
    23.刘启明 王世杰 欧阳自远。全球变化研究中的洞穴化学沉积物。地学前缘,2003,10(2):470。
    24.刘启明 王世杰 朴河春 欧阳自远。稳定碳同位素示踪农林生态转换系统中土壤有机质的含量变化。环境科学,2002,23(3):75-78。
    25.刘启明 王世杰 朴河春 欧阳自远。稳定碳同位素示踪农林生态转换系统中土壤有机质的迁移和赋存规律。环境科学,2002,23(4):89-92。
    26.刘再华 袁道先 何师意。不同岩溶动力系统的碳稳定同位素和地球化学特征及其意义。地质学报,1997,71(3),281-288。
    27.刘再华。外源水对灰岩和白云岩的侵蚀速率野外试验研究——以桂林尧山为例。中国岩溶,2000,19(1):1-4。
    28.马志邦 李红春 夏明 顾德隆 彭子成 陈玉舒 张兆峰。距今3ka来京东地区的古温度变化:石笋Mg/Sr记录。科学通报,2002,47(23):1829-1834。
    29.潘瑞炽 董匿得。植物生理学(第二版,上册)。北京:科学出版社,1991。
    30.彭子成 王兆荣 孙卫东等。高精度热电离质谱(TIMS)铀系法对第四纪标样年龄测定的研究。科学通报,1997,42(19):2090-2093。
    31.秦小光 刘东生 谭明等。北京石花洞石笋微层灰度变化特征及其气候意义——Ⅰ.微层显微结构。中国科学(D),1998,28(1):91-96。
    32.秦小光 刘东生 谭明等。北京石花洞石笋微层灰度变化特征及其气候意义——Ⅱ.灰度的年际变化。中国科学(D),2000,30(3):239-248。
    33.施雅风。可预见的青藏高原环境大变化。科学时报,总第1880期,2000年5月8号刊。
    34.覃嘉铭 林玉石 张美良 李红春。桂林全新世石笋高分辨率δ~(13)C记录及其古生态意义。第四纪研究,2000,20(4),351-358。
    35.谭明 侯居峙 程海。定量重建气候历史的石笋年层方法。第四纪研究,2002,22(3):209-218。
    36.谭明 刘东生 秦小光 钟华 李铁英 赵树森 李红春 吕金波 鲁向阳。北京石花洞全新世石笋微生长层与稳定同位素气候意义初步研究。中国岩溶,1997,16(1),1-10。
    37.谭明 刘东生 钟华等。季风条件下全新世洞穴碳酸盐稳定同位素气候信息初步研究。科学通报,1997,42(12):1302-1306。
    38.谭明 秦小光 刘东生。石笋记录的年际、十年、百年尺度气候变化。中国科学(D),1998,28(3):272-277。
    39.谭明 秦小光 沈凛梅等。中国洞穴碳酸盐双重光性显微旋回及其意义[J].科学通报,1999,44(6):646-648.
    40.陶发祥。改进的有机氧同位素分析法及东北季风区最近2000年高分辨率气候变化的定量
    
    重建。1995,中科院地化所博士学位论文。
    41.田英 雨俊伟 赵彩。贵州季风及其与灾害性天气关系的研究。贵州气象,2000,24(5):6-8
    42.汪永进 孔兴功 邵晓华 吴江滢。末次盛冰期百年尺度气候变化的南京石笋记录。第四纪研究,2002,22(3):243-251。
    43.汪永进 吴江滢 刘殿兵等。石笋记录的东亚季风气候H1事件突变性特征。中国科学,2002,32(3):227-233。
    44.汪永进 吴江滢 吴金全 穆西南 许汉奎 陈骏。末次冰期南京石笋高分辨率气候记录与GRIP冰芯对比。中国科学,2000,30(5):533-539。
    45.王先锋 刘东生 梁汉东等。石笋物质组成的二次离子质谱初步分析及其气候意义。第四纪研究,1999,(1):59-66。
    46.王先锋。石笋微层地球化学特征及古气候意义。1999,中科院地质研究所博士学位论文。
    47.席承潘。土壤是气候变化的长期记录者。第四纪研究,1990,10(1),82-90。
    48.夏增禄 李森照 李延芳 巴音。土壤元素背景值及其研究方法。北京:气象出版社。1987,6-21。
    49.徐海。中国全新世气候变化研究进展。地质地球化学,2001,29(2):9-15。
    50.袁道先 覃嘉铭 林玉石 张美良 李彬。桂林20万年石笋高分辨率古环境重建。广西师范大学出版社,广西桂林,1999,pp69。
    51.袁道先。碳循环与全球岩溶。第四纪研究,1993,13(1),1-6。
    52.张兰生 方修琦 任国玉。全球变化。高等教育出版社。北京,2000。
    53.张美良 林玉石 覃嘉铭 程海。黔南洞穴石笋古气候变化记录及终止点Ⅱ的确定。中国科学,2002,32(11):942-950。
    54.张美良 林玉石 覃嘉铭。洞穴石笋沉积纹层的形态组合及其滴水的水动力条件。西南师范大学学报(自然科学版),2001,26(4):466-470。
    55.张美良 林玉石 覃嘉铭。桂林水南洞石笋的沉积学特征。1999,17(2):233-239。
    56.张美良 袁道先 林玉石 覃嘉铭 李彬。广西灌阳县响水洞石笋的同位素年龄及古气候意义。中国岩溶,1998,17(4),311-318。
    57.章新平,姚檀栋。我国降水中δ~(18)O的分布特点。地理学报,1998,53(4):356-364。
    58.章典。洞穴碳酸钙沉积的运动条件。中国岩溶,1983,2(1):31-39。
    59.郑淑惠 候发高 倪葆龄。我国大气降水的氢氧稳定同位素研究。科学通报,1983,(13):801-806。
    60.周忠发 程星 陈进。碳酸钙沉积晶体形态特征及环境条件研究。贵州师范大学学报(自然科学版),1997,15(3):6-11。
    61. Amundsen R G, Chadwick O A, Sowers J M, Doner H E. The stable isotope chemistry of pedogenic carbonates at Kyle Canyon, Nevada. Soil Sci. Soc. Am.J. 1989, 53, 201-210.
    62. Andrews J E, Riding R, Dennis P F. The Stable-Isotope Record of Environmental and Climatic Signals in Modern Terrestrial Microbial Carbonates from Europe. Palaeogeography Palaeoclimatology Palaeoecology, 1997, Vol 129, Iss 1-2, pp 171-189.
    
    
    63. Antonioli F, Oliverio M. Holocene sea-level rise recorded by a radiocarbon-dated mussel in a submerged speleothem beneath the Mediterranean Sea. Quaternary Research, 1996, 45(2): 241-244.
    64. Attinson T C. Growth mechanisms of speleothems in Castleguard Cave, Columbian Icefields, Alberta Canada, Arctic Alpine Res. 1983, 15: 523-536.
    65. Auler A. S. Smart P. L. Late quaternary paleoclimate in semiard northeastern Brazil from u-series dating of travertine and water-table speleothem. Quaternary Research, 2001, 55:159-167.
    66. Ayalon A, Bar Matthews M, Kaufman A. Petrography, strontiumbarium, and uranium concentrations, and strontium and uranium isotope ratios in speleothems as palaeoclimatic proxies: Soreq Cave, Israel. The Holocene, 1999.9(6): 715-722.
    67. Babic L Lackovic D Horvatincic N. Meteoric Phreatic Speleothems and the Development of Cave Stratigraphy-An Example from Tounj Cave, Dinarides, Croatia. Quaternary Science Reviews, 1996, 15(10): 1013-1022.
    68. Bahain J J Yokoyama Y Masaoudi H Falgueres C Laurent M. Thermal-Behavior of ESR signals sbserved in various natural carbonates. Quaternary Science Reviews, 1994, 13(5-7): 671-674.
    69. Baker A Genty A. Environmental Pressures on Conserving Cave Speleotheras-Effects of Changing Surface Land-Use and Increased Cave Tourism. Journal of Environmental Management, 1998, 53(2): 165-175.
    70. Baker A Genty D Dreybrodt W Barnes W L Mockler N J Grapes J. Testing Theoretically Predicted Stalagmite Growth-Rate with Recent Annually Laminated Samples-Implications for Past Stalagmite Deposition. (Vol 62, Pg 393, 1998). Geochimica et Cosmochimica Acta, 1998, 62(13): 2405-2405.
    71. Baker A Genty D. Fluorescence Wavelength and Intensity Variations of Cave Waters. Journal of Hydrology, 1999, 217(1-2): 19-34.
    72. Baker A Ito E Smart P L Mcewan R F. Elevated and Variable Values of C-13 in Speleothems in a British Cave System. Chemical Geology, 1997, 136(3-4): 263-270.
    73. Baker A, Barnes W L, Smart P L. Variations in the discharge and organic matter content of stalagmite drip waters in Lower Cave, Bristol. Hydrological Processes, 1997,11(11): 1541-1555.
    74. Baker A, Barnes W L, Smart P L., Speleothem Luminescence Intensity and Spectral Characteristics-Signal Calibration and a Record of Palaeovegetation Change, Chemical Geology 1996, 130:65-76
    75. Baker A, Genty D, Smart P L. High resolution records of soil humification and paleoclimate change from variations in speleothem luminescence excitation and emission wavelengths. Geology, 1998,26(10): 903-906.
    76. Baker A, Proctor C J, Barnes W L. Variations in stalagmite luminescence laminae structure at Pool's Cavern, England, AD 1910-1996; Calibration of a palaeoprecipitation proxy. The
    
    Holocene, 1999, 9(6): 683-688.
    77. Baker A. Smart P. L. Edwards R.L. et al., Annual growth banding in a cave stalagmite. Nature, 1993, 364: 518-520.
    78. Baker B, William L B, Peter L S. Variations in the discharge and organic matter content of stalagmite drip waters in lower cave, Bristol. Hydrological Processes, 1997,11:1541-1555.
    79. Baker R G. Bettis E A. Denniston R F. Gonzalez L A. Plant remains, alluvial chronology, and cave speleothem isotopes indicate abrupt Holocene climatic change at 6 ka in midwestern USA. Global and Planetary Change, 2001, 28(1): 285-291.
    80. Baker-A Caseldine-CJ Gilmour-MA Charman-D Proctor-CJ Hawkesworth-CJ Phillips-N. Stalagmite Luminescence and Peat Humification Records of Palaeomoisture for the Last 2500 Years. Earth and Planetary Science Letters, 1999, 165(1): 157-162.
    81. Baldini J U L, McDermott F, Fairchild I J. Structure of the 8200-Year cold event revealed by a speleothem trace element record. Science, 2002, 296(21), 2203-2206.
    82. Balesdent J., Besnard E., Arrouays D. and Cheun C., 1998. The dynamics of carbon in particle-size of soil in a forest-cultivation sequence. Plant and Soil, 201: 49-57.
    83. Balesdent J., Mariotti A. and Guillet B., Nature 13C abundance as a tracer for soil organic matter dynamics studies. Soil Biology and Biochemistry, 1987, 19: 25-30.
    84. Banner J. Musgrove M. Asmerom Edwards R. L. Hoff J. A. High-resolution temporal record of Holocene ground-water chemistry: Tracing links between climate and hydrology. Geology, 1996,24(11): 1049-1053.
    85. Bar-Matthews M, Ayalon A, Kaufman A, et al. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq Cave, Israel. Earth and Planetary Science Letters, 1999,(166): 85-95.
    86. Bar-matthews M. Ayalon A., Late Quaternary paleoclimate in the Eastern Mediterranean Region from Botwana. Quaternary Research, 1997,47:155-168.
    87. Bar-matthews-M Ayalon-A Matthews-A Sass-E Halicz-L., Carbon and Oxygen-Isotope Study of the Active Water-Carbonate System in a Karstic Mediterranean Cave-Implications for Paleoclimate Research in Semiarid Regions, Geochimica et Cosmochimica Acta, 1996, 60(2): 337-347.
    88. Baskaran-M Krishnamurthy-RV., Speleothems as Proxy for the Carbon-Isotope Composition of Atmospheric CO2. Geophysical Research Letters, 1993, 20(24) 2905-2908.
    89. Bertauxa J, Sondag F, Santosb R, et al. Paleoclimatic record of speleothems in a tropical region:
    90. Betancourt J, Grissino-Mayer H D, Salzer M W, Swetnam T W. A Test of "Annual Resolution" in Stalagmites Using Tree Rings. Quaternary Research, 2002, 58, 197-199.
    91. Beynen P. Bourbonniere R. Ford D. Schwartz H. Causes of colour and fluorescence in speleothens. Chemical Geology, 2001,175:319-341.
    92. Bird M.I., Haberle S. G. and Chiras A. R., 1994. Effect of altitude on the carbon-isotope composition of forest and grassland soil from Papua new guine. Global Giogechemistry
    
    Cycles, 8:13-22.
    93. Blockmans-S Quinif-Y Bini-A Zuccoli-L., Sedimentary Dynamics and Paleoenvironments During the Transition Between the Weichselian and the Holocene from Endokarstic Deposits in the Cave of Han-sur-Lesse (Belgium), Bulletin De La Societe Geologique De France, 1999, Vol 170, Iss 6, pp 841-852.
    94. Boutton J. W. et al., 1983. Comparision of quartz and pyrex tubes for combustion of organic samples for stable carbon isotope analysis. Analytical Chemistry, 55:1832-1833.
    95. Brecker W.S., Radiocarbon measurement and annual rings in cave formations. Nature, 1960,185:93-94.
    96. Brook G A, Rafter M A, Railsback L B. A high-resolution proxy record of rainfall and ENSO since AD 1550 from layering in stalagmites from Anjohibe Cave, Madgascar. The Holocene, 1999,9(6): 695-705.
    97. Brook G.A. Burney L.A. Cowart J.B., Desert palaeoenvironmental data from cave speleothem with example from Chihuahaum, Somali-Chalbi and Kalahari deserts. Palaeogeography Palaeoclimatology Palaeoecology, 1990, 76:311-329.
    98. Buchanon D. L., Corcoran B. J., 1959. Sealed tube combustions for the determintion of carbon-14 and total carbon. Analytical Chemistry, 31: 1635-1638.
    99. Burns S. J. Matter A. Frank N. Mangini A. Speleothem-based paleoclimate recoed from northern Oman. Geology, 1998, 26(6): 499-502.
    100. Charman D J. Caseldine C. Baker A. Gearey B. Hatton J. Proctor C. Paleohydrological records from peat profiles and speleothems in Sutherland, Northwest Scotland. Quaternary Research, 2001, 55(2): 223-234.
    101. Chou K. Garrels R.M. Wollast R., Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chem. Geol., 1989, 269-282.
    102. Coplen T.B. Winograd I.J. Landwehr J.M. Riggs A.C., 500,000-years stable carbon isotopic record from Devils Hole, Nevada. Nature, 1994, 263:361-365.
    103. Cowell D.W. Ford D.C., Hydrochemistry of a dolomite karst: the Bruce Peninsula of Ontario. Can. J. Earth Sci., 1980,17:520-526.
    104. Cox-G Salih-A James-J Allaway-B., Confocal Microscopy of Cyanobacteria in Calcite Speleothems. Zoological Studies, 1995, Vol 34, Iss S1, pp 5-6.
    105. Cunningham-KI Northup-DE Pollastro-RM Wright-WG Larock-EJ. Bacteria, Fungi and Biokarst in Lechuguilla Cave, Carlsbad-Caverns-National-Park, New-Mexico. Environmental Geology, 1995, 25(1): 2-8
    106. Dansgaar W., Stable isotopes in precipitation. Tellus, 1964, ⅩⅥ(4):436-468.
    107. Dennis P.F. Rowe F.J. Atkinson T.C. The recovery and isotopic measurement of water from fluid inclusions in speleothems. Geochimica et Cosmochimica Acta, 2001,65(6): 871-884.
    108. Denniston R F, Gonzalez L A, Baker R G, et al. Speleothem evidence for Holocene fluctuations of the pratrie-forest ecotone, north-central USA[J]. The Holocene, 1999, 9(6): 671-676.
    
    
    109. Denniston R F. Gonzalez L A. Asmerom Y. Reagan M K. Recelli-Snyder H. Speleothem carbon isotopic records of Holocene environments in the Ozark Highlands, USA. Quaternary International, 2000, 67(1): 21-27.
    110. Denniston R F. Gonzalez L A. Asmerom Y. Sharma R H. Reagan M K. Speleothem evidence for changes in Indian summer monsoon precipitation over the last 2300 years. Quaternary Research, 2000, 53(2): 196-202.
    111. Denniston-RF Gonzalez-LA Semken-HA Asmerom-Y Baker-RG Recellisnyder-H Reagan-MK Bettis-EA. Integrating Stalagmite, Vertebrate, and Pollen Sequences to Investigate Holocene Vegetation and Climate-Change in the Southern Midwestern United-States. Quaternary Research, 1999, 52(3): 381-387.
    112. Desmarais D. J. and Hayes J. M. Tube cracker for opening glass-sealed ampoules under vacuum. Analytical Chemistry, 1980, 48:1651-1652.
    113. Desmarchelier J.M. Goede A. Ayliffe L.K. McCulloch M.T. Moriarty K. Stable isotope record and its palaeoenvironmental interpretation for a late Middle Pleistocene speleothem from Victoria Fossil Cave, Naracoorte, South Australia. Quaternary Science Reviews, 2000, 19(8): 763-774.
    114. Dever L. Duran R. Fontes J.C. et al., Etude pedogenetique et isotopique des neoformations de calcite dans un sol sur craie: Caracteristiques et origins. Geochim. et Cosmochim. Acta, 1983, 47:2079-2090.
    115. Dorzle J A, Gonzalez L A, Reagan M K, et al. A high-resolution record of Holocene climate change in speleothems calcite from cold water cave, northeast Iowa. Science, 1992, 258:1626-1630.
    116. Dreybrodt-W Franke-HW., Joint Controlled Solution Pockets (Laugungskolke) in Ceilings of Limestone Caves-A Model of Their Genesis, Growth-Rates and Diameters, Zeitschrift Fur Geomorphologie 1994, Vol 38, Iss 2, pp 239-245.
    117. Dreybrodt-W. Chemical-Kinetics, Speleothem Growth and Climate. Boreas, 1999, 28(3): 347-356.
    118. Dugmore A.J. Coles G.M. Buckland P.C. Holocene comment and reply. The Holocene, 1999, 9(4): 501-503.
    119. Dulinski-M Grabczak-J Kostecka-A Weclawik-S. Stable-Isotope Composition of Spelean Calcites and Gaseous CO2 from Tylicz (Polish Carpathians). Chemical Geology, 1995, 125(3-4): 271-280.
    120. Duplessey J.C. Labeyric J. Lalou C. Nguyen H.V., Continental climatic variations between 130,000 and 90,000 years B.P. Nature, 1970, 226:631-633.
    121. Edgell-HS. Karst and Hydrogeology of Lebanon, Carbonates and Evaporites, 1997, 12(2): 220-235.
    122. Edwards, L R, Chen, J H and Wasserburg, G J, ~(238)U-~(234)U-~(230)Th-~(232)Th systematics and the precise measurement of time over the past 500 000 years: Earth Planet. Sci. Lett.,
    
    1986,81:175-192.
    123. Epstein S. Buchsbaum R. Lowenstarn H.A. et al., Revised carbonate-water isotopic temperature scale. Bull. Geol. Soc, Amer. 1953, 64:1315-1326.
    124. Fairchild, I.J., Baker, A., Borsato, A., Frisia, S., Hinton, R.W., McDermott, F. and Tooth, A.F., Annual to sub-annual resolution of multiple trace-element trends in speleothems. J. of the Geological Society, London, 2001.158, 831-841.
    125. Fairchild-IJ Borsato-A Tooth-AF Frisia-S Hawkesworth-CJ Huang-YM Mcdermott-F Spiro-B., Controls on Trace-Element (Sr-Mg) Compositions of Carbonate Cave Waters-Implications for Speleothem Climatic Records. Chemical Geology, 2000, 166(3-4) 255-269.
    126. Finch A. A. Shaw P. A. Weedon G. P. Holmgren K. Trace element variation in speleothem aragonite: potential for palaeoenvironmental reconstruction. Earth and Planetary Science Letters, 2001, 186: 255-267.
    127. Ford D.C. Williams P.W., Karst geomorphology and hydrology. London: Hyman Ltd, 1989,601.
    128. Franke, H W. The Theory behind Stalagmite Shapes. Studies in Speleology, 1965, Ⅰ(2-3) 89-95
    129. Freytet-P Baltzer-F Conchon-O Plaziat-JC Purser-BH. Hydrologic Significance of Quaternary Continental Carbonates from the Red-Sea Coast of the Egyptian Eastern Desert, Bulletin De La Societe Geologique De France 1994, Vol 165, Iss 6, pp 593-601
    130. Friedli H., Lotscher H., Oeschger H., Sigenthaler U. and Stauffer B., Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature, 1986,324:237-238.
    131. Frisia, S., Borsato, A., Farichild, I. J. & McDermott, F. Calcite fabrics, growth mechanisms, and environments of formation in speleothems from the Italian Alps and Southwestern Ireland. Journal of Sediemntary Research, 2000, 70, 5, pp. 1183-1196.
    132. Frumkin A, Carmi I, Gopher A, et al. A Holocene milliennial-scale climate cycle from a speleothem in Nahal Qanah cave, Israel[J]. The Holocene, 1999, 9(6): 677-682.
    133. Frumkin A, Ford D. C. and Schwarcz H. P. Paleoclimate and vegetation of the last glacial cycles in Jerusalem from a speleothem record. Global Biogeochemical Cycles. 2000, 14(3): 863-870.
    134. Galdenzi-S Menichetti-M., Occurrence of Hypogenic Caves in a Karst Region-Examples from Central Italy, Environmental Geology 1995, 26(1): 39-47.
    135. Galy A, Bar-Matthews M, Halicz L, O' Nions R. K. Mg isotopic composition of carbonate: insight from speleothem formation. Earth and Planetary Science Letters, 2002, 201, 105-115
    136. Gascoyne M., Paleoclimate determination from cave calcite deposits. Quaternary Science Review, 1992,11:609-632.
    137. Gascoyne M., Trace-element partition coefficients in the calcite-water system and their paleoclimatic significance in cave studies. Journal of Hydrology, 1983, 61:213-222.
    138. Gascoyne M., Trace elements in calcite: The only cause of speleothem color? National Speleological Society Bulletin, 1978,40: 90.
    139. Gasse F. Hydrological changes in the African tropics since the Last Glaoial Maximum.
    
    Quaternary Science Reviews, 2000, 19(1): 189-211.
    140. Genty D, Baker A, Maire R. Comparison of annual luminescent and visible laminae in stalagmites, Comptes Rendus De L'Academie des Sciences, Ser Ⅱ. Fascicule A. Sciences dela Terre et des Planetes, 1997,325:193-200.
    141. Genty D. Quinif Y., Annually laminated sequences in the internal structure of some Belgian stalagmites—importance for palaeoclimatology. J. Sediment. Res., 1996,66:275-288.
    142. Genty Dominique, Vale'rie Plagnes, Christiane Causse, Olivier Cattani, Michel Stievenard, Sonia Falourd, Dominique Blamart, Rabia Ouahdi, Sandra Van-Exter. Fossil water in large stalagmite voids as a tool for paleoprecipitation stable isotope composition reconstitution and paleotemperature calculation. Chemical Geology, 2002, 184, 83-95.
    143. Genty, D. Vokal, B. Obelic,B. Massault,M. Bomb 14C time history recorded in two modern stalagmites-importance for soil organic matter dynamics and bomb 14C distribution over continents. Earth and Planetary Science Letters, 1998, 160(3): 795-809.
    144. Genty, D. Andy Baker, Marc Massault, Chris Proctor, Mabs Gilmour, Edwige Pons and Bruno Hamelin. Stalagmite Dead carbon proportion variation: paleodissolution process and soil Organique matter dynamics recorder-implications for 13C variations in stalagmites. Geochimica et Cosmochimica Acta, 2001, 65, 3443-3457.
    145. Genty, D., Baker, A., and Vokal, B. Inter and intra annual growth rates of European stalagmites. Chemical Geology, 2001, 176, 193-214
    146. Genty-D Deflandre-G. Drip Flow Variations Under a Stalactite of the Pere-Noel Cave (Belgium)-Evidence of Seasonal-Variations and Air-Pressure Constraints, Journal of Hydrology, 1998, 211(1-4): 208-232.
    147. Genty-D Massault-M., Carbon Transfer Dynamics from Bomb-C-14 and Delta-C-13 Time-Series of a Laminated Stalagmite from SW France-Modeling and Comparison with Other Stalagmite Records, Geochimica et Cosmochimica Acta, 1999, 63(10):1537-1548.
    148. Gilson J.R. Macarthney E., Luminescence of speleothems from Devon U.K.: The presence of organic activators. Ashford Speleological Society Journal, 1954, 6:8-11.
    149. Goede A, McCulloch M, McDermott F, et al. Aeolian contribution to strontium and strontium isotope variations in a Tasmanian speleothem. Chemical Geology, 1998, (149): 37-50.
    150. Goede A. Vogel J.C. Trace element variation and dating of a Late Pleistocene Tasmanian speleothem. Palaeogeography Palaeoclimatology Palaeoecology, 1991,88:121-131.
    151. Goede,A McCulloch,M McDermott, F Hawkesworth,C Qiaojia, H Yuchai,T Weiping, L Shuxuan, Y Xiaopeng, L Bing, X Yushui,W Li L. Qualitative bedside assay of increased human serum myoglobin by sandwich dot-immunogold filtration for the diagnosis of acute myocardial infarction. Clinica Chimica Acta, 1998, 273(2): 119-130
    152. Goede-A. Continuous Early Last Glacial Paleoenvironmental Record from a Tasmanian Speleothem Based on Stable-Isotope and Minor Element Variations, Quaternary Science Reviews, 1994, 13(3): 283-291.
    
    
    153. Goslar, T Hercman, H Pazdur, A. Comparison of U-series and Radiocarbon dates of speleothems. Radiocarbon, 2000, 42(3): 403-414.
    154. Hellstrom-JC Meculloch-MT. Stone J. A detailed 31,000-year record of climate and vegetation change, from the isotope geochemistry of two New Zealand speleothems. Quaternary Research, 1998, 50(2): 167-178.
    155. Hellstrom-JC Mcculloch-MT., Multi-Proxy Constraints on the Climatic Significance of Trace-Element Records from a New-Zealand Speleothem. Earth and Planetary Science Letters, 2000, 179(2): 287-297.
    156. Hendy C.H. Wilson A.T., Paleoclimate data from speleothem. Nature, 1968, 219:45-51.
    157. Hendy C.H., The isotopic geochemistry of speleothems. Part Ⅰ. The calculation of the effects of different model of formation on the isotopic composition of speleothens and their applicability as paleoclimate indicators. Geochim. et Cosmochim. Acta, 1971,35:801-824.
    158. Hespel, C Jacob, G Roberts, M.S Smart, P.L Baker, A. Annual trace element variations in a Holocene speleothem. Earth and Planetary Science Letters, 1998, 154(1): 237-246.
    159. Hesterberg R. Siegenthaler, Production and stable isotopic geochemistry of speleothems. In: Fritz P. Fontes J.C. eds. Handbook of environmental isotope geochemistry. Elsevire, Amsterdam, 1986, 271-303.
    160. Hill C. Forti P., Cave minerals of the world. N.S.S. (eds.), 1997, pp 239-244.
    161. Holmgren K, Karlen W, Lauritzen S E, et al. A 3000-year high-resolution stalagmite-based record of paleoclimate for northeastern South Africa. The Holocene, 1999, 9(3): 295-309.
    162. Holmgren-K Karlen-W Shaw-PA., Paleoclimatic Significance of the Stable Isotopic Composition and Petrology of a Late Pleistocene Stalagmite from Botswana, Quaternary Research, 1995, 43(3):320-328.
    163. Holmgren-K Lauritzen-SE Possnert-G. Th-230/U-234 and C-14 Dating of a Late Pleistocene Stalagmite in Lobatse-Ⅱ Cave, Botswana. Quaternary Geochronology (Quaternary Science Reviews) 1994, 13(2): 111-119.
    164. Horvatincic N, Bronic I K, Obelic B. Differences in the ~(14)C age, δ~(13)C and δ~(18)O of Holocene tufa and speleothem in the Dinaric Karst. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 193, 139-157.
    165. Horvatincic, N Calic, R Geyh, M.A. Interglacial growth of tufa in Croatia. Quaternary Research, 2000, 53:185-195.
    166. Huang Y. and Fairchild I. J. Partitioning of Sr~(2+) and Mg~(2+) into calcite under karst-analogue experimental conditions. Geochimica et Cosmochimica Acta, 2001, Vol 65, Iss 1, pp 47-62.
    167. Huang Y. Fairchild I. J. Borsato A. et al. Seasonal variations in Sr, Mg and P in modern speleothems (Grotta di Emesto, Italy). Chemical Geology, 2001. 175: 429-448.
    168. James-JM Patsalides-E Cox-G. Amino-Acid-Composition of Stromatolitic Stalagmites, Geomicrobiology Journal, 1994, 12(3): 183-194.
    169. Jimenez de Cisneros C., Caballero E, Vera J A, Duran J J, JUlla R. A record of Pleistocene
    
    climate from a stalactite, Nerja Cave, southern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 189, 1-10.
    170. Johnson-RG Lauritzen-SE., Hudson Bay-Hudson Strait Jokulhlaups and Heinrich Events-A Hypothesis, Palaeogeography Palaeoclimatology Palaeoecology, 1995, 117(1-2): 123-137.
    171. Kawahata H, Suzuki A, Gore K. Coral reefs as sources of atmospheric CO_2—Spatial distribution of PCO_2 in Majuro Atoll. Geochemical Journal, 1999, 33,295-303.
    172. Khademi-H Mermut-AR., Submicroscopy and stable isotope geochemistry of carbonates and associated palygorskite in Iranian Aridisols. European Journal of Soil Science 1999,50, 207-216.
    173. Kolodny Y, Bar-Matthews M, Ayalon A, McKeegan K D. A high spatial resolution d~(18)O profile of a speleothem using an ion-microprobe. Chemical Geology, 2003, 197, 21-28.
    174. Kuczumow A, Genty D, Chevallier P, Nowak J, Chul-Un Ro. Annual resolution analysis of a SW-France stalagmite by X-ray synchrotron microprobe analysis. Spectrochimica Acta Part B, 2003, 58, 851-865.
    175. Lacroix M, Leboulanger T, Wang H Q, Feeny V, Dupont J P, Meyer R. An Investigation, Using the Chalk Karst of Haute-Normandie (France), as an Example of the Relationships Between the Surface and Endokarst Using a Granulometric Method, Bulletin De La Societe Geologique De France, 1998, Vol 169, Iss 2, pp 177-187.
    176. Lauriol B, Ford D C, Cinqmars J, Morris W A. The Chronology of Speleothem Deposition in Northern Yukon and Its Relationships to Permafrost, Canadian Journal of Earth Sciences, 1997, 34(7): 902-911.
    177. Lauritzen S E, Haugen J E, Lovlie R, Giljenielsen H. Geochronological Potential of Isoleucine Epimerization in Calcite Speleothems. Quaternary Research, 1994, 41(1): 52-58.
    178. Lauritzen S E, Lundburg J. Calibration of the speleothem delta function: an absolute temperature record for the Holocene in north Norway. The Holocene, 1999, 9(6): 659-669.
    179. Lauritzen S E, Lundburg J. Speleothem and climate: a special issue of the Holocene. The Holocene, 1999, 9(6): 643-647.
    180. Lauritzen S E, Onac B P, Isotopic stratigraphy of a last interglacial stalagmite from Northwestern Romania: Correlation with the deep-sea record and northern-latitude speleothem. Journal of Cave and Karst Studies, 1999, 61(1): 22-30.
    181. Lauritzen S E. High-Resolution Paleotemperature Proxy Record for the Last Interglaciation Based on Norwegian Speleothems, Quaternary Research, 1995, 43(2): 133-146.
    182. Lauritzen S. Annually resolved stable isotope data from speleothem calcite by laster ablation/mass spectrometry. In: Lauritzen S, ed. Climate Change: The Karst Record. Karst Water Institute, Inc. West Virginia, 1996.
    183. Lauritzen S.E. Lovely R. Moe D. et al., Paleoclimate deduced from a multidisciplinary study of a half-million-year-old-stalagmite from Rana, Northern Norway. Quaternary Research, 1990, 34: 306-316.
    
    
    184. Lean C B, Latham A G, Shaw J. Palaeosecular Variation from a Vancouver-Island Stalagmite and Comparison with Contemporary North-American Records, Journal of Geomagnetism and Geoelectricity, 1995, 47(1): 71-87.
    185. Li B, Yuan D X, Qin J M, Lin Y, Zhang M L. Oxygen and Carbon Isotopic Characteristics of Rainwater, Drip Water and Present Speleothems in a Cave in Guilin Area, and Their Environmental Meanings. Science in China Series D-Earth Sciences, 2000, 43(3): 277-285.
    186. Li H C, Gu D L, Stott L D. Applications of Interannual-Resolution Stable-Isotope Records of Speleothem-Climatic Changes in Beijing and Tianjin, China During the Past 500 Years-The Delta-O-18 Record, Science in China Series D-Earth Sciences, 1998, 41(4): 362-368.
    187. Li W X, Lundberg J, Dickin A P, Ford D C, et al. High precision mass-spectrometric uranium-series dating of cave deposits and implications for paleoclimate studies. Nature, 1989, 339:534-536.
    188. Linge H. Lauritzen S.E. Lundberg J. Berstad I. M. Stable isotope stratigraphy of Holocene speleothems: examples from a cave system in Rana, northern Norway. Palaeogeography Palaeoclimatology Palaeoecology, 2001,167: 209-224.
    189. Linge H. Lauritzen S.E. Stable isotope stratigraphy of a late last interglacial speleothem from Rana, Northern Norway. Quaternary Research, 2001,56:155-164.
    190. Lu P, Biron P, Breda N, Granier A. Water Relations of Adult Norway Spruce (Picea-Abies (L) Karst) Under Soil Drought in the Vosges Mountains-Water Potential, Stomatal Conductance and Transpiration, Annales Des Sciences Forestieres, 1995, Vol 52, Iss 2, pp 117-1299.
    191. Lu P, Biron P, Granier A, Cochard H. Water Relations of Adult Norway Spruce (Picea-Abies (L) Karst) Under Soil Drought in the Vosges Mountains-Whole-Tree Hydraulic Conductance, Xylem Embolism and Water-Loss Regulation, Annales Des Sciences Forestieres, 1996, 53(1): 113-121.
    192. Ludwig K.P. Simmon K.P. Szabo et al., Mass-spectrometric 230Th-234U-238U dating of the Devils Hole calcite vein. Science, 1992,258:284-287.
    193. Lyons R G. Back to basics: Qualitative spectral analysis as an investigatory tool, using calcite as a case study. Applied Radiation and Isotopes, 1996, 47(11): 1385-1391.
    194. Lyons R.G. The elusive blake: a record of paleomagnetically reversed deposits in New Zealand post 120 ka. Quaternary Science Reviews, 1996, 15(7): 719-726.
    195. Marino B. D. and McElroy M. B., Isotopic composition of atmospheric CO2 inferred from carbon in C4 plant cellulose. Nature, 1991, 349:127-131.
    196. Marrison G. M., Introne D. S. and Van Cleve K., The stable isotope geochemistry of CaCO3 on the Tanana River flood plain of interion Alaska U.S.A. Chemical Geology, 1991.86:97-110.
    197. Martin J C, Mark B D. Temperature and moisture effects on the production of dissolved organic carbon in a spodosol. Soil Biol. Biochem., 1996,28(9):1191-1199.
    198. McBride M.B., Environmental chemistry of soils. Oxford University Press, New York, 1994,406
    
    
    199. McCrea J M. The isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 1950, 18, 849-857.
    200. McDermott F, Frisia S, Huang Y M, Longinelli A, Spiro B, Heaton T H E, Hawkesworth C J, Borsato A, Keppens E, Fairchild I J, Vanderborg K, Verheyden S, Selmo E. Holocene Climate Variability in Europe-Evidence from Delta-O-18, Textural and Extension-Rate Variations in 3 Speleothems, Quaternary Science Review, 1999, 18(8-9): 1021-1038.
    201. McDermott F, Mattey, David P and Hawkesworth C. Centennial-scale Holocene climate variability revealed by a high-resolution speleothem δ 18 O record from SW Ireland. Science, 2001, 294, 1328-1331.
    202. Mcgarry S F, Baker A. Organic-Acid Fluorescence-Applications to Speleothem Paleoenvironmental Reconstruction. Quaternary Science Review, 2000, 19(11): 1087-1101.
    203. Melchiorre E B, Criss R E, Rese T P. Oxygen and Carbon-Isotope Study of Natural and Synthetic Azurite. Economic Geology and the Bulletin of the Society of Economic Geologists, 2000, 95(3): 621-628.
    204. Miano T M Sposito G Martin J P. Flourescence spectroscopy of humic snbstances. Soil Sci. Soc. Am. J. 1988, 52: 1016-1019.
    205. Montero-ME Aspiazu-J Pajon-J Miranda-S Moreno-E., PIXE Study of Cuban Quaternary Paleoclimate Geological Samples and Speleothems, Applied Radiation and Isotopes, 2000, 52(2): 289-297.
    206. More G.W. Speleothem: A new cave term. Nat. Speleol. Soc. News, 1952, 10(6): 2.
    207. Moriarty, K.C McCulloch, M.T Wells, R.T McDowell, M.C. Mid-Pleistocene cave fills, megafaunal remains and climate change at Naracoorte, South Australia: towards a predictive model using U-Th dating of speleothems. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 159(1): 113-143.
    208. Morinaga H Yonezawa T Adachi Y Inokuchi H Gote H. The Possibility of Inferring Paleoseismictiy from Paleomagnetic Dating of Speleothems, Western Japan. Tectonophysics, 1994, 230(3-4): 241-248.
    209. O'Neil J.R. Clayton R.N. Mayeda T.K., Oxygen isotope fractionation in divalent metal carbonates. J. chem. Phys., 1969,51:5547-5558.
    210. Onac, B.P. White, W.B. Viehmann, I. Leonite [K_2Mg(SO_4)_2.4H_2O], konyaite [Na_2Mg(SO_4)_2.5H_2O] and syngenite [K_2Ca(SO_4)_2.H_2O] from Tausoare Cave, Rodnei Mts, Romania. Mineralogical Magazine, 2001, 65(1): 103-109.
    211. Openshaw-S Latham-A Shaw-J. Speleothem Palaeosecular Variation Records from China - Their Contribution to the Coverage of Holocene Palaeosecular Variation Data in East-Asia. Journal of Geomagnetism and Geoelectricity, 1997, 49(4): 485-505.
    212. Pazdur A. Goslar T Pawlyta M Hercman H Gradzinski M. Variations of Isotopic Composition of Carbon in the Karst Environment from Southern Poland, Present and Past. Radiocarbon, 1999, 41(1): 81-97
    
    
    213. Peng Z C, Wang Z R, Sun W D, Ma Z B Xia M, Zhang C H, Chen W J, Zhang Z L, An Z H. High-Precision Timing of the Quaternary Standard Samples with Thermal Ionization Mass-Spectrometry (TIMS) U-Series Method. Chinese Science Bulletin 1995, 43(4): 333-336.
    214. Perkins, A.M. Observations under electron microscopy of magnetic minerals extracted from speleothems. Earth and Planetary Science Letters, 1996, 139(1): 281-289.
    215. Perrette Y. Genty D. Destombes J.L. Delannoy J.J. Quinif Y., Characterisation of speleothem crystalline fabric by spectroscopic and digital image processing methods (Choranche Vercors, France). Proc. 12th Int. Cong. Speleol. La Chux-de-Fonds, 1997, vol 1,257-260.
    216. Perrette-Y Delannoy-JJ Bolvin-H Cordonnier-M Destombes-JL Zhilinskaya-EA Aboukais-A., Comparative-Study of a Stalagmite Sample by Stratigraphy, Laser-Induced Fluorescence Spectroscopy, EPR Spectrometry and Reflectance Imaging. Chemical Geology, 2000, 162(3-4): 221-243.
    217. Piketh, S.J Sideras-Haddad, E Holmgren, K Tyson, P D. Proton micro-probe analysis of a speleothem from South Africa. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1999, 158(1): 606-611.
    218. Plagnes Valerie, Causse Christiane, Genty Dominique, Paterne Martine, Blamart Dominique. A discontinuous climatic record from 187 to 74 ka from a speleothem of the Clamouse Cave (south of France). Earth and Planetary Science Letters, 2002, 201, 87-103.
    219. Proctor C. J. Baker A. Barnes W. L. A three thousand year record of North Atlantic climate. Climate Dynamics (2002) 19:449-454.
    220. Pulidobosch-A Martinrosales-W Lopezchicano-M Rodrigueznavarro-CM Vallejos-A. Human Impact in a Tourist Karstic Cave (Aracena, Spain), Environmental Geology 1997, 31(3-4): 142-149.
    221. Qing-HR Mountjoy-EW. Origin of Dissolution Vugs, Caverns, and Breccias in the Middle Devonian Presquile Barrier, Host of Pine Point Mississippi Valley-Type Deposits, Economic Geology and the Bulletin of the Society of Economic Geologists, 1994, 89(4): 858-876.
    222. Quade J. Greling T.E. Bowman J.R., Systematic variations in the carbon and oxygen isotopic composition of pedogenic carbonate along elevation transects in the Southern Great Basin, United States. Geol. Soc. Am. Bull. 1989,101:464-475.
    223. Quinif-Y Genty-D Maire-R. Speleothems-Efficient Tool for Paleoclimatic Studies, Bulletin De La Societe Geologique De France, 1994, Vol 165, Iss 6, pp 603-612
    224. Railsback-LB Brook-GA Chen-J Kalin-R Fleisher-CJ., Environmental Controls on the Petrology of a Late Holocene Speleothem from Botswana with Annual Layers of Aragonite and Calcite, Journal of Sedimentary Research Section A- Sedimentary Petrology and Processes, 1994, 64(1): 147-155.
    225. Ramseyer-K Miano-TM Dorazio-V Wildberger-A Wagner-T Geister-J., Nature and Origin of Organic-Matter in Carbonates from Speleothems, Marine Cements and Coral Skeletons. Organic Geochemistry, 1997, Vol 20, Iss 5-6, pp 361-378.
    
    
    226. Repinski P, Holmgren K, Lauritzen S E, Leethorp J A. A Late Holocene Climate Record from a Stalagmite, Cold-Air Cave, Northern Province, South-Africa, Palaeogeography Palaeoclimatology Palaeoecology, 1999, Vol 150, Iss 3-4, pp 269-277
    227. Richards D A, Smart P L, Edwards R L. Maximum Sea Levels for the Last Glacial Period from U-Series Ages of Submerged Speleothems, Nature 1994, Vol 367, Iss 6461, pp 357-360
    228. Roberts M S, Smart P L, Chris J, et al. Trace element Variations in coeval Holocene speleothems from GB Cave, southwest England [J]. The Holocene, 1999, 9(6): 707-713.
    229. Roberts M.S. Smart P.L. Hawkesworth C.J. et al., Trace element variations in Coeval Holocene speleothems from G.B. Cave, Southwest England. The Holocene, 1999,9:707-713.
    230. Roberts-MS Smart-PL Baker-A., Annual Trace-Element Variations in a Holocene Speleothem, Earth and Planetary Science Letters,1998, Vol 154, Iss 1-4, pp 237-246.
    231. Rozanski K. Arzguss A.L. Gonfiantini R., Isotopic patterns in modern global precipitation In: Swart P.K. eds. Climate change in continental isotopic records. Amer. Geophys. Union. Monograph, 1993,78:1-36.
    232. Schwarcz H.P. Harmon R.S. Thompson P. et al., Stable isotope studies of fluid inclusions in speleothens and their paleoclimatic significance. Geochim. et Cosmochim. Acta, 1976, 40:657-665.
    233. Senesi, N., Miano, T. M., Provenzano, M. R., and Brunetti, G. (1991). Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy. Soil Sci. 152, 259-271.
    234. Shopov Y Y, Ford D C, Schwarcz H P. Luminescent Microbanding in Speleothems-High-Resolution Chronology and Paleoclimate. Geology, 1994, Vol 22, Iss 5, pp 407-410.
    235. Shopov Y.Y., Laser luminescent microzonal analysis:A new method for investigation of the alterations of climate and solar activity during the Quaternary. In: Kiknadze T. eds. Problems of karst study in Mountainous Countries. Tbilisi: Georgia, Metsniereba, 1987,228-232.
    236. Smith B. N. Epstein S., Two categories of 13C/12C ratios for highter plants. Plant Physiology, 1971, 47:380-384.
    237. Sofer Z. Preperation of carbon dioxide for stable carbon isotope analysis of petroleum fractions. Analytical Chemistry, 1980, 52: 1389-1391.
    238. Spisak W Idzik J. Gas Hold-Up in Stalactite and Slug Flows with Highly Viscous-Liquids. Chemical Engineering Journal and the Biochemical Engineering Journal, 1994, 56(1): B79-B85.
    239. Stevenson C, Leethorp J A, Holmgren K. A 3000-Year Isotopic Record from a Stalagmite in Cold-Air Cave, Makapansgat Valley, Northern Province. South African Journal of Science, 1999, 95(1): 46-48.
    240. Tan M, Qin X G, Shen L M, Wang X F, Wang Y J, Li T Y, Song L H, Wang L H, Liu D S. Bioptical Microcycles of Laminated Speleothems from China and Their Chronological Significance, Chinese Science Bulletin 1999, Vol 44, Iss 17, pp 1604-1607.
    241. Footh A F, Fairchild I J. Soil and karst aquifer hydrological controls on the geochemical
    
    evolution of speleothem-forming drip waters, Crag Cave, southwest Ireland. Journal of Hydrology, 2003, 273, 51-68. tudy of laminated sequences from a Holocene stalagmite in Central-West Brazil. Quaternary International, 2002, 89:3-16.
    242. Vaks A, Bar-Matthews M, Ayalon A et al. Paleoclimate reconstruction based on the timing of speleothem growth and oxygen and carbon isotope composition in a cave located in the rain shadow in Israel. Quaternary Research, 2003, 59, 182-193.
    243. Verheyden S. Keppens E. Fairchild I. McDermott F. Weis D. Mg, Sr and Sr isotope geochemistry of a Belgian Holocene speleothem: implications for paleoclimate reconstructions. Chemical Geology, 2000,169:131-144.
    244. Wang Y J, Cheng H, Edwards R L, An Z S, Wu J Y, Shen C C, Dorale J A. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China. Science, 2001, 294(14): 2345-2348.
    245. White W.B. Brennan E.S., Luminescence of speleothems due to fulvic acid and other activators: Proceedings of the International speleology Congress, 10th, 1989, 1:212-214.
    246. White W.B., Reflectance spectra and color in speleothems. N.S.S. Bull., 1981,43: 20-26.
    247. William P W, Marshall A, Ford D C, et al. Palaeoclimatic interpretation of stable isotope data from Holocene speleothems of the Waitomo District, North Island, New Zealand. The Holocene, 1999, 9(6): 649-657.
    248. Winograd I J, Coplen T B, Landwehr J M, et al. Continuous 500 000 year climate record from vein calcite in Devils Hole, Nevada. Science, 1992, 258:255-260.
    249. Wray R A L. A Global Review of Solutional Weathering Forms on Quartz Sandstones. Earth Science Reviews 1997, Vol 42, Iss 3, pp 137-160.
    250. Yonge C.J. Ford D.C., Stable isotope of cave seepage water. Chem. Geo., 1985, 58:97-105.
    251. Yonge C.J., Fluid inclusions in speleothens as paleoclimate indicators. Proc. 8th Int. Cong. Speleol. Bowling Green, 1981, vol 1,301-303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700