用户名: 密码: 验证码:
热带西太平洋深海沉积物微生物多样性及群落结构特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为研究热带西太平洋深海沉积物中微生物的多样性和群落结构特征,我们以PCR技术为基础分别构建了8个不同层位的细菌和古菌16S rRNA基因克隆文库。通过PCR扩增、基因测序、序列大于或等于97%相似度分析及在线杂合子检验,共得到691个细菌有效克隆,261种RFLP(Restriction Fragment Length Polymorphism)带型和181个OTUs(Operational Taxonomic Units);通过对古菌的研究最终获得719个古菌有效克隆,199种RFLP带型和104个OTUs。系统发育分析的结果表明,该研究中的细菌和古菌序列同来源于各种海洋环境的序列具有很好的同源性。细菌分为15个不同的类群,主要以绿弯菌门(Chloroflexi)、变形菌门(Proteobacteria)和浮霉菌门(Planctomycetes)为主,其中变形菌门又包括α-、γ-和δ-变形菌纲三个纲。古菌序列均从属于古菌的两个大的分支:Crenarchaeota泉古生菌(76%)和Euryarchaeota广古生菌(24%)。Deep-sea Archaeal Group (DSAG)和Miscellaneous Crenarchaeotic Group(MCG)是研究区域古菌的优势类群。香农威纳指数(H)、辛普森指数(1/D)、均匀度(J)及SChao 1、SACE等多样性指标表明,细菌克隆文库的3051bac4和3051bac8层位多样性最高,而古菌的TWP1层位具有较高的多样性;并且微生物的多样性随着深度的增加呈现一定的梯度变化,这种差异可能受热带西太平洋边界流以及频繁的火山、地震活动的影响。
     通过系统发育分析和与其他地区的对比发现,热带西太平洋深海沉积物中的微生物类群无论在多样性、还是群落结构与组成上都与秘鲁边缘海1227位点处的微生物类群有很大的相似性,这两个区域虽然横跨东、西太平洋,但在相似的环境条件下也可能形成较为相近的微生物群落。另外,通过研究我们还发现,古菌DSAG和MCG可能是非水合物区某些层位处的优势类群,似乎比以前我们所想象的具有更广泛的生理适应性,它们的空间分布和群落结构可能因环境中地球化学梯度的不同而发生相应的变化。
To identify the diversity and community structure of microbes in deep subsurface sediments from the tropical Western Pacific, eight bacterial and archaeal 16S rRNA gene clone libraries were constructed by using a PCR-based cloning approach, respectively.
     691 bacterial valid clones, 261 Restriction Fragment Length Polymorphism (RFLP) genotypes and 181 Operational Taxonomic Units (OTUs) were identified by using PCR amplicons, sequencing, chimera-check and 97% similarity analysis. Meanwhile, we obtained 719 archaeal clones, 199 RFLP genotypes and 181 OTUs.
     Phylogenetic analysis of 16S rDNA sequences indicated the majority of members were most closely related to uncultivated groups and physiologically uncharacterized assemblages from various marine environments. 15 major bacterial lineages were obtained. Chloroflexi, Proteobacteria and Planctomycetes were the dominate phylotypes detected among the clone libraries. The division of contained three subdivisions includingα-,γ- andδ-Proteobateria subdivisions. In this study, all archaeal phylotypes were affiliated with Crenarchaeota (76%) and Euryarchaeota (24%), respectively. Deep-sea Archaeal Group (DSAG) and Miscellaneous Crenarchaeotic Group (MCG) belonging to Crenarchaeota were the most predominant archaeal 16S rDNA phylotypes in clone libraries. By means of the values of Shannon-Weiner (H), Simpson (1/D), and evenness (J) indices, the bacterial and archaeal communities observed in clone libraries obtained from the eight sediment layers were diverse and showed obviously stratified features. 3051bac4 and 3051bac8 layers had the highest diversity of the bacterial OTUs, and TWP1 clone library had the highest archaeal diversity. The difference might be caused by boundary currents of the tropical Western Pacific and frequent volcano and earthquake activities.
     Phylotypes in this study shared high similarity with those in subsurface sediments from Peru Margin 1227 site in diversity and community structures, which indicated different geographical zones across the eastern and western Pacific might host similar members of archaeal populations based on similar sedimentary environments. In our study, members of DSAG and MCG seemed to dominate certain layers of the nonhydrate sediments, suggesting a wide ecophysiological adaptation than previously appreciated. The spatial distribution and community structure of these groups might vary with the different geochemical gradient of the environments.
引文
Altschul S, Madden T L, Schaffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25:3389–3402
    Auchtung T A, Tackacs-Vesbach C D, Cavanaugh C M. 16S rRNA phylogenetic investigation of the candidate division‘‘Korarchaeota’’. Appl Environ Microbiol. 2006, 72:5077–5082
    Barns S M, Fundyga R E, Jeffries M W, Pace N R. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA. 1994, 91:1609–1613
    Barns S M, Delwiche C F, Palmer J D, Pace N R. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci USA. 1996, 93:9188–9193
    Beal E J, House C H, Orphan V J. Manganese- and iron-dependent marine methane oxidation. Science. 2009, 325:184–187
    Biddle J F, Lipp J S, Lever M A, Lloyd K G, S?rensen K B, Anderson R et al. Heterotrophic archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci USA. 2006, 103:3846–3851
    Brochier C, Gribaldo S, Zivanovic Y, Confalonieri F, Forterr P. Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales. Genome Biol. 2005, 6:R42
    Buckley D H, Graber J R, Schmidt T H. Phylogenetic analysis on nonthermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soil. Appl Environ Microbiol. 1998, 64:4 333–4 339
    Cetecioglua Z, Ince B K, Kolukirik M, Ince O. Biogeographical distribution and diversity of bacterial and archaeal communities within highly polluted anoxic marine sediments from the marmara sea. Marine Pollution Bulletin. 2008, 58:384–395
    Chandler D P, Brockman F J, Bailey T J, Fredrickson J K. Phylogenetic diversity of Archaea and Bacteria in a deep subsurface paleosol. Microb Ecol. 1998, 36:37–50
    Chappe B, Albereeht P, Michaelis W. Polar lipids of Archaebacteria in the sediments and petroleums. Science. 1982, 217:65-66
    Coolen M J L, Overmann J. Analysis of subfossil molecular remains of purple sulfur bacteria in a lake sediment. Appl Environ Microbiol. 1998, 64:4513–4521
    Coolen M J L, Cypionka H, Sass A M, Sass H, Overmann J. Ongoing modification of Mediterranean Pleistocene sapropels mediated by prokaryotes. Science. 2002, 296:2 407–2 410
    Dang H Y, Lovell C R. Numerical dominance and phylotype diversity of marine Rhodobacter species during early colonization of submerged surfaces in coastal marine waters as determined by 16S ribosomal DNA sequence analysis and fluorescence in situ hybridization. Appl. Environ. Microbiol. 2002, 68:496-504
    Dang H Y, Luan X, Zhao J, Li J. Diverse and novel nifH and nifH-like gene sequences in the deep-sea methane seep sediments of the Okhotsk Sea. Appl Environ Microbiol. 2009, 75:2 238–2 245
    DeLong E F. Archaea in coastal marine environments. Proc Natl Acad Sci USA. 1992, 89:5685–5689
    DeLong E F, Wu K Y, Prezelin B B, Jovine R V M. High abundance of Archaea in Antarctic marine picoplankton. Nature. 1994, 371:695–697
    DeLong E F. Microbial life breathes deep. Science. 2004, 306:2198–2200
    Deming J W, Baross J A. Deep-sea smokers: Windows to a subsurface biosphere? Geochimica et Cosmochimica Acta. 1993, 57:3219-3230
    Derry L A, Murray R W. Continental margins and the sulfur cycle. Science. 2004, 303:1981–1982
    D’Hondt S L, Rutherford S, Spivack A J. Metabolic activity of subsurface life in deep-sea sediments. Science. 2002, 295:2067–2070
    D’Hondt S, J?rgensen B B, Miller D J, Batzke A, Blake R, Cragg B A et al. Distributions of microbial activities in deep subseafloor sediments. Science. 2004, 306:2216–2221
    D’Hondt S, Spivack A J, Pockalny R, Ferdelman T G, Fischer J P, Kallmeyer J, Abrams L J, Smith D C, Graham D, Hasiuk F, Schrum H, Stancin A M. Subseafloor sedimentary life in the South Pacific Gyre. PNAS. 2009, 106:11651–11656
    Eder W, Ludwiq W, Huber R. Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of kebrit deep, red Sea. Arch Microbiol. 1999, 172:213–218
    Elsaied H E. Molecular genetic monitoring of bacterial communities in manzala lake, Egypt, nased on 16S rRNA gene analysis. Egypt J Aqua Res. 2007, 33:179–194
    Felsenstein J. PHYLIP-phylogeny inference package (version 3.2). Cladistics. 1989, 5: 164-166
    Fine R A, Lukas R, Bingham F, Warner M J, Gammon R H. The western equatorial Pacific: a water mass crossroads. Geophysical Research. 1994, 99:25 063–25 080
    Freeman K H, Hayers J M, Trendel J M, Albrecht P. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons. Nature. 1990, 343:254-256
    Fry J C, Parkes R J, Cragg B A, Weightman A J, Webster G. Prokaryotic biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiol Ecol. 2008, 66:181–196
    Fry J C, Webster G, Cragg B A, Weightman A J, Parkes R J. Analysis of DGGE profiles to explore the relationship between prokaryotic community composition. FEMS Microbiol Ecol. 2006, 58:86–98
    Fuhrman J A, McCallum K, Davis A A. Novel major archaebacterial group from marine plankton. Nature. 1992, 356:148–149
    Hallam S J, Girguis P R, Preston C M, Richardson P M, DeLong E F. Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl Environ Microbial. 2003, 69:5 483–5 491
    Harrison B K, Zhang H, Berelson W, Orphan V J. Variations in archaeal and bacterial diversity associated with the Sulfate-Methane Transition Zone in continental margin sediments (Santa Barbara Basin, California). Appl Environ Microbiol. 2009, 75 (6):1487-1499
    Heijs S K, Sinninghe Damste J S, Forney L J. Characterization of a deep-sea microbial mat from an active cold seep at the Milano mud volcano in the Eastern Mediterranean Sea. FEMS Microb Ecol. 2005, 54:47–56
    Hill T C A, Walsh K A, Harris J A, et al. Using ecological diversity measures with bacterial communities. FEMS Microbiol. Ecol. 2003, 43:1-11
    Hinrichs K U. A molecular recorder of methane hydrate destabilization. Geochemistry Geophysics Geosystems. 2001, 2(1):2000, GC0001 118
    Hinrichs K U, Hmelo L, Sylva S P. Molecular fossils record of elevated methane levels inlate Pleistocene coastal waters. Science. 2003, 229:1214-1217
    Hinrichs K U, Hayes J M, Sylva S P, et al. Methane-consuming archaebacteria in marine sediments. Nature. 1999, 398:802-805
    Huber H, Hohn M J, Rachel R, Fuchs T, Wimmer V C, Stetter K O. A new phylum of archaea represented by a nanosized hyperthermophilic symbiont. Nature. 2002, 417:63–67
    Huber J A, Johnson H P, Butterfield D A, Baross J A. Microbial life in ridge flank crustal fluids. Environ Microbiol. 2006, 8 (1):88-99
    Hugenholtz P, Goebel B M, Pace N R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Bacteriol. 1998, 180:4765–4774
    Hugenholtz P. Exploring prokaryotic diversity in the genomic era. Genome Biol. 2002, 3(2) Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Nealson K H, Horikoshi K. Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl Environ Microbiol. 2003, 69:7224–7235
    Inagaki F, Tsunogai U, Suzuki M, Kosaka A, Machiyama H, Takai K, Nunoura T, Nealson K H, Horikoshi K. Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, Southern Ryukyu Arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes. Appl Environ Microbiol. 2004, 70:7 445–7 455
    Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell F S, Nealson K H, Horikoshi K, D’Hondt S, J?rgensen B B. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. PNAS. 2006, 103:2815–2820
    Itoh T, Suzuki K, Sanchez P C, et al. Caldisphaera lagunensis gen. nov., sp. Nov., a novel thermoacidophilic crenarchaeote isolated from a hot spring at Mt Maquiling, Philippines. Int J Syst Evol Microbiol, 2003, 53:1 149-1 154
    J?rgensen B B. Mineralization of organic matter in the sea bed—the role of sulfate reduction. Nature. 1982, 296:643–645
    Karner M B, DeLong E F, Karl D M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature. 2001,409:507–510
    Kashefi K, Lovley D R. Extending the upper temperature limit for life. Science. 2003, 301:934
    Kato C. Barophiles (piezophiles). In: Horikoshi K, Tsujii K (eds) Extremophiles in deep-seaenvironments. Springer-Verlag, Tokyo. 1999, pp:91–111
    Kato C, Inoue A, Horikoshi K. Isolating and characterizing deep-sea marine microorganisms. Trends in Biotechnology. 1996, 14(1):6-12
    Kemp P F, Lee S, Laroche J. Estimating the growth rate of slowly growing marine bacteria from RNA content. Appl Environ Microbiol. 1993, 59:2594–2601
    Kerkhof L, Ward B B. Comparison of nucleic acid hybridization and fluorometry for measurement of the relationship between RNA/DNA ratio and growth rate in a marine bacterium. Appl Environ Microbiol. 1993, 59:1303–1309
    Kerkhof L, Kemp P. Small ribosomal RNA content in marine Proteobacteria during non-steady-state growth. FEMS Microbiol Ecol. 1999, 30:253–260
    Knittel K, Losekann T, Boetius A, Kort R, Amann R. Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol. 2005, 71:467–479
    Koga Y, Morii H, Akagawa-Matsushita M, et al. Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens, further analysis of lipid component parts. Biosci Biotechnol Biochem. 1998, 62:230-236
    Konneke M, Bernhard A E, de la Torre J R, Walker C B, Waterbury J B, Stahl DA. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature. 2005, 437:543–546
    Kormas K A, Smith D C, Edgcomb V, et al. Molecular analysis of deep subsurface microbial communities in Nankai Trough sediments (ODP Leg 190, Site 1176). FEMS Microbiol Ecol. 2003, 45:115-125
    Kramer J G, Singleton F L. Measurement of rRNA variation in natural communities of microorganisms on the southeastern U.S. continental shelf. Appl Environ Microbiol. 1993, 59:2430–2436
    Kuypers M M M, Blokker P, Erbacher J, et al. Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic event. Science. 2001, 293:92-94
    Lansigan F P, de los Santos W L, Coladilla J O. Agronomic impacts of climate variability on rice production in the Philippines. Agric Ecosyst Environ. 2000, 82:129–137
    Larkin J M, Henk M C. Filamentous sulfide-oxidizing bacteria at hydrocarbon seeps of the Gulf of Mexico. Microsc Res Tech. 1996, 33:23–31
    Lee S H, Kemp P F. Single cell RNA content of natural marine planktonic bacteria measured byhybridization with multiple 16S ribosomal RNA targeted fluorescent probes. Limnol Oceanogr. 1994, 39:869–879
    Lee S Y, Huh C A, Su C C, You C F.Sedimentation in the Southern Okinawa Trough: enhanced particle scavenging and teleconnection between the Equatorial Pacific and western Pacific margins. Deep Sea Res Part I Oceanogr Res Pap. 2004, 51:1 769–1 780
    Li Y, Li F, Zhang X, Qin S, Zeng Z, Dang H, Qin Y. Vertical distribution of bacterial and archaeal communities along discrete layers of a deep-sea cold sediment sample at the East Pacific Rise (13°N). Extremophiles. 2008, 12:573-585
    Lipp J S, Morono Y, Inagaki F, Hinrichs K–U. Significant contribution of Archaea to extant biomass in subsurface sediments. Nature. 2008, 454: 991–994
    Liu Y C, Santos A, Wang S M, Shi Y L, Liu H L, Yuen D A. Tsunami hazards along Chinese coast from potential earthquakes in South China Sea. Phys Earth Planet Inter. 2007, 163:233–244
    Lozupone C, Hamady M, Knight R. UniFrac-An online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics. 2006, 7:371-385
    Lukas R, Firing E, Hacker P, Richardson P L, Collins C A, Fine R A, Gammon R. Observations of the Mindanao Current during the Western Equatorial Pacific Ocean Circulation Study. Geophysical Research. 1991, 96:7 089–7 104
    Macalady J L, Vestling M M, Baumler D, et al. Tetraether-linked membrane monolayers in Ferroplasma spp: a key to survival in acid. Extremophiles. 2004, 8:411-419
    Marchesi J R, Weightman A J, Cragg B A, Parkes R J, Fry J C. Methanogen and bacterial diversity and distribution in deep gas hydrate sediments from the Cascadia Margin as revealed by 16S rRNA molecular analysis. FEMS Microbiol Ecol. 2001, 34:221–228
    Massana R, Murray A E, Preston C M, DeLong E F. Vertical distribution and phylogenetic characterization of marine planktonic archaea in the Santa Barbara Channel. Appl Environ Microbiol. 1997, 63:50–56
    Mauclaire L, Zepp K, Meister P, McKenzie J. Direct in-situ detection of cells in deep-sea sediment cores from the Peru Margin (ODP Leg 201, Site 1229). Geobiology. 2004, 2:217–224
    Mengoni A, Tatti E, Decorosi F, Viti C, Bazzicalupo M, Giovannetti L. Comparison of 16S rRNAand 16S rDNA T-RFLP approaches to study bacterial communities in soil microcosms treated with chromate as perturbing agent. Microbiol Ecol. 2005, 50:375–384
    Mills H J, Martinez R J, Story S, Sobecky P A. Characterization of microbial community structure in Gulf of Mexico gas hydrates: comparative analysis of DNA- and RNA-derived clone libraries. Appl Environ Microbiol.2005, 71:3 235–3 247
    Moeseneder M M, Arrieta J M, Herndl G J. A comparison of DNA- and RNA-based clone libraries from the same marine bacterioplankton community. FEMS Microbiol Ecol. 2005, 51:341–352
    Moyer C L, Tiedje J M, Dobbs F C, Karl D M. Diversity of deep-sea hydrothermal vent archaea form Loihi Seamout, Hawaii. Deep-sea Rse. 1998, 45:303–317
    Mullins T D, Britschgi T B, Krest R L, et al. Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol Oceanogr. 1995, 40:148-158
    Naviaux R K, Good B, McPherson J D, Steffen D L, Markusic D, Ransom B, Corbeil J. Sand DNA—a genetic library of life at the water’s edge. Mar Ecol Prog Ser. 2005, 301:9–22
    Nercessian O, Bienvenu N, Moreira D, Prieur D, Jeanthon C. Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environments. Environ Microbiol. 2005, 7:118–132
    Newberry C J, Webster G, Cragg B A, Parkes R J, Weightman A J, Fry J C. Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environ Microbiol. 2004, 6:274–287
    Nunoura T, Inagaki F, Delwiche M E, Colwell F S, Takai K. Subseafloor microbial communities in methane hydrate-bearing sediment at two distinct locations (ODP Leg204) in the Cascadia Margin. Microb Environ. 2008, 4:317–325
    Nunoura T, Soffientino B, Blazejak A, Kakuta J, Oida H, Schippers A, Takai K. Subseafloor microbial communities associated with rapid turbidite deposition in the Gulf of Mexico continental slope (IODPExpedition308). FEMS Microb Ecol. 2009, 69:410–424
    Orita M, Iwahana H, Kanazawa H, et al. Detection of polymorphism of human DNA by gel electrophoresis as single strand conformation polymorphisms. Proc Nata Acad Sci USA. 1989, 86:2766-2770
    Orphan V J, Hinrichs K U, Ussler III W, et al. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol. 2001a, 67:1 922-1 934
    Orphan V J, House C H, Hinrichs K-U, et al. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science. 2001b, 293:484-487
    Pancost R D, Damste J S S. Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings. Chem Geol. 2003, 195:29-58
    Pancost R D, Zhang C, Tavacoli J, et al. Lipid biomarkers preserved in hydrate-associated authigenic carbonate rocks of the Gulf of Mexico. Palaeogeography, Palaeo climatology, Palaeoecology. 2005, 227:48-66
    Parkes R, Cragg B, Wellsbury P. Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol. 2000, 8:11–28
    Parkes R J, Webster G, Cragg B A, Weightman A J, Newberry C J, Ferdelman T G, Kallmeyer J, J?rgensen B B, Aiello I W, Fry J C. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature. 2005, 436: 390–394
    Parkes R J, Cragg B A, Banning N, Brock F, Webster G, Fry J C et al. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Environ Microbiol. 2007, 9:1146–1161
    Pearson A, Huang Z, Ingalls A E, et al. Non-marine crenarchaeol in Nevada hot springs. Appl Environ Microbiol. 2004, 70:5 229-5 237
    Perevalova A A, Svetlichny V A, Kublanov I V, et al. Desulfurococcus fermentans sp. Nov., a novelhyperthermophilic archaeon from a Kam chatka hot spring, and emended description of the genus Desulfuroeoeeus. Int J Syst Evol Microbiol. 2005, 55:995-999
    Powers L A, Werne J P, Johnson T C, et al. Crenarehaeotal membrane lipids in lake sediments: A new paleotemperature proxy for continental paleoclimate reconstruction. Geology. 2004, 32:613-616
    Qu T, Mitsudera H, Yamagata T. On the western boundary currents in the Philippine Sea. Geophysical Research. 1998, 101:12 315–12 330
    Rappe M S, Giovannoni S J. The uncultured microbial majority. Annu Rev Microbiol. 2003,57:369–394
    Reed A J, Lutz R A, Vetriani C. Vertical distribution and diversity of bacteria and archaea in sulfide and methane-rich cold seep sediments located at the base of the Florida Escarpment. Extremophiles. 2006, 10:199–211
    Reed D W, Fujita Y, Delwiche M E, Blackwelder D B, Sheridan P P, Uchida T, Colwell F S. Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin. Appl Environ Microbiol. 2002, 68:3 759–3 770
    Rohmer M, Bouvier-Nave P, Ourisson G. Distribution of hopanoid triterpenes in prokaryotes. Journal of General Microbiology. 1984, 130: 1137-1150
    Roussel E G, Bonavita M -A C, Querellou J, Cragg B A, Webster G, Prieur D, Parkes R J. Extending the sub-sea-floor biosphere. Science. 2008, 320:1046
    Schippers A, Neretin N L, Kallmeyer J, Ferdelman T G, Cragg B A, Parkes J R et al. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature. 2005, 433:861–864
    Schippers A, Neretin L N. Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR. Environ Microbiol. 2006, 8:1251–1260
    Schloss P D, Handelsman J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol. 2005, 71:1501–1506
    S?rensen K B, Lauer A, Teske A. Archaeal phylotypes in a metal-rich, low-activity deep subsurface sediment of the Peru Basin, ODP Leg 201, Site 1231. Geobiology. 2004, 2:151–161
    S?rensen K B, Teske A. Stratified communities of active archaea in deep marine subsurface sediments. Appl Environ Microbiol. 2006, 72:4 596–4 603
    Sturt H F, Summons R E, Smith K J, Elvert M, Hinrichs K U. Intact polar lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/ electrospray ionization multistage mass spectrometry—new biomarkers for biogeochemistry and microbial ecology. Rapid Commun Mass Spectrom. 2004, 18:617–628
    Suess E, whiticar M J. Methane-derived CO2 in pore fluids expelled from the Oregon subduction zone. Palaeogeogr Palaeoclimatol Palaeoecol. 1989, 71:119-136
    Summons R E, Jahbke L L, Roksandic Z. Carbon isotopic fractionation in lipids frommethanotrophic bacteria: Relevance for interpretation of the geochemical record of biomarkers. Geochimica et Cosmochimica Acta. 1994, 58:2853-2863
    Takai K, Gamo T, Tsunogai U. Geochemical and microbiological evidence for a hydrogen based,hyperthermophilie subsurface lithoautotrophic microbial ecosystem(HyperSLiME) beneath an active deep sea hydrothermal field. Extremophiles. 2004, 8(4):269-282
    Takai K, Horikoshi K. Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics. 1999, 152:1 285–1 297
    Takai K, Moser D P, DeFlaun M, Onstott T C, Fredrickson J K. Archaeal diversity in waters from deep South African gold mines. Appl Environ Microbiol. 2001, 67:5750–5760
    Teske A, Wawer C, Muyzer G, Ramsing N. Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl Environ Microbiol. 1996, 62:1405–1415
    Teske A P, J?rgensen B B, D’Hondt S L, Miller D J. Microbial community composition in deep marine subsurface sediments of ODP Leg 201: sequencing surveys and cultivations. Proc ODP Sci Results. 2006, 201: 1–19
    Teske A, S?rensen K B. Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME. 2008, 2:3–18
    Thompson J R, Gibson T J, Plewniak F, et al. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 24:4876-4882
    Treude T, Knittel K, Blumenberg M, Seifert R, Boetius A. Subsurface microbial methanotrophic mats in the Black Sea. Appl Environ Microbiol. 2005, 71:6 375–6 378
    Tung H C, Bramall N E, Price P B. Microbial origin of excess methane in glacial ice and implications for life on Mars. Proc Natl Acad Sci USA. 2005, 102:18 292-18 296
    Uda I, Sugai A, Itoh Y H, et a1. Variation in molecular species of polar lipids from therrnoplasma acidophilum depends on growth temperature. Lipids. 2001, 36:103-105
    Valentine D L. Adaptations to energy stress dictate the ecology and evolution of the archaea. Nat Rev Microbiol. 2007, 5:316–323Udarbe-Walker M J B, Magno M M, Tilka S A M, Villanoy C L. Inter-basin comparison of mean hydrographic characteristics around the Philippines. University of the Philippines in the Visayas. Natural Science. 2002, 7:53–65
    Vetriani C, Jannasch H W, MacGregor B J, Stahl D A, Reysenbach A L. Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl Environ Microbiol. 1999, 65:4375–4384
    Walsh J J. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature. 1991, 350:53–55
    Wang P, Xiao X, Wang P X. Phylogenetic analysis of archaea in the deep-sea sediments of west Pacific Warm Pool. Extremophiles. 2005, 9:209-217
    Ward D M, Weller R, Bateson M M. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature. 1990, 345:63–65
    Webster G, Newberry C J, Fry J C, Weightman A J.. Assessment of bacterial community structure in the deep sub-seafloor biosphere by 16S rDNA-based techniques: a cautionary tale. Microbiol Methods. 2003, 55:155–164
    Webster G, Parkes R J, Cragg B A, Newberry C J, Weightman A J, Fry J C. Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin. FEMS Microbiol Ecol. 2006, 58:65–85
    Wellsbury P, Mather I, Parkes RJ. Geomicrobiology of deep, low organic carbon sediments in the Woodlark Basin, Pacific Ocean. FEMS Microbiol Ecol. 2002, 42:59–70
    Whiticar M J. Carbon and hydrogen isotope systematics of bacteria1 formation and oxidation of methane. Chem Geol, 1999, 161:291-314
    Whiticar M J, Faber E, Schoell M. Biogenic methane formation in marine and fresh-water environments: CO2 reduction vs acetate fermentation-Isotopic evidence. Geochim Cosmochim Acta, 1986, 50:693-709
    Whitman W B, Coleman D C, Wiebe W J. Prokaryotes: the unseen majority. Proc Natl Acad Sci. USA. 1998, 95:6578–6583
    Wilms R, Kopke B, Sass H, Chang T S, Cypionka H, Engelen B. Deep biosphere-related bacteria within the subsurface of tidal flat sediments. Environ Microbiol. 2006a, 8:709–719
    Wilms R, Sass H, Kopke B, Koster H, Cypionka H, Engelen B. Specific bacterial, archaeal, andeukaryotic communities in tidal-flat sediments along a vertical profile of several meters. Appl Environ Microbiol. 2006b, 72:2756–2764
    Woese C R. Bacterial evolution. Microbiology Reviews. 1987, 51:221-217
    Woese C, Kandler O, Wheelis M. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, Eukarya. Proc Natl Acad Sci USA. 1990, 87:4576-4597
    Yan B, Hong K, Yu Z N. Archaeal communities in mangrove soil characterized by 16S rRNA gene clones. Microbiol. 2006, 44:566–571
    蔡怡,王彰贵,余宙文,陈幸荣.赤道太平洋温度、流场距平EOF分析及与厄尔尼诺的关系.海洋学报. 2003, 25(1):12-18
    陈骏,连宾,王斌,等.极端环境下的微生物及其生物地球化学作用.地学前缘. 2006, 13 (6):199-207
    陈骏,姚素平.地质微生物学及其发展方向.高校地质学报. 2005,11(2):154-166
    陈幸荣,王彰贵.西风爆发、次表层暖水东移与厄尔尼诺现象.海洋学报. 2003, 25(1):19-27
    陈秀兰,张玉忠,高培基.深海微生物研究进展.海洋科学. 2004, 28(1):61-66
    党宏月,宋林生,李铁刚,秦蕴珊.海底深部生物圈微生物的研究进展.地球科学进展. 2005, 20(12):1306-1313
    方金瑞,黄维真.深海微生物的研究进展.海洋通报. 1995, 14(2):65-69
    李崇银,穆明权.东亚冬季风-暖池状况-ENS0循环的关系.科学通报. 2000, 45(7):678-685
    粱建茵,吴尚森.太平洋海温异常对南海西南季风建立早晚的影响-数值模拟研究.海洋学报. 2003, 25(1):28-4l
    萨姆布鲁克,D W拉塞尔.分子克隆实验指南.北京:科学出版社,2002
    张启龙,翁学传,侯一筠,程明华,颜延壮.西太平洋暖池表层暖水的纬向运移.海洋学报. 2004, 26(1):33-39
    赵昌会,叶德赞,魏文铃.深海微生物的研究进展.微生物学通报. 2006, 33(3):142-146

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700