用户名: 密码: 验证码:
光触媒作用下聚光太阳光对垃圾渗滤液有机质的降解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾是人类生产和生活过程中产生的废弃物,随着社会发展、城市化进程的加快,城市生活垃圾产生量也急剧增加。在垃圾填埋过程中,由于雨水浸蚀、生物发酵及其它物理化学因素的作用,导致大量垃圾渗滤液的产生,垃圾渗滤液是一种高浓度有机废液,是垃圾衍生产物中危害最大的一种,垃圾及其渗滤液处理是治理和改善人类环境的迫切需要。
     本论文采用“钇掺杂玻璃纤维基二氧化钛光触媒丝”作为光催化剂拓展太阳光有效利用的范围,并应用太阳光跟踪聚光器系统聚焦太阳光使采光量扩大。特点在于:采用“钇掺杂玻璃纤维基二氧化钛光触媒丝”作为光催化剂,降低了导致有机物化学键断裂的照射光的能量阈值,把降解的光波从紫外光区(占太阳光强度4%左右)拓展到可见-紫外光光区(占太阳光强度50%左右),太阳光利用率提高了约10倍;透明的“钇掺杂玻璃纤维基二氧化钛光触媒丝”的另一个重要作用是把太阳光导入垃圾渗滤液中,对垃圾渗滤液内部进行光催化降解,使降解反应区域从反应液表面扩展到整个区域;采用太阳光跟踪聚光器系统将采光面积从传统降解方式的液体实际面积转换成透镜的采光面积,太阳光采光总量可以通过增加太阳光跟踪聚光器系统凸透镜面积和数量得到无限延伸,从理论上讲,能够解决“天然治理”不能满足垃圾渗滤液不断剧增的矛盾;通过太阳光跟踪聚光器系统聚光后的太阳光可以通过塑料光导介质管进行传导,使太阳光不能够直接照射到的垃圾渗滤液也能够同样实现降解。
     论文主要研究内容包括:钇掺杂玻璃纤维基二氧化钛光触媒丝的制备与表征;研究光触媒丝存在条件下经过透镜聚光的太阳光对垃圾渗滤液中有机质的降解情况;研究温度条件、触媒丝中钇掺杂量条件、空气流量条件、反应液浓度条件、反应液的酸碱度(pH值)及聚光透镜采光面积等因素对降解的影响;绘制降解去除率与时间的实验曲线;对各主要影响因素的实验曲线进行数学拟合和拟合参数的物理意义分析;建立聚光太阳光对垃圾渗滤液有机质的光催化降解动力学模型。
     首先,制备和表征了光降解触媒丝:按照工艺步骤可以获得外观平整透明,厚度为20~80nm,粒度≤50nm的钇掺杂二氧化钛光降解触媒丝。
     然后,进行光催化降解实验。分析了光降解触媒丝存在时聚光太阳光降解垃圾渗滤液的主要影响因素的程度和原因,同时介绍了实验条件的优化选择。以聚光太阳光为光源可以在钇掺杂二氧化钛光催化降解触媒丝存在下对垃圾渗滤液进行降解,钇掺杂量对降解效果有明显的影响,钇掺杂的比未掺杂的光催化降解触媒丝降解效果好,钇掺杂量为0.2%时钇掺杂二氧化钛光催化降解触媒丝的光降解效果较佳。
     随着温度的升高、聚光透镜的采光面积的增加及空气流量的增加,TOC和COD的去除率均呈现增大趋势。随着空气流量的增加降解效果呈逐渐上升趋势,但随着空气流量提高,TOC和COD去除率上升变得较慢,变化幅度变得较小。聚光透镜的采光面积的增加能够明显提高降解效率。
     垃圾渗滤液的起始pH值对降解效果的影响在起初较大,但随着反应进行这种影响越来越不明显。
     随着初始浓度增大,降解速率增大,但TOC和COD的去除率呈现下降趋势。
     最后,参考有机物光催化降解反应的动力学模型,考虑温度、空气流量、反应液浓度和聚光透镜采光面积等影响因素,设计了光催化降解反应的动力学一般方程式,通过实验数据的数学处理确定相关常数值,获得了本实验条件下的垃圾渗滤液有机质光催化降解反应的动力学模型,其方程式为:
     将垃圾渗滤液原液稀释40倍后,在反应温度为25℃、采用钇掺杂为0.2 %的二氧化钛光催化降解触媒丝、空气流量为40mL/s、用聚光倍数125倍的太阳光进行光催化降解,经过270分钟后降解效果是:TOC去除率为79.2%、COD去除率为74.5%
     采用钇掺杂的玻璃纤维基二氧化钛光触媒丝作为光催化剂,并将太阳光聚光后用于降解垃圾渗滤液有机质,是一种新型的地球化学处理方法,能够体现以“天然治理天然”、低成本、高效益。
     由于实验过程的阶段性安排,只采集了一个垃圾场的垃圾渗滤液,所作的降解实验数据有一定针对性或局限性,下一步将扩充采样点,针对不同地区不同区域的样品进行研究。本论文是利用新材料新方法进行的太阳光降解垃圾渗滤液的一种有益探索,还要进一步完善测试分析手段,使垃圾渗滤液中各物质成分的增减能够在线检测出来。
Landfill is a kind of waste residue produced by human life and factory production. And the quantity of which is rapidly increasing with development of society and cities. During landfill is put under the surface of the earth ,a large quantity of landfill leaches is produced because of rain immersing、biologic ferment and physical chemistry reaction. landfill leaches is a kind of high concentration organic waste water ,which is the most harmful substance in all the garbage ramifications. It is a urgent task for human environment to treat landfill leaches.
     In the paper,“Y doped fiberglass substrate TiO2 photo catalyst”(YFSTPC)was applied to broaden the effective spectrum of solar rays for degradation ,and a experimental device named“solar rays tracking and focusing system”,was also applied for collecting solar rays. The features of the way are : with the YFTSPC as the photo catalyst , the energy threshold for organic molecular broken is debased , and ray wavelength for photo catalyzing is broadened from ultraviolet spectrum (about 4% in total solar radiation) to visible-ultraviolet spectrum (about 50% in total solar radiation),and then ,the efficiency of solar radiation is raised about 10 times. Another usage of the transparent YFSTPC is to conducting solar rays into the inner of landfill leaches to degrade it ,and then the degradation takes place from surface to all over the whole body of the landfill leaches. A transformation has been brought about: The areas of collected solar rays from the areas of landfill leaches liquid become the areas of the convexes, so, the quantum of the collected solar rays may be enlarged by increasing the areas and number of the convexes, therefore, theoretically , the conflict between quantum of“naturally cope with way”and sequentially increasing landfill leaches may be meet. With light conducting plastic medium of“solar rays tracking and focusing system”, the reaction of degradation of landfill leaches may also take place in the areas where the sun can not shine directly.
     Main contents are introduced in the paper: The way of fabrication and characterization of YFSTPC ; Study on the experiment of degradation of landfill leaches over YFSTPC by focused solar rays ; Study on the main factors which affect degradation including :the temperature ,the quantity of doped Y in YFTSPC, the air flux, the concentration of landfill leaches, the pH of landfill leaches, the quantum of the collected solar rays. Drawing experimental curves of relation between the removal rate and the time; Fitting the experimental curves affected by the main factors and analyzing the physical signification about the parameters in fitting formulae; Establishing the kinetic model formula for photo catalytic degradation of landfill leaches by focused solar rays.
     The first , YFSTPC was fabricated and characterized. A kind of smooth and transparent YFSTPC may be obtained by the experimental way , with 20-80 nm thickness ,and granularity≤50nm. The second, the of degradation was operated .The degrees and reasons of main factors which affect photo catalytic degradation of landfill leaches by focused solar rays were analyzed ,and the way for optimizing experimental conditions was introduced .
     Landfill leaches organic substances may be degraded by focused solar rays with the photo catalyst YFSTPC. The quantum of Y doped may obviously affect the degradation, It is better for photo catalytic degradation of landfill leaches, as the quantum of Y doped was 0.2% .
     The removal rates of TOC and COD were increased with the increasing of the temperature ,the collecting areas of convexes and the air flux. The removal rates of TOC and COD were gradually increased with the increasing of the air flux, but the increasing tendency and increasing extent became slow and small with the increasing of the air flux. The increasing of the collecting areas of convexes may obviously raise the efficiency of degradation .
     The pH of the landfill leaches affected the efficiency of degradation at the beginning of the reaction , but the affect became weak with the reaction processing. The speed of degradation was increased, but the removal rates of TOC and COD were gradually decreased, with the increasing of beginning concentration of the landfill leaches.
     Finally, considering some kinetic models on photo catalytic degradation of organic substances, and according to the main factors containing : temperature ,air flux, concentration of reaction, the collecting areas of convexes , etc., we obtained the kinetic general model formula for photo catalytic degradation, and those constants may be gotten by means of mathematics with experimental data, and then ,the the kinetic model formula for photo catalytic degradation of landfill leaches over YFSTPC by focused solar rays was established ,and the formula is as follow :
     Through 270 minutes reacting, the removal rates of TOC and COD were79.2% and 74.5%, with the condition: the landfill leaches were diluted by 40 times, the temperature was 25℃, the quantum of Y doped was 0.2% in YFSTPC, air flux was 40mL/s , the collecting areas of convexes was 125 times of its original liquid.
     It is a new geochemistry way to cope with landfill leaches organic substances with photo catalytic degradation over YFSTPC by focused solar rays. There are some advantages of this process :“naturally cope with”, lower cost, higher efficiency .
     As the plan arranged ,all the samples of landfill leaches were only take from one landfill plant ,perhaps ,the experimental results were not suitable for other sites. In the following experiment, we would expend the sample collecting sites, and study on samples collecting from different areas and sites .It would be a useful exploration for the paper to cope with landfill leaches by solar rays with a new materials way.
引文
[1]邓昭平,倪师军等,纳米TiO2光降解触媒丝的制备,成都理工大学学报(自然科学版)[J],2006. 33(1):95-98
    [2]邓昭平,倪师军等,掺杂二氧化钛光降解触媒丝的制备及其可见光催化性能,矿物岩石[J],2006. 26(1):101-104,
    [3]邓昭平,倪师军等,钇施主掺杂二氧化钛的制备及对久效磷的降解,生态环境[J],2008,17(4):1399-1402
    [4]马萌,魏永宁,张胜利,刘书,石灰水预处理垃圾渗滤液的实验研究,工业安全与环保[J],2 0 0 8 ,3 4(4):7-8
    [5]钱杨,垃圾渗滤液处理技术进展,环境科学导刊[J],2 0 0 8,2 7( 3 ) :5 5-5 8
    [6]张力,冉景煌,屈超蜀.城市生活垃圾物性与热解特性的试验研究.环境科学学报,2000, 20(5 ): 645-647 [4]蒋彬,吴浩汀,徐亚明.浅谈城市垃圾填埋场渗滤液的处理技术.江苏环境科技,200215(1):32-34 [1]韩世同,习海玲,史瑞雪,等.半导体光催化研究进展与展望[J].化学物理学报,2003,16(5):339-349.
    [7]尹观,倪师军,同位素地球化学[M],北京:地质出版社2009.
    [8] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238:37-38.
    [9]范崇政,肖建平,丁延伟.纳米TiO2的制备与光催化反应研究进展[J].科学通报,2001,46(4):265-273.
    [10]李川,古国榜,柳松.TiO2光催化处理废水中贵重金属的研究进展[J] .环境污染治理技术与设备,2003,4(11):6-11.
    [11]支正良,汪信.环境中有机污染物的半导体光催化降解研究进展[J].环境污染与防治,1998,20(1):42-44.
    [12]高濂,郑珊,张青红,著.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002.
    [13]周时风,洪樟连,王民权.TiO2光催化降解有机污染物机理和影响因素[J] .材料导报,2004,18(7):80-82.
    [14]胡春,王怡中,汤鸿霄.多相光催化氧化的理论与实践发展[J].环境科学进展,1995,3(1):55-64.
    [15]叶庆国,李明.有机物结构对光催化氧化降解影响的初步研究[J].环境工程,2000,18(4):55-57.
    [16] Hidaka H, Asai Y, Zhao J, et al.Photocatalytic degradation of surfactants on a TiO2/TCO particulate film electrode assembly[J].Journal of Physical Chemistry, 1995, 99 (20):8244-8248.
    [17]李红,童三伏,张渊明,等.几种电子受体对TiO2光催化降解活性的影响[J].精细化工,2005,22(4):290-293.
    [18] M. Qamar, M. Saquib, M. Muneer. Photocatalytic degradation of two selected dye derivatives, chromotrope 2B and amido black 10B, in aqueous suspensions of titanium dioxide[J].Dyes and pigments, 2005, 65:1-9.
    [19] Pengyi Zhang, Juan Liu.Photocatalytic degradation of trace hexane in the gas phase with and without ozone addition: kinetic study[J].Journal of photochemistry and photobiology A: Chemistry, 2004, 167:87-94.
    [20]余灯华,廖世军.TiO2结构对光催化性能的影响及其提高的途径[J].环境污染治理技术与设备,2003,4(2):44-47.
    [21]彭晓春,陈新庚,黄鹄,等.n-TiO2光催化机理及其在环境保护中的应用研究进展[J].环境污染治理技术与设备,2002,3(3):1-6.
    [22]沈伟韧,赵文宽,贺飞,等.TiO2光催化反应及其在废水处理中的应用[J].化学进展,1998,10(4):349-361.
    [23] Hurum D C, Agrios A G, Gray K A, et al.Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR[J].Journal of Physical Chemistry B, 2003, 107(19):4545-4549.
    [24]高伟,吴凤清,罗臻,等.TiO2晶型与光催化活性关系的研究[J].高等学校化学学报,2001,22(4):660-662.
    [25]刘国光,张学治,丁雪军,等.二氧化钛光催化剂的表征方法研究[J].环境污染治理技术与设备,2003,4(4):55-60.
    [26] Anpo M., Yamashita H., Ichihashi Y., et al.Photocatalytic reduction of CO2 with H2O on various titanium dioxide catalysts[J].Journal of Electroanalytical Chemistry, 1995, 396: 21-26.
    [27] Hoffmann M. R., Martin S. T., Choi W., et al. Environmental applications of semiconductor photocatalysis[J]. Chemistry Review, 1995, 95: 69-96
    [28]孙奉玉,吴鸣,李文钊,等.二氧化钛表面光学特性与光催化活性的关系[J].催化学报,1998,19(2):121-124.
    [29]刘鸿,吴合进,孙福侠,等.氢还原TiO2光催化降解磺基水杨酸的研究[J].分子催化,2001,15(1):47-50.
    [30]牛新书,许亚杰.二氧化钛纳米材料的合成及其在环保领域的应用研究进展[J].化工环保,2002,22(4):203-208.
    [31] Sopyan I, Watansbe M, Murasawa S, et al.Efficient TiO2 powder and film photocatalystswith rutile crystal structure[J].Chem Lett, 1996, 289(1):69-76.
    [32]殷澍,王金淑,佐藤次雄.二氧化钛纳米粒子的低温合成及可见光催化性能[J].材料导报,2004,35(增刊):2503-2506.
    [33] Bersani D, Antonioti G, Lottici P P, et al.Raman study of nanosized titania prepared by sol-gel route[J]. Journal of Non-crystal Solids, 1998, 232~ 234: 175-181.
    [34]刘泽,李永祥,吴冲若.水热法制备二氧化钛晶须[J].硅酸盐学报,1998,26(3):392-394.
    [35]陈代荣,孟祥建,李博,等.偏钛酸作前驱体水热合成TiO2微粉[J].无机材料学报,1997,12(1):100-104.
    [36]施利毅,张莹玉、张剑平,等.微乳液法合成二氧化钛超细粒子[J].功能材料,1999,30(5):495-497.
    [37] Andersson M, Osterlund L, Ljungstron S,et al.Preparation of nano size anatase and rutile TiO2 by hydrothermal treatment of micromulsions and their activity for photocatalytic wet oxide of phenol[J].Journal of Physical Chemistry B, 2002, 106(41): 10674-10679.
    [38] ZHU Jie-fang, FU Wen, HE Bin, et al.Fe3+, Cr3+-doped TiO2 photocatalysts prepared by the Sol-Gel and Hydrothermal Method[J].Photographic Science and Photochemistry, 2004, 22 (4):241-243.
    [39]李芳柏,李湘中,李新军,等.金离子掺杂对二氧化钛光催化性能的影响[J].化学学报,2001,59(7):1072-1077.
    [40] W. Li, Y. Wang, H. Lin, et al.Band gap tailoring of Nd3+-doped TiO2 nanoparticles [J].Applied physics letters, 2003,83(20):4143-4145.
    [41]梁金生,金宗哲,王静.稀土/纳米TiO2的表面电子结构[J].中国稀土学报,2002,20(1):74-76.
    [42]闫俊萍,唐子龙,张中大,等.TiO2双掺Cr、Sb的光催化性能研究[J].稀有金属材料与工程,2005,34(3):429-432.
    [43] Masakazu Anpo, Masato Takeuch.The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation[J].Journal of Catalysis,2003 (216) :505-516.
    [44] Hiromi Yamashita , Masaru Harada, Junko Misaka, et al.Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts[J].Journal of Photochemistry and Photobiology A: Chemistry, 2002 (148): 257– 261.
    [45] XIE Yibing, YUAN Chunwei.Rare earth ion modified TiO2 sols for photocatalysis application under visible light excitation[J].Rare metals, 2004, 23(1): 20-26.
    [46] Jeon Myung Seok, Yoon Woo Sug, Joo Hyunku, et al.Preparation and characterization of a nano-sized Mo/Ti mixed photocatalyst[J].Applied surface science, 2000, 165:209-216.
    [47] J. O. Carneiro, V. Teixeira, A. portinha, et al.Study of the deposition parameters and Fe-doped effect in the photocatalytic activity of TiO2 films prepared by dc reactive magnetron sputtering[J].Vacuum, 2005, 78:37-46.
    [48] Dong Hyun Kim, Hyun Seon Hong, Sun Jae Kim, et al.Photocatalytic behaviors and structural characterization of nanocrystalline Fe-doped TiO2 synthesized by mechanical alloying[J].Journal of Alloys and Compounds, 2004, 375: 259-264.
    [49]孙晓君,井立强,蔡伟民,等.掺Pb的TiO2纳米功能材料的制备及其光催化性能[J].压电与声光,2002,24(3):232-235.
    [50] Iwasaki M, Hara M, Kawada K, et al.Cobalt ion-doped TiO2 photocatalyst response to visible light[J].Journal of Colloid and Interface science, 2000, 224: 202-204.
    [51]孙宇峰,黄行九,叶刚,等.Pt(Ⅳ)修饰的非晶态TiO2对2,4-二氯苯氧基乙酸的可见光降解[J].化学物理学报,2004,17(1):65-69.
    [52]张金龙,陈海军,徐华胜,等.可见光照射下丙炔光催化水解反应的研究Ⅱ.钒离子对二氧化钛光催化性能的影响[J].催化学报,2004,25(1):10-14.
    [53]籍宏伟,马万红,黄应平,等.可见光诱导TiO2光催化的研究进展[J].科学通报,2003,48(21):2199-2203.
    [54] Khan S U M, Al-shahry M, Ingler Jr W B.Efficient photochemical water splitting by a chemically modified n-TiO2[J].Science, 2002, 297:2243-2245.
    [55] Li X, Li F.Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment[J].Environment Science Technology, 2001, 35:2381-2387.
    [56]刘畅,暴宁钟,杨祝红,等.过渡金属离子掺杂改性TiO2的光催化性能研究进展[J].催化学报,2001,22(2):215-218.
    [57] Asahi R, Morikawa T, Ohwaki T, et al.Visible-light photocatalysis in nitrogen-doped titanium oxides[J].Science, 2001, 293(13):269-271.
    [58] Ihara T, Miyoshi M, Iriyama Y, et al.Visible light active titanium oxide photo- catalyst realized by an oxygen-deficient structure and by nitrogen doping.Applied Catalysis B: Environmental, 2003, 42 (2): 407-409.
    [59]谢晓峰,陆文璐,张剑平,等.拓展作用光范围的纳米TiO2-xNx制备和表征[J].材料科学与工程学报,2004,22(2):212-215.
    [60]邱炜,陈爱平,刘威,等.掺氮光敏化纳米晶TiO2的研制[J].华东理工大学学报(自然科学版),2005,31(1):79-82.
    [61] Song-Zhe Chen, Peng-Yi Zhang, Da-Ming Zhuang, et al.Investigation of nitrogen dopedTiO2 photocatalytic films prepared by reactive magnetron sputtering[J] . Catalysis communications, 2004, 5:677-680.
    [62]费贤翔,熊予莹.氮掺杂二氧化钛的制备及可见光催化研究进展[J].山东陶瓷,2004,27(5):6-10.
    [63] Shahed U, Khan M, Mofrareh Al-shahry. Efficient photochemical water splitting by a chemically modified n-TiO2[J].Science, 2002, 297(27):2243-2245.
    [64]刘红艳,高濂.湿化学法原位合成硫掺杂的纳米金红石TiO2可见光催化剂[J].无机材料学报,2005,20(2):470-474.
    [65] Teruhisa Ohno, Miyako Akiyoshi, Tsutomu Umebayashi, et al.Preparation of S-doped TiO2 photocatalysts and their photocatalyitc activities under visible light[J].Applied Catalysis A: General, 2004,26(5):115-121.
    [66]李建萍,李绪谦,王存政等,垃圾渗滤液有机污染组分在包气带中衰减规律的模拟研究,吉林大学学报(地球科学版)2004,34(4):607-611.
    [67]程萍,金燕苹,顾明元.可见光响应型二氧化钛光催化剂研究进展[J].材料导报,2004,18(7):76-79.
    [68]孙晓君,井立强,蔡伟民,等.用于可见光下Pt(Ⅳ)/TiO2光催化剂的制备和表征[J].硅酸盐学报,2002,30(6):761-765.
    [69]李敏,王振玲,石恒真,等.敏化的TiO2纳米晶表面形貌、晶相、光谱及光催化灭菌研究[J].无机材料学报,2003,18(6):1261-1266.
    [70] J. Lobedand, E. Bellmann, J. Bendig.Sensitized photocatalytic oxidation of herbicides using natural sunlight[J].Journal of photochemistry and photobiology A: Chemistry, 1997,108: 89-93
    [71] Gerald Burgeth, Horst Kisch.Photocatalytic and photoelectrochemical properties of titania-chloroplatinate(Ⅳ) [J].Coordination chemistry reviews, 2002, 230: 41-47.
    [72]陈崧哲,张彭义,祝万鹏,等.可见光响应光催化剂研究进展[J].化学进展,2004,16(4):613-619.
    [73]张松,李琪,乔庆东.半导体复合TiO2纳米光催化剂[J].化学通报,2004,4:295-299.
    [74] Vogel R, Hopyer P, Welller H.Quantum sized PbS, CdS, Ag2S, Sb2S3 and Bi2S3 particles as sensitizers for various nanoporous wide band gap semiconductor[J].Journal of physics and chemical, 1994, 98(12):3183-3185.
    [75]张琦,李新军,李芳柏,等. WOx/TiO2光催化剂的可见光催化活性机理探讨[J].物理化学学报,2004,20(5):507-511.
    [76]廖振华,陈建军,姚可夫,等.纳米TiO2光催化级负载化的研究进展[J].无机材料学报,2004,19(1):17-24.
    [77]杨阳,陈爱平,古宏晨,等.以珍珠膨胀岩为载体的漂浮型TiO2光催化剂降解水面浮油[J].催化学报,2001,22(2):177-180.
    [78] Isao Nakamura, Nobuaki Negishi, Shuzo Kutsuna, et al.Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal[J].Journal of Molecular Catalysis A: Chemical, 2000, 161:205-212.
    [79]徐悦华,古国榜,林新花,等.光催化降解有机磷农药中甲胺磷的降解效率的测定[J].重庆环境科学,2001,23(1):61-63.
    [80]谭龙华主编.工业分析实验[M].北京:地质出版社,1994.
    [81]赵士铎主编.定量分析简明教程[M].北京:高等教育出版社,2001.
    [82]崔玉民,韩金霞.光催化降解水中有机污染物研究现状与展望[J].燃料化学学报,2004,32(1):123-128.
    [83]李芳柏,古国榜,李新军,等.纳米复合Sb2O3/TiO2的光催化性能研究[J].无机化学学报,2001,17(1):37-42.
    [84]丘永樑,陈洪龄,徐南平.水热制备掺锑纳米TiO2及其光活性抑制研究[J].无极材料学报,2005,20(3):580-586.
    [85] J.B. Stelzer, J.Caro, M.Fait.Oxidative dehydrogenation of propane on TiO2 supported antimony oxide/vanadia catalysts[J].Catalysis Communication, 2005(6):1-5.
    [86]刘秀珍,施利毅,华彬.二氧化钛形态结构及其光催化活性的研究进展[J].上海环境科学,2000,19(9):414-417.
    [87] Tsai Shi-Jane, Cheng Soofin.Effect of TiO2 crystalline structure in photolytic degradation of phenolic contaminants[J].Catalysis Today, 1997, 33:227.
    [88]李子亨,王德军,王平,等.纳米TiO2的光生电荷迁移特性研究[J].物理化学学报,2005,21(3):310-314.
    [89]许可,吕德义,郇昌永,等.离子掺杂对纳米二氧化钛晶型转变的影响[J].材料科学与工程学报,2005,23(4):629-632.
    [90]成英之,张渊明,唐渝.WO3-TiO2薄膜型复合光催化剂的制备和性能[J].催化学报,2001,22(2):203-205.
    [91] Masanori Hirano, Chiaki Nakahar, Keisuke Ota, et al.Photoactivity and phase stability of ZrO2-doped anatase-type TiO2 directly formed as nanometer-sized particles by hydrolysis under hydrothermal conditions[J].Journal of Solid State Chemistry, 2003, 170: 39-47.
    [92] DING X Z, LIU L, MA X M, et al.The influence of alumina dopant on the structural transformation of gel-derived nanometer titania powder [J].Journal of material Science letter, 1994, 13(2):462-464.
    [93] Wenjie Zhang, Ying Li, Shenglong Zhu, et al. Surface modification of TiO2 film by irondoping using reactive magnetron sputtering[J]. Chemical Physics Letters, 2003, 373: 333- 337.
    [94] F. B. Li, X. Z. Li.Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment[J].Applied Catalysis A: 2002, 228: 15-27.
    [95]余家国,赵修建,赵青南,等.TiO2光催化薄膜的XPS研究[J].材料研究学报,2000,14(2):203-209.
    [96]郝国栋.Fe3+-TiO2光催化剂在可见光下的气相光催化反应研究[D].黑龙江:黑龙江大学,2003.
    [97] Zhijie Li, Bo Hou, Yao Xu, et al.Hydrothermal synthesis, characterization, and photo- catalytic performance of silica-modified titanium dioxide nanoparticles[J].Journal of Colloid and Interface Science, 2005, 288: 149-154.
    [98]余家国,赵修建.TiO2纳米粉体的溶胶-凝胶工艺制备和光催化活性表征[J].中国粉体技术,2000,6(2):7-10.
    [99]徐悦华,古国榜,李新军.光催化降解甲胺磷影响因素的研究[J].华南理工大学学报(自然科学版),2001,29(5):68-71.
    [100]岳林海.稀土元素掺杂二氧化钛催化剂光降解久效磷的研究[J].上海环境科学,1998,17(9):17-19.
    [101]杨莹,李新军,陈俊涛,等.Mo的掺杂方式对TiO2光催化活性的影响[J].中国有色金属学报,2004,14(3):509-514.
    [102] K. Wilke, H.D. Breuer.The influence of transition metal doping on the physical and photocatalytic properties of titania[J].Journanl of Photochemistry and Photobiology A: Chemistry, 1999, 121: 49-53.
    [103]徐顺,杨鹏飞,杜宝石,等.掺杂TiO2的光催化性能研究进展[J].化学研究与应用,2003,15(2):146-150.
    [104]吴传璧,地球化学工程学—21世纪的环保产业,物探与化探, Vol. 26 ,No. 6, 2002.12:441-449
    [105]李晓红,赵瑜,卢义玉,焦斌权,城市垃圾填埋场渗滤液的污染及其控制,地下空间与工程学报[J],2 0 0 8 ,4(6) :1071-1075
    [106]孟了等,我国垃圾渗滤液处理现状与存在问题[J],给水排水,2003,29(10):26-29
    [107] Christensen T.H.,Bjerg P.L.,Banwart S.A.,et al.,Characterization of redox conditions in groundwater contamination plumes.J.Contam.Hydrol.2000,45(3-4):165~241.
    [108]廖晓恒,能源化学导论[M],华中理工大学出版社出版,1989.12:320
    [109]日本高分子学会,高分子基础[M],高等教育出版社,2003:356-366
    [110]方源圆;周守航;阎丽娟,中国城市垃圾焚烧发电技术与应用,节能技术[J],2010,28(159):76-80
    [111] K.Y. Foo, B.H. Hameed ,An overview of landfill leachate treatment via activated carbon adsorption process,Journal of Hazardous Materials, 2009,171(1-3):54-60
    [112] A. ?gajnar Gotvajn, T. Ti?ler, J. Zagorc-Kon?an, Comparison of different treatment strategies for industrial landfill leachate,Journal of Hazardous Materials, 2009, 162(2-3):1446-1456
    [113] Donald A.McQuarrie,Qquantum Chemistry[M] ,Oxford University Press 1983:10-11
    [114]蒋彬,吴浩汀,徐亚明.浅谈城市垃圾填埋场渗滤液的处理技术.江苏环境科技[J],2002
    [115]王成丽,马可为,张红涛,物化法处理垃圾渗滤液中难降解物质,水科学与工程技术[J],2 0 0 8 ,1:32-35;
    [116]王丹,赵朝成,彭丞,垃圾填埋场渗滤液处理工艺研究进展,污染防治技术[J],2006,19(2):41-44
    [117] M. Sinan Bilgili, Ahmet Demir, Ebru Akkaya, Bestamin Ozkaya ,COD fractions of leachate from aerobic and anaerobic pilot scale landfill reactors,Journal of Hazardous Materials, 2008, 158(1):157-163
    [118]黄崑,黄峙,吕颂辉,螺旋藻(Spirulina)对垃圾填埋渗滤液污染物的净化作用,生态环境[J],2006,15(3):509-512
    [119]李广科,牛静,云洋,等,垃圾填埋场渗滤液污染特性分析,农业环境科学学报[J],2008,27(1):0333-0337
    [120]李广科,赵由才,垃圾填埋场渗滤液诱发小鼠骨髓细胞微核效应,中国环境科学[J],2004,24(1):37~40
    [121]张力,冉景煌,屈超蜀.城市生活垃圾物性与热解特性的试验研究.环境科学学报,2000,20(5 ): 645-647
    [122] M. Qamar, M. Saquib, M. Muneer. Photocatalytic degradation of two selected dye derivatives, chromotrope 2B and amido black 10B, in aqueous suspensions of titanium dioxide[J].Dyes and pigments, 2005, 65:1-9.
    [123]闫俊萍,唐子龙,张中大,等.TiO2双掺Cr、Sb的光催化性能研究[J].稀有金属材料与工程,2005,34(3):429-432.
    [124] J. O. Carneiro, V. Teixeira, A. portinha, et al.Study of the deposition parameters and Fe-doped effect in the photocatalytic activity of TiO2 films prepared by dc reactive magnetron sputtering[J].Vacuum, 2005, 78:37-46.
    [125]邱炜,陈爱平,刘威,等.掺氮光敏化纳米晶TiO2的研制[J].华东理工大学学报(自然科学版),2005,31(1):79-82.
    [126]刘红艳,高濂.湿化学法原位合成硫掺杂的纳米金红石TiO2可见光催化剂[J].无机材料学报,2005,20(2):470-474.
    [127] WANG Zheng-peng, XU Jun, CAI Wei-min, et al.Visible light induced photodegrada- tion of organic pollutants on nitrogen and fluorine co-doped TiO2 photocatalyst[J].Journal of Environmental Science, 2005, 17(1):76-88.
    [128]郭非凡,史雅娟,孟凡乔,等.典型POPs物质对土壤原生动物丰度的影响[J].生态学报,2006,26(1):70-74.
    [129]曹启民,王华,张黎明等.中国持久性有机污染物污染现状及治理技术进展[J].中国农学通报,2006,22(2):361-365.
    [130]谭和平,陈能武,黄苹等.四川茶园土壤中农药残留现状分析[J].农业环境科学学报,2006,26(增刊):58-60.
    [131]方晓明,张正国,陈清林.具可见光活性的氮掺杂二氧化钛光催化剂[J].化学进展,2007,19(9):1282-1290.
    [132] Bahram Hemmateenejad, Katayoun Javidnia, Mehdi Saeidi-Boroujeni . Hexagonal mesoporous silica modified with copper phthalocyanine as a photocatalyst for pesticide 2,4-dichlorophenoxiacetic acid degradation[J].Journal of Pharmaceutical and Biomedical Analysis, 2008, 47(3) :625-630
    [133]岳琳,王启山,徐美娟,刘善培,粒子电极对垃圾渗滤液的电催化降解,水处理技术[J],2008,34(4):65-68
    [134]张力,冉景煌,屈超蜀.城市生活垃圾物性与热解特性的试验研究.环境科学学报,2004, 20(5 ): 645-647图1.2
    [135]刘研萍,卢丽超,李秀金,王宝贞,膜处理垃圾渗滤液的性能与出水安全性分析,水处理技术,2008,34(4):44-47
    [136]张智,李黎,卫永法,何永全,溶解氧对垃圾渗滤液强化预处理的影响研究,四川环境,2008,27(2):11-14
    [137]王春霞,肖书虎,赵旭,光电芬顿氧化法深度处理垃圾渗滤液研究,环境工程学报,2009,3(1):11-16
    [138] E..Mara?ón,L.Castrillón,Y.Fernández-Nava,A.Fernández-Méndez,A.
    [139] Fernández-Sánchez ,Coagulation–flocculation as a pretreatment process at a landfill leachate nitrification–denitrification plant,Journal of Hazardous Materials, 2008,156[1-3]: 538-544
    [140] Maja Zupan?i? Justin, Marija Zupan?i?, Combined purification and reuse of landfill leachate by constructed wetland and irrigation of grass and willows, Desalination, 2009,246( 1-3):157-168
    [141] Pin-Jing He, Zhong Zheng, Hua Zhang, Li-Ming Shao, Qiong-Yao Tang ,PAEs and BPA removal in landfill leachate with Fenton process and its relationship with leachate DOM composition,Science of The Total Environment, ,2009, 407(17, 15) :4928-4933
    [142] Dorota Kulikowska, Ewa Klimiuk, The effect of landfill age on municipal leachate composition,Bioresource Technology, 2008, 99( 13: 5981-5985
    [143] Soraya Mohajeri, Hamidi Abdul Aziz, Mohamed Hasnain Isa, Mohammad Ali Zahed, Mohd. Nordin Adlan, Statistical optimization of process parameters for landfill leachate treatment using electro-Fenton technique,Journal of Hazardous Materials, 2010, 176( 1-3): 749-758
    [144] John Greenman, Antonia Gálvez, Lorenzino Giusti, Ioannis Ieropoulos, Electricity from landfill leachate using microbial fuel cells: Comparison with a biological aerated filter,Enzyme and Microbial Technology, 2009, 4[ 2]: 112-119
    [145] M. Ince, E. Senturk, G. Onkal Engin, B. Keskinler, Further treatment of landfill leachate by nanofiltration and microfiltration–PAC hybrid process, Desalination, 2010,255,( 1-3):52-60
    [146]付美云,垃圾渗滤液的环境污染特征及其研究进展,南华大学学报(自然科学版),. 2009,.l 23(2):90-94
    [147] Haginaka J. Selectivity of affinitymedia in solid-phase extraction of analytes[ J]. Trends Anal Chem., 2005,24: 407-415.
    [148] Cameron A,Louise D,WayneH. Imprinted polymers: artificialmolecular recognition materials with applicat in synthesis and catalysi[ J]. Tetrahedron, 2003, 5 2025-2057.
    [149]赖家平,何锡文,郭洪声.分子印迹的回顾、现状与展望[J]. Chinese J. Ana.l Chem (分析化学), 2001, 29(7): 836-844.
    [150]刘运美,吕昌银,范翔,等.乙酰水杨酸分子印迹聚合物的合成及性能研究[J]. J. Journal of InstrumentalAnalysis. (分析测试学报), 2007, 26(2): 165-169
    [151]小宫山真(日).分子印迹学-从基础到应用[M].吴世康,汪鹏飞,译.北京:科学出版社, 2006.
    [152]张立永,成国祥,陆书来,等.悬浮聚合法制备西咪替丁印迹聚合物微球的分子选择性能[J].分析化学2003, 31(6): 655-658.
    [153] Matsui J,MiyoshiY,Doblhoff-DierO, et a.l A molecularly imprinted synthetic polymers receptor selective foratrazine[J].Ana.l Chem., 1995, 67(23): 4404-4408.
    [154]上海环境保护局.废水生化处理[M].上海:同济大学出版社,1999:34-36.
    [155]郭文成,吴群河.BOD/CODCr值评价污废水可生化性的可行性分析[J].环境科学与技术,1998,82(3):39-41.
    [156]张胜利,郑爽英,刘丹,等.超声波辅助萃取GC-MS法测定垃圾渗滤液[J].环境污染与防治,2008,30(7):32-34.
    [157]周少奇,杨志泉.广州垃圾填埋渗滤液中有机污染物的去除效果[J].环境科学,2005,26(3):186-191.
    [158]王艳捷,吴敏.“老龄”垃圾渗滤液的厌氧毒性试验研究[J].广州环境科学,2007,22(4):6-9.
    [159]楼紫阳,赵由才,柴晓利,等.垃圾填埋场渗滤液性质研究进展[J].环境污染与防治,2005,27(5):358-362.
    [160]赵宗升,刘鸿亮,李炳伟,等.垃圾填埋场渗滤液污染的控制技术[J].中国给排水,2000,16(6):20-23.
    [161]刘东,江丁酉,张林.用化学絮凝法处理垃圾渗滤液的试验研究[J].环境卫生工程,2000,8(2):65-67.
    [162]袁维芳,汤克敏.反渗透法处理城市垃圾填埋场渗滤液[J].水处理技术,1997,23(7):333-336.
    [163]周吉林,周少奇.垃圾填埋场渗滤水的处理技术[J].环境污染与防治,2001,23(4):187-189.
    [164]倪晋仁,邵世云,叶正芳.垃圾渗滤液特点与处理技术比较[J].应用基础与工程科学学报,2004,6(12):148-160.
    [165]张海伦.垃圾渗滤液的处理[J].能源研究与利用,2001,1:41-43.
    [166]王敏,阳小敏.SBR法处理垃圾渗滤液出水的电解氧化实验[J].环境卫生工程,2002,10(2):68-71.
    [167]李庭刚,陈坚.电化学氧化法处理高浓度垃圾渗滤液的研究[J].上海环境科学,2003,22(12):892-897.
    [168]任鹤云,李月中.MBR法处理垃圾渗滤液工程实例[J].给水排水,2004,30(10):36-38.
    [169]刘卫华,季民,张昕,等.催化臭氧氧化去除垃圾渗滤液中难降解有机物的研究[J].环境化学,2007(1):58-61.
    [170]沈小星,陈哲铭,方士,等.老龄垃圾渗滤液混凝催化臭氧氧化工艺研究[J].浙江大学学报(农业与生命科学版),2006,32(4):449-454.
    [171]陈华清,杨柱,周小娟.Fenton试剂+炉渣处理垃圾渗滤液的实验研究[J].科技信息,2002(3):263-264.
    [172]高艳娇,黄继国,聂广正,等.Fenton氧化法深度处理垃圾渗滤液[J].工业用水与废水,2005(6):39-41.
    [173]杨运平,方芳,郭劲松.UV/TiO2/Fenton光化学催化氧化垃圾渗滤液的研究[J].中国给水排水,2006,22(7):34-37.
    [174]张跃升,栾智慧,魏潘明,等.活性炭-H2O2催化氧化处理垃圾渗滤液[J].中国给水排水,2003,19(1):50-51.
    [175]潭小萍,汤克敏.光催化氧化法用于垃圾渗滤液深度处理主要影响因素的试验研究[J].环境科学动态,1999(1):28-30.
    [176]王里奥,黄本生,吕红,等.光催化氧化处理生活垃圾渗滤液[J].中国给水排水,2003,19(6):56-58.
    [177]裴华,曾庆福,章北平,等.UV/Fe3+光催化氧化处理垃圾渗滤液[J].中国给水排水,2003,19(13):103-105.
    [178]李明,杨勇,季民,等.催化电解对垃圾渗滤液中氨氮去除试验的研究[J].兰州交通大学学报(自然科学版),2007,26(3):35-37.
    [179]陈卫国,徐涛,彭玉凡,等.电催化系统-电生物炭接触氧化床处理垃圾渗滤液[J].中国环境科学,2002,22(2):146-149.
    [180]冯旭东,刘芳,郭明旻,等.生物-臭氧氧化技术处理垃圾渗滤液[J].北京工商大学学报(自然科学版),2005,23(4):1-3.
    [181]王德义.催化电解与SBR法联合处理垃圾渗滤液的试验研究[J].烟台大学学报(自然科学与工程版),2006,19(3):216-224.
    [182]陶长元,向斌贝,刘仁龙,等.微波和微波Fenton组合法处理垃圾渗滤液的对比[J].辽宁石油化工大学学报,2006,26(4):18-20.
    [183] Ki-Hoon Kang,Hyun Sang Shin,Heekyung Park.Characterization of humic substances present in landfill lerachates withdifferent landfill ages and its implications.Water Research 36 (2002)4023-4032.
    [184]徐高平.垃圾填埋场渗滤液的处理工艺介绍[J].青海环境,2008,(2).
    [185]岳东北,刘建国,聂永丰,等.生化垃圾填埋场渗滤液处理技术研究[J].环境污染治理技术与设备,2004,(6).
    [186]岳东北,刘建国,聂永丰,等.蒸发法深度处理浓缩渗滤液的实验研究[J].环境科学动态,2005,(1).
    [187] Bartschat BM, Cabaniss SE, Morel FMM. Oligoelectrolylemodel for cation binding by humic substances[J].Environ SciTechnol, 1992,26(2):284-94.
    [188] H. Ehrig, Treatment of sanitary landfill leachate: biologicaltreatment, Waste Manage. Res. 2 (1984), pp. 131-152.
    [189] A. Tilche E. Bacilieri G. Bortone F. Malaspina S. Piccininid and L. Stante. Biological phosphorus and nitrogen removal in a full scale sequencing batch reactor treating piggery wastewater[J].Water Science and Technology, 1999, 40 (1) :199-206.
    [190] Su JJ, Yeh KS, Tseng PW. A Strain of Pseudomonas sp. Isolated from Piggery Wastewater Treatment Systems with Heterotrophic Nitrification Capability in Taiwan.Current Microbi-
    [191] ology, 2006, 53 :77-81.
    [192]冯逸仙,杨世纯.反渗透水处理工艺[M].北京:中国电力出版社,2000.9-10.
    [193] S. S. Madaeni. The application of membrane technology for water disinfection[J].Water Research, 1999, 33 (2) :301-308.
    [194] Jung C W, Son H J, Kang L S. Effect of membrane material and pretreatment coagulation on membrane fouling: fouling mechanism and NOM removal.Desalination. 2006, 197 :154-164.
    [195] A. Amokrane, C. Comel and J. Veron, Landfill leachates pre-treatment by coagulation flocculation, Water Res. 31(1997), pp. 2775-2782.
    [196]何厚波,徐迪民.垃圾堆体高度对渗滤液回落处理的影响[J].中国给水排水,2003,19(1):9-12.
    [197] R. Parag, Treatment of wastewater streams containing phenolic compounds using hybrid techniques based on cavitation:a review of the current status and the way forward, Ultrason. Sonochem. 15 (2008): 1-15.
    [198] Y. Jiang, C. Petrier and T. Waite, Kinetics and mechanisms ofultrasonic degradation of volatile chlorinated aromatics in aqueous solutions, Ultrason. Sonochem. 9 (2002): 317-323.
    [199] Steve Holt.The role of freeze concentration in waste water disposal [J].Filtration and separation,1999,36(10):34-35.
    [200] Liesebach J,Rades T,Lim M.A new method for the determination of the unfrozen matrix concentration and the miximal freeze-concentration [J].Themochimica Acta, 2003,401(2):159-168.
    [201] Seung-Hyun Kim Seong-Yong Moon Cho-Hee Yoon Seong Keun Yim and Jae-Weon Cho. Role of coagulation in mem brane filtration of wastewater for reuse.Desalination, 2005,173 (3) :301-307
    [202] Kjildsen P,Barlaz M A,Rooker A P,et al. Present and long term composition of MSW landfill leachate: A review [J]Critical Reviewn in Environmental Science and Technology,2002,32(4):297-336
    [203]狄军贞,张晓莹,肖利萍,于秉富等,垃圾渗滤液污染物在土壤中迁移规律试验及模拟,水资源与水工程学报,2009,20(2):32-35
    [204]赵勇胜,苏玉明,王翊红.城市垃圾填埋场地下水污染的模拟与控制[J].环境科学,2002,23(增刊):83 - 88.
    [205]张宏忠,方少明,松全元,等.北神树垃圾填埋场渗滤液水质分析[J].安全与环境学报,2005,5(10):63 - 66.
    [206]高太忠,黄群贤,李秀荣,等.垃圾渗滤液中污染物在包气带运移模拟实验及预测[J].生态环境,2006,15(5):960 - 965.
    [207]钱天伟,刘春国.饱和-非饱和土壤污染物运移[M].北京:中国环境科学出版社,2007:99 - 101.
    [208]周磊,李绪光,王翊红,等.垃圾渗滤液在土层中迁移转化规律实验研究[J].城市地质,2006,1(1):24 - 28.
    [209]刘长礼,王秀艳,张云,城市垃圾卫生填埋场粘性土衬垫的截污容量及其研究意义,地质论评,2000,46(1): 79-85.
    [210] Kamon M, ZhangH, Katsumi T. Redox effects on heavy metal attenuation in landfill clay liner. Soils and Foundations, 2002, 42(3):115-126.
    [211]乔云峰,沈冰.土壤溶质运移的微观机理模型研究.西北水资源水程,2001,12(1):5-7.
    [212] Van Genuchten, MTh. A comparison of numerical solution of the onedismensional displace unsaturated-saturated flow and mass transport equations. Adv Water Resour, 1982(5):47-55.
    [213]周吉林,周少奇.垃圾填埋场渗滤水的处理技术[J].环境污染与防治, 2001, 23(4): 187-189.
    [214]蒋海涛,周恭明,高廷耀.城市垃圾填埋场渗滤液的水质特性[J].环境保护科学, 2002, 28(3): 11-13
    [215]张兰英,韩静磊,安胜姬,等.垃圾渗沥液中有机污染物的污染及去除[J].中国环境科学,1998, l8(2): 1-7
    [216] BekboletM, LindnerM, WeichgrebeD, eta1.Photocatalytic Detoxification with the Thinfilm Fixed-bed Reactor (Tffbr): Clean-up ofHighlyPolluted LandfillEffluentsUsingA NovelTiO2-photocatalyst[J]. SolarEnergy, 1996,56(5):455-469.
    [217] Alex H C Chan, Chak K Chan , John PBarford, et a1. Solar Photocatalytic Thin Film Cascade Reactor forTreatment of Benzoic AcidContaining Wastewater[ J]. Water esearch, 2003, 37: 1125-1135.
    [218] In-Ock Koh, Xiaoling Chen-Hamacher, KlausHicke, et a.l Leachate Treatment by the Combination of Photochemical Oxidation withBiologicalProcess[J]. Journal of Photochemistryand Photobiology A : Chemistry, 2004, 162:261-271.
    [219]邓昭平,倪师军等,“纳米二氧化钛液态前驱物的制备方法”[P],专利号ZL 3117289.X,2005.06.15;
    [220]邓昭平,倪师军等,“玻璃纤维基纳米二氧化钛光降解触媒丝的制备方法”[P],专利号ZL200310111087.1, 2006.06.28。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700