用户名: 密码: 验证码:
流域非点源污染负荷定量化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着点源污染控制力度的逐步加大,我国目前正处在污染构成快速转变时期,非点源污染负荷在水污染负荷中所占比重逐步上升,影响日益突出,因此,非点源污染负荷的定量化对流域水污染控制和水环境综合治理就显得越来越重要。非点源污染来源的复杂性、机理的模糊性和形成的潜伏性,决定了非点源污染负荷定量化研究具有较大的难度。本文在调查、监测的基础上,结合3S技术,以渭河流域为背景进行流域非点源污染负荷定量化研究。首先对渭河干流临潼水文站断面进行洪水期和非洪水期水质水量同步监测,明确非点源污染特征和其在总负荷中的比重;在此基础上,以渭河流域及其子流域陕西黑河流域为例,研究不同资料条件下流域非点源污染模拟和负荷预测方法。在有限资料条件下,针对目前非点源污染年负荷量估算统计模型中一般都是考虑单变量建立一元回归模型的情况,提出了几种考虑多个主要影响因素的非点源污染负荷预测方法。在资料允许的条件下,以GIS为平台,分别研究了分布式模型AnnAGNPS和SWAT在两种不同尺度流域——黑河流域、渭河流域的适用性和可靠性,同时探讨了黑河流域、渭河流域非点源污染物产出的时空分布特性,模拟了流域非点源最佳管理措施的效果。本研究的开展,不仅对全面认识渭河水污染的成因具有重要的科学意义,而且对渭河水环境的综合治理与水资源保护具有重要的现实意义。同时,考虑到非点源污染的普遍性,本文的研究方法与结果也可供其它类似地区和流域参考。取得的主要研究成果如下:
     1.2006年7-12月,对渭河临潼断面5次暴雨洪水过程和非洪水期3次24h平时水流进行了水质水量同步监测。结果表明:洪水期间,SS、浑水COD、浑水TP和浑水TN等指标监测值都远大于平时监测值,浑水中COD、TP、TN监测值高与表层土壤中天然腐殖质有关。上清液中总氮TN和总磷TP分别以水溶性氮和固态磷为主,浑水中COD、TP、TN与SS有很好的相关性。采用平均浓度法计算了各指标的非点源污染平均浓度,同时建立了各指标非点源污染负荷与地表径流量的相关方程;对2001-2007年临潼断面非点源负荷占总负荷的比重进行了计算,2006年CODS、TPS、TNS和无机氮非点源污染负荷相应的比例为38.17%、35.94%、33.32%和30.45%。2001-2007年CODS、TPS、TNS和无机氮非点源污染负荷占总负荷的比例多年平均分别为54.10%、51.72%、48.82%和45.53%。非点源污染在渭河水污染中占较大比重,其对渭河水质的影响不容忽视。
     2.将偏最小二乘回归理论引入到流域非点源污染负荷预测中,建立了非点源污染年负荷量预测模型,并与基于最小二乘的多元线性回归模型预测结果进行对比。采用渭河华县断面1976-1993年总氮非点源负荷及与其产生关系密切的径流、泥沙、降雨资料,前15a资料用作训练,后3a资料用作检验。计算分析表明:偏最小二乘回归分析实现了多元回归、主成分分析和典型相关分析的综合,能较好的处理变量之间的多重相关性问题,建模所需样本少,其计算结果合理,具有较好的推广应用价值。
     3.尝试将支持向量机技术应用于小样本渭河华县断面非点源总氮年污染负荷量预测。支持向量机(SVM)能在有限样本情况下,采用结构风险最小化准则,把学习问题转化为一个二次规划问题来获得全局最优解,从而克服了神经网络易陷于局部极小值的缺点。采用1976-1993年总氮非点源负荷及与其产生关系密切的径流、泥沙、降雨资料,前15a资料用作训练,后3a资料用作检验。经过与最小二乘支持向量机、BP神经网络和最小二乘回归方法预测结果比较,表明SVM方法预测精度要优于后两者,可用于有限资料条件下非点源负荷预测。
     4.尝试将自记忆原理引入非点源污染负荷的预测研究中,并对一般形式的自记忆模型进行改进,建立了改进的非点源污染负荷自记忆预测模型。采用渭河华县断面1976-1993年总氮非点源负荷及与其产生关系密切的径流、泥沙、降雨资料,前15a资料用作训练,后3a资料用作检验,经计算表明,本文所提出的改进的非点源污染负荷自记忆模型预测效果较好,该方法是一种可行的非点源污染负荷预测方法。
     5.以陕西黑河流域为研究区,借助GIS和相关资料提取参数,建立AnnAGNPS模型数据库。采用1991-1998年黑峪口断面月径流量、泥沙和无机氮、总磷监测数据率定和验证模型,分析AnnAGNPS模型在西北半干旱地区典型流域的适用性。结果表明,AnnAGNPS可用于该流域非点源污染的长期模拟。在此基础上,对模型主要参数进行了敏感性分析和非点源污染产出的时空分布特征分析。最后利用校准后的模型进行流域非点源污染管理措施模拟。为了达到同时削减径流、沉积物及总氮、总磷的输出量,在流域内主要应采取退耕还林的措施,治理非点源污染。
     6.以渭河华县断面以上流域为研究区(面积为10.65万km2),应用SWAT模型对该区域的径流、泥沙及氮污染负荷的产输出过程进行模拟计算。利用华县站1987-1988年的实测月径流、泥沙和污染物数据进行模型的调参计算,用1989-1990年的实测月径流、泥沙和污染物数据对模型进行验证,验证结果表明模型基本合理可行,可用于渭河流域非点源污染的模拟计算。利用率定好的模型对不同典型年进行了模拟计算,根据模拟结果对该区域的径流、泥沙和氮污染负荷的时空产输出特点进行了分析,为流域非点源污染控制防治规划提供科学依据。
With the increasing control strength of point source pollution, water pollution constitution of our country is being at a rapid change stage, and the proportion of non-point source pollution (NSP) load compared to total pollution load is gradually rising and its influence is increasing. As a result,the quantification of NSP becomes increasingly important for water pollution control and water environment comprehensive management. The complexity of source, ambiguity of mechanism and latency of formation for NSP make it difficult to quantify it. On the basis of investigation and monitoring, combining with the technology of'3S',this paper takes the Weihe river basin as an example to study the problem. Firstly, during flood and non-flood period in 2006, water quality and quantity at the Lin-tong section of the Weihe river were monitored, and the characterristic of NSP and its proportion compared to total pollution load are analyzed. Secondly, taking the weihe river basin and its subwatershed-the Heihe river watershed as the example, simulation and prediction of NSP for watershed under different data conditions is studied. Under the limited data condition, the statistical models of NSP annual load estimation are generally single-element regression models considering single variable at present. Pointing to this condition,several NSP load prediction methods considering multiple main relevant elements are proposed. Under enough data condition, the adaptability and reliability of AnnAGNPS model in the Heihe river watershed and SWAT model in the Weihe river basin are repectively studied by means of GIS. At the same time, the NSP output distribution of time and space in the heihe river watershed and the weihe river basin are analyzed, and the effects of best management practices (BMPs)are simulated. This research is not only important to comprehensively understand the cause of water pollution of the weihe river,but also important to water environment comprehensive management and water resources protection of it. Meanwhile, considering the universality of NSP in our country, the study methods and results can give references for other similar region and watershed.To sum up,main results of this study are listed as follows:
     1.From July to December in 2006, five storm events and three 24 hours normal flow events at the Lin-tong section were monitored. Raw water and clarified water quality of them was analyzed. The results indicates that: during the flood, the concentrations of SS, and the COD, TP as well as TN of raw water are higher than those in the non-flood period. The high values of the COD,TP and TN of raw water are related to natural humic substance in the surface layer soil. The total-N of clarified water is mainly made of dissolved nitrogen, and total-P is mainly made of particle phosphorus. TP and COD of raw water are closely related with SS. Mean concentration method was used to estimate NSP weighted mean concentration for each element. Water quality and quantity correlation method was used to establish correlation equation between NSP load and surface runoff for each element. The calculated NSP mean concentration and the established correlation equation are used to estimate NSP load of the Lin-tong section in the Weihe River from 1991 to 1999, the results of the two methods prove to be credible. The annual NSP load proportions compared to the total of the Lin-tong section from 2001 to 2007 are calculated. The NSP load proportion of COD, TP and TN of clarified water and inorganic nitrogen are repestively 38.17%,35.94%,33.32% and 30.45% in 2006,while which are repestively 54.10%,51.72%,48.82% and 45.53% from 2001 to 2007 on the whole.The effect of NSP to water quality is indispensable.
     2.The partial least square regressive method (PLS) is applied to build the model estimating the annual load of NSP, whose results are compared with the ones of least square method. The data series used in the study included NSP total-N load from 1976 to 1993 at the Hua-xian section, and environmental factor series such as flow, sediment, precipitation, etc.The first 15 years'data were used for training, and the last 3 years'data for testing. It is showed that PLS integrating the multi-regression, the principal component analysis and typical correlation analysis, can easily solve the multiple correlation problems in the multiple linear regressive analysis, and only need a few of data to build the model. The calculation results of PLS is credible, the estimated regressive parameters with PLS are robust. The method is feasible and practical.
     3. Support Vector Machine (SVM) method is applied in estimating annual NSP load at the Hua-xian section in the Wei River. The novel SVM method can transform the learning process into a secondary planning problem, and the global optimal solution can be obtained. This method avoids the potential shortcoming of artificial neural networks (ANN), which may be trapped in local optimums. The data series used in the study included NSP total-N load from 1976 to 1993, and environmental factor series such as flow, sediment, precipitation, etc. The first 15 years' data were used for training, and the last 3 years' data for testing. The SVM method performed better than that ANN and least square regression methods. This study indicated that the prediction of NSP could be improved by the SVM approach under limited data availability.
     4.Self-memory theory is applied to build the model estimating annual NSP load. Modified self-memory model of NSP loading is established based on improving common self-memory model. The data series of the Hua-xian section in the Wei River used in the study included NSP total-N load and environmental factor series such as flow, sediment and precipitation from 1976 to 1993. The first 15 years'data were used for training, and the last 3 years'data for testing. This study indicates that the modified self-memory method performed better, and the method can be used to predict NSP load.
     5.Taking shaanxi Heihe river watershed as study region, AnnAGNPS (Annualized Agricultural non-Point Source Model) foundation database is established using GIS(Geographic Information System) and relevant data to extract parameter.The model is calibrated and validated using observed stream flow, sediment load, inorganic nitrogen and total phosphorus month data from 1991 to 1998 in the Heiyukou section, which is used to judge the adaptability of the model in typical watershed in semi-arid region of Northeast of China. The results showed that the model can be used to long term simulation of the watershed NSP(non-point source pollution). Subsequently, Sensitivity of main parameters of the model is analyzed. Finally, the validated model is used to simulate the management measures. The results show that the reforestation project, which can simultaneously minify the amount of runoff, sediment, total nitrogen and total phosphorus should be adopted in Heihe watershed in order to control NSP.
     6.Weihe river basin above Hua-xian section is selected as the study area, with a drainage area of 10.65×104 km2. SWAT model is applied to simulate the producing and transporting process of flow, sediment and nitrogen non-point source pollution. Monthly flow, sediment and nitrogen pollutant data series from 1987 to 1988 are used to calibrate the correlative parameters of flow, sediment and nitrogen pollutant. The monthly flow, sediment and nitrogen pollutant data series from 1989 to 1990 are used to validate model. The results of calibration and validation show that the model is reasonable and available. The calibrated model is used to calculate the loadings of nitrogen non-point source pollutants of different typical years. Based on the simulated results, the spatial and temporal distribution of flow, sediment and non-point source pollution has been analyzed for the non-point source pollution control.
引文
【1】Lee S I. Nonpoint source pollution[J] Fisheries,1979,(2):50-52.
    【2】Novotny V, Chesters Gordon. Handbook of non-point pollution:sources and manage- ment [M]. Van Nostrand Reinhold Company,1981,1-13.
    【3】Novotny. V, Olem H. Water quality: prevention identification and management of diffuse pollution[M]. New York: Van Nostrand Reinhold Company,1993,1-6.
    【4】李怀恩.水文模型在非点源污染研究中的应用[[J].陕西水利,1987(3):18-23.
    【5】阮晓红,宋世霞,张瑛.非点源污染模型化方法的研究进展及其应用[J].人民黄河,2002,24(11):25-26,29.
    【6】王振刚.密云水库上游石匣小流域非点源污染负荷模型研究与建立[D].北京:首都师范大学,2002.
    【7】US Environmental Protection Agency. Non-Point Source Pollution from Agriculture[EB/OL]. http:// www.epa.gov/region8/water/nps/npsag.html,2003.
    【8】Kronvang B., et al, Diffuse Nutrient Losses in Denmark[J]. Water Sci. Technol. (GB.),33:81(1996).
    【9】Boers, P. C. M., Nutrient Emission from Agriculture in the Netherlands:Causes and Remedies[J]. Water Sci. Technol. (G B.),33:183 (1996).
    【10】鲍全盛,曹利军等.密云水库非点源污染负荷评价研究[J].水资源保护,1997,(1):8-11.
    【11】杨苏树,倪喜云.大理州洱海流域农业非点源污染现状[[J].农业环境与发展,1999,(2):43-44.
    【12】屠清瑛,顾丁锡,尹澄清等.巢湖—富营养化研究[M].合肥:中国科技大学出版社,1990:1-20.
    【13】熊丽君.基于GIS的非点源污染研究[D].南京:河海大学硕士学位论文,2004.
    【14】司全印等.关中地区水污染控制及生态环境保护[M].北京:中国环境科学出版社,2000.
    【15】庄咏涛.渭河临潼断面以上流域非点源总氮负荷研究[D].西安:西安理工大学,2002.
    【16】李越.渭河氮素非点源污染与流域人类活动的关系[D].西安:西安理工大学,2004.
    【17】蔡明.渭河陕西段氮污染及控制规划研究[D].西安:西安理工大学,2004.
    【18】张强.黑河流域磷素输出连续模拟[D].西安:西安理工大学,2005.
    【19】薛素玲.基于GIS的黑河流域非点源氮磷模拟[D].西安:西安理工大学,2006.
    【20】胥彦玲.基于土地利用/覆被变化的陕西省黑河流域非点源污染研究[D].西安:西安理工大学,2007.
    【21】张亚丽.黄土坡面土壤氮磷等化学物质径流迁移与混合层深度研究[D].西安:西安理工大学,2007.
    【22】李怀恩,胥彦玲,蔡明.渭河流域非点源污染研究进展与展望.见:周孝德,沈冰编,水与社会经济发展的相互影响及作用[C].北京:中国水利水电出版社,2005.
    【23】Schueler T R. The importance of imperviousness[J]. Watershed Protection Techniques,1994, (1):100-111.
    【24】Olness A E, Smith S J, Rhoades E D, et al. Nutrient and sediment discharge from agricultural watersheds in Oklahoma[J]. J. Environ. Qual.,1975,4(2):331-336.
    【25】Romkens M J, Nelson D W. Phosphorus relationships in runoff from fertilized soil[J]. J. Environ. Qual., 1974,3(1):10-13.
    【26】Sharpley A N. Dependence of runoff phosphorus on extractable soil phosphorus[J]. J. Environ. Qual., 1995,24(5):920-926.
    【27】Pote D H, Daniel T C, Nichols D J, et al. Relationship between phosphorus levels in three Ultisols and phosp -horus concentrations in runoff[J]. J.Environ. Qual.,1999,28(1):170-175.
    【28】Pitt R, Field R. Water-quality effect from urban runoff[J]. Journal AWWA,1977,69(8):432-436.
    【29】Browne F X. Non-point sources[J]. Journal WPCF,1978,50(6):1665-1674.
    【30】Sator J D, Boyd G B, Agardy F J. Water pollution aspects of street surface containments[J]. J Water Pollut Control Fed,1974,46(3):458-467.
    【31】Collins P G, Ridgway J W.Urban storm runoff quality in southeast michigan[J]. Journal of Envir.Engrg. Division, ASCE,1980,106(EE1):485-501.
    【32】Sator J D, Gaboury D R. Street sweeping as a water pollution control measure:lessons learned over the past ten years[J]. The Science of the Total Environment,1984,33(1):171-183.
    【33】Viklander M. Particle size distribution and metal content in street sediments[J]. Journal of Envir.Engrg. Division, ASCE,1988,124(8):761-766.
    【34】Andral M C, Roger S. Particle size distribution and hydrodynamic characteristics of solid matter carried by runoff from motorways[J]. Water Environment Research,1999,71(4):398-407.
    【35】赵剑强.城市地表径流污染与控制[M].北京:中国环境科学出版社,2002.
    【36】Stotz G. Investigations of the properties of the surface water run-off from federal highways in the FRG[J]. The Science of the Total Environment,1987,59:329-337.
    【37】Ellis K V, White G, Warn A E. Surface water pollution and its control[M]. England:Macmillan Publishers Ltd.,1989:268-270.
    【38】Stanley D W. Pollutant removal by a stormwater dry detention pond[J]. Water Environment Research, 1996,68(6):1076-1083.
    【39】夏青.城市径流污染系统分析[J].环境科学学报,1982,2(4):17-19.
    【40】刘爱蓉,曹万金.南京市城北地区暴雨径流污染研究[J].水文,1990,10(6):15-23
    【41】车武,汗慧珍,任超等.北京城区屋面雨水污染及利用研究[J].中国给水排水,2001,7(6):57-61
    【42】James W. Current practices in modelling the management of stormwater impacts[M]. USA:Lewis Publishers,1994:121-139.
    【43】Drapper D, Tomlinson R, Williams P. Pollutant concentrations in road runoff: southeast queensland case study[J]. J. of Envir. Engrg., ASCE,2000,126(4):313-320.
    【44】Ellis J B, Revitt D M. The contribution of highway surfaces to urban stormwater sediments and metal loadings[J]. The Science of the Total Environment,1987,59(4):339-349.
    【45】Young G K, Stein S, Cole P, et al. Evaluation and management of highway runoff water quality [M]. Washington D. C.: Federal Highway Administration,1996.
    【46】Chui T W, Mar B W, Homer R R. Pollutant loading model for highway runoff[J]. J. of Envir. Engrg., ASCE,1982,108(EE6):1193-1210.
    【47】Wu J S, Allan C J, Saunders W L, et al. Characterization and pollutant loading estimation for highway runoff[J]. J. of Envir. Engrg., ASCE,1998,124(7):584-592.
    【48】Lee J H, Bang K W. Characterization of urban stormwater runoff[J]. Water Research,2000,34(6):1773-1780.
    【49】Driscoll E, Shelley P E, Strecker E W. Pollutant loadings and impacts from highway stormwater runoff, Vols.Ⅰ-Ⅳ[M]. Washington D.C.:Federal Highway Administration,1990.
    【50】Barrett M E, Zuber R D, Collins E R, et al. A review and evaluation of literature pertaining to the quantity and control of pollution from highway runoff and construction[M]. Austin, Tex.:University of Texas at Austin,1993.
    【51】Stotz G, Krauth K. The pollution from pervious pavements of an experimental highway section:first results[J]. Sci. Tot. Environ.,1994,146/147:465-470.
    【52】Ranchet J. Impacts of porous pavements on the hydraulic behaviour and the cleansing of water[J]. Techniques Sciences et Methodes,1995,11:869-871.
    【53】Pagotto C, Legret M, Cloirec P L. Comparison of the hydraulic behaviour and the quality of highway runoff water according to the type of pavement[J]. Water Research,2000,34(18):4446-4454.
    【54】Jr. Whipple W, Hunter J V. Effects of storm frequency on pollution from urban runoff[J]. Journal WPCF,1977,(11):2243-2248.
    【55】Akan A O.Urban stormwater hydrology[M]. USA:Technomic Publishing Company Inc.,1993.
    【56】Charbeneau R J, Barrett M E. Evaluation of methods for estimating stormwater pollutant loads [J].Water Environment Research,1998,70(7):1295-1302.
    【57】Krein A, Schorer M. Road runoff pollution by polycyclic aromatic hydrocarbons and its contribution to river sediments[J]. Water Research,2000,34(16):4110-4115.
    【58】Vaze J, Francis H S Chiew. Experimental study of pollutant accumulation on an urban road surface[J]. Urban Water,2002,4(2):379-389.
    【59】Sutherland R C, Field R. Discussion on effects of storm frequency on pollution from urban runoff[J]. J. Water Pollution Control Fed.,1978,50(5):977-979.
    【60】Deletic A, Maksimovic C, Ivetic M.Modelling of storm wash-off of suspended solids from impervious surfaces[J]. J. Hydr. Res.,ASCE,1997,35(l):97-188.
    【61】Metcalf and Eddy Inc., University of Florida, Water Resources Engineers Inc. Storm Water Management Model, volume 1:final report[R]. Washington D.C. Environmental Protection Agency,1971.
    【62】Barrett M E, Jr.Irish L B,Jr. Mauna J F,et al. Characterization of highway runoff in Austin,Texas, Area [J]. J. of Envir. Engrg., ASCE,1998,124(2):131-137.
    【63】Hardee J, Miller R A, Mattraw Jr. H C. Stormwater runoff data for a multifamily residential area[R]. Dade County, Florida: US Geological Survey Open-File Report,1979.
    【64】Haster T W, James W P. Predicting sediment yield in storm-water runoff from urban areas[J]. J. Water Resour. Plng, and Mgmt.,ASCE,1994,120(5):530-650.
    【65】Deletic A B, Maksimovic C T. Evaluation of water quality factors in storm runoff from paved areas[J]. J. of Envir. Engrg., ASCE,1998.124(9):869-879.
    【66】Soil Conservation Service. National Engineering Handbook, Section 4[S].1956:23-65.
    【67】Knisel W G. CREAMS:A Field Scale Model for Chemical, Runoff, and Erosion from Agricultural Management Systems [R]. Conservation ResReprot USDA-SEA,1980.
    【68】Young R A, Onstad C A, Bosch D D, et al. AGNPS:A nonpoint-source pollution model for evaluating agriculture watersheds [J]. Soil Water. Conserv,1989,44 (2):168-173.
    【69】Arnold J G, Allen P M, Bernhardt G. A comprehensive surface-grown-water flow model[J]. Hydrol, 1993,142:47-69.
    【70】Lutz W. Berechnung von Hochwasserabfluessen unter Anwednung von Gebietskenn-groessen [D]. Karlsruhe University,1984:235.
    【71】S Grunwald, L D Norton. Calibration and validation of. a non-point source pollution model [J]. Agricultural Water Management,2000,45:17-39.
    【72】M Rode, K E Lindenschmidt. Distributed Sediment and Phosphorus Transport Modeling on a Medium Sized Catchment in Central Germany [J]. Phys Chem Earth, 2001,26 (7-8):635-640.
    【73】贺宝根,周及晨,高效江等.农田非点源污染研究中的降雨径流关系—SCS的修正[J].2001(3):49-51.
    【74】袁艺,史培军.土地利用对流域降雨一径流关系的影响-SCS模型在深圳的应用[J].北京师范大学学报(自然科学版),2001,37(1):198-203.
    【75】徐秋宁,马孝义,安梦雄等.SCS模型在小集水区降雨径流计算中的应用[[J].西南农业大学学报,2002,(2):97-107.
    【76】夏青等.计算非点源污染负荷的流域模型[J].中国环境科学,985,(4):23-30.
    【77】陈西平.计算降雨及农田径流污染负荷的三峡库区模型[J].中国环境科学,1992,(1):48-52.
    【78】赵人俊.流域水文模拟[M].北京:水利电力出版社,1984.
    【79】Verworn H R. Determining Nutrient Loading from Rainfall and Runoff in Small Rivers[J]. Prog, Wat, Tech,1978,(10).
    【80】温灼如,苏逸深等.苏州水网城市暴雨径流污染的研究[J].环境科学,1986,7(6).
    【81】刘曼蓉,曹万金.南京市城北地区径流污染研究[[J].水文,1990,(6).
    【82】林芳荣等.北江演水流域面源污染研究(摘要)[C].北京:水利部水资源司,1990.
    【83】Crawford N H, Linsley R K. Digital simulation in hydrology: Stanford Watershed Model Ⅳ[R]. Stanford, California: Dept Civil Engineering, Stanford University,1996,39:210.
    【84】Abbott M B, Bathurst J C, Cunge J A, et al. Introduction to the European Hydrological System—
    Systeme Hydrological European, "SHE", Ⅰ:History and philosophy of a Physically-based, Distributed Modelling System [J]. Hydrol,1986,87 (1-2):45-59.
    【85】郑丙辉.流域非点源污染负荷模型及其对湖泊生态环境影响的研究[D]成都:四川联合大学,1997.
    【86】Wischmeier W H, Smith D D. Predicting rainfall erosion losses [J]. U S Dept of Agriculture, Agricultural Handbook,1978,537:10-34.
    【87】Lane L J, Renard K q Foster G R, et al. Development and application modem soil erosion prediction technology-the USDA experience [J]. soil Resources,1992,30:893-912.
    【88】Foster G R. USDA-water Erosion Prediction Project, Hillslope Profile and Watershed Model Documentation[R]. W Lafayette ind:Purdue University,1995.
    【89】Ascough Ⅱ J C, Baffaut C, Nearing M A, et al. The WEPP watershed model:Ⅰ[J]Hydrology and erosion,1997,40(6):921-933.
    【90】汪忠善等.应用地理信息系统评价黄土丘陵区小流域土壤侵蚀的研究[J].水土保持研究,1996,3(2):84-97.
    【91】李玉山等.中美小流域治理和农业的对比研究[J].水土保持通报,1993,13(1):11-15.
    【92】杨子生.滇东北山区坡耕地土壤侵蚀的水土保持措施因子[J].山地学报,1999,17:22-24.
    【93】阮伏水,朱鹤健.福建省花岗岩地区土壤侵蚀与治理[M],北京:中国农业出版社,1997.
    【94】王全九.降雨-地表径流-土壤溶质相互作用深度[J].土壤侵蚀与水土保持学报,1998,4(2):41-46
    【95】王坷,朱荫媚.土壤耕作与农业面源污染[J].耕作与栽培,1996(2):15-17.
    【96】易秀.农事活动对水资源的非点源污染问题[J].西安工程学院学报,2001,23(2):42-45.
    【97】Gaynor J D, Findlay W I. Soil and phosphorus loss from conservation and conventional tillage in Corn production[J].Environ Qual,1995,24:734-741.
    【98】邬伦,李佩武.降雨一产流过程与氮、磷流失特征研究[J].环境科学学报,1996,16(1):111-116
    【99】Benoit G R. Effect of agricultural management of wet, sloping soil on nitrate and phosphorus in surface and surface water[J]. Water Resource. Res,1973,9:1296-1303
    【100】Sharpley Andrew N, S C Chapra, R Wedephol, et al. Managing agricultural phosphours for protection of surface waters:issues and options[J].Environ Qual,1994,23:437-451.
    【101】Ng H Y F, Mayer T, Marsalek J. Phosphorus transport in runoff from a small agricultural watershed [J]. Wat Sci Tech,1993,28(3-5):451-460.
    【102】Sharpley A N, Smith S.T. Prediction of soluble phosphorus transport in agricultural runoff[J].Environ Qual,1989,18:313-316.
    【103】郑一,王学军.非点源污染研究的进展与展望[J].水科学进展,2002(1):105-110
    【104】Zampella R A.Characterization of surface water quality along a watershed disturbance gradient[J]. Water Resource Bulletin (Urb.),1994,30:605
    【105】单保庆,尹澄清.小流域磷污染非点源输出的人工降雨模拟研究[J].环境科学学报,2000,20(1):33-37
    【106】黄丽,丁树文等.三峡库区紫色土坡地的耕作利用方式与水土流失初探[J].华中农业大学学报,1998,17(1):45-49.
    【107】李佩武.N、P输出与土地利用类型相关性研究[J].农业环境与发展,1998(3).
    【108】范丙全,胡春芳,平建立.灌溉施肥对壤质潮土硝态氮淋溶的影响[J].植物营养与肥料学报.1998.4(1):16-21
    【109】Bergstrom L, Brink N. Effects of differentiated applications of fertilizer N leaching losses and distribution of inorganic N in soil[J]. Plant and Soil,1986,93(3):333-345.
    【110】Bauder J W, Schneider R E.Nitrate-nitrogen leaching following urea fertilization and irrigation[J]. Soil Sci Soc Am,1979,43:348-352.
    【111】Hansen E M.Djurhuus J.Nitrate leaching as affected by longterm N fertilization on a coarse sand[J].Soil Use&Manage,1996.
    【112】Beckwith C P, Cooper J, Smith K A, et al. Nitrate leaching loss following application of organic manures to sandy soils in arable cropping,Effects of application time, manure type, overwinter crop cover and nitrification[J].Soil Use&Manage,1998,14(3):123-130.
    【113】刘春增,寇长林,王秋杰.长期施肥对砂土肥力变化及硝态氮积累和分布的影响[J].土壤通报,1996,27(5):216-218.
    【114】樊军,郝明德,党廷辉.旱地长期定位施肥对土壤剖面硝态氮分布与累积的影响[J].土壤与环境,2000,9(1):23-26.
    【115】Hallberg G R. Nitrate in Iowa groundwater In: Rural Groundwater Contamination[M]. Boca Baton.Florida:Lewis Publishers,1987.
    【116】黄元仿,曹兵,胡克林等.不同施肥条件下菜地土壤无机氮动态及其淋洗污染潜力[J].土壤通报,1997,28(4):175-177.
    【117】Wang X B, Bailey L D, Grant C A. A review of fertilizer N behaviour in soils, and effective N management under conservation tillage systems[J]. Progr Soil Sci,1995,23(2):1-11.
    【118】Dou Z, Fox R H, Toth J D. Seasonal soil nitrate dynamics in corn as affected by tillage and nitrogen-source[J]. Soil Science Society of America,1995,59 (3):858-864.
    【119】Francis G S, Haynes R J. Williams P H. Nitrogen mineralization nitrate leaching and crop growth after plowing-in leguminous grain crop residues[J]. Agricultural science,1994.123(1):81-87.
    【120】Djurhuus J, Osen P Nitrate leaching after cut grass/clover leys as affected by time of ploushing[J]. Soil Use&Manage,1997,13 (2):61-67.
    【121】Hansen EM, Djurhuus J. Nitrate leaching as influenced by soil tillage and catch crop[J]. Soil&Till Res,1997,41(3/4):203-219.
    【122】Cox. J W, Fleeting N K and D J Chittlebo rough, et al. Pathways for Phosphorus loss off pastures in South. Australia. Connecting Phosphorus Transfer from Agriculture to Impacts in Surface Waters[M]. International Phosphorus Transfer Work shop,2001,68:326-331.
    【123】Addiscott T. M. and D Thomas. Tillage, mineralization and leaching: phosphate[J].Soil&Tillage Research,2000,53:255-273.
    【124】Kleinmain P J. A,B A Needelman, A N Sharpley et al. Using soil phosphorus profile data to assess phosphorus leaching potential in Manured soils[J]. Soil Sci, Soc. Am J.,2003,67:215-224.
    【125】Yoram J L, Anthony S D. Continuous simulation of non-point pollution[J] Journal WPCF, 1978,50(10):2348-2361.
    【126】Vladimir N, Hue T, Geronimo V S, Gordon C. Mathematical modeling of land runoff contaminated by phosphorus[J].Journal WPCF,1978,50(1):101-112.
    【127】Horton R E.An approach toward a physical interpretation of infiltration capacity [J]. Soil Science Society of America Proc,1940(5):399-417.
    【128】Crawfood N H, Linsley H K. Digital simulation in hydrology Starford Watershed Model Ⅳ[R]. Dept Civil Engineering, Starford University, Starford,California, Technical Report,1966,39-210.
    【129】Wischmeier W H, Smith D D. Predicting rainfall erosion losses from cropland east of the Rocky Mountains[M].USDA Agricultural Handbook, No1292,1965.
    【130】Metcalf and Eddy, Inc., University of Florida, Water Resources Engineers, Inc. Storm Water Management Model, Version Ⅰ:final Report[R].Environment Protection Agency,Washington, DC.1971.
    【131】Young R A, Onstad C A, Bosch D D. AGNPS,A non-point source pollution model for evaluationg agricultural watersheds[J].Soil Water Cons,1989,44(1):168-173.
    【132】Knisel W G. CREAMS:A Field-scale mode for chemicals, runoff and erosionfrom agricultural management systems[R].USDA Conservation Report 26, Washington D C,1980,23-27.
    【133】RENARD K G,YOBER D C, MCCOOL D K. Rusle revisited:status, questions, answers, and the future[J].Soil Water Cons,1994,49(1):213-220.
    【134】Srinivasan R, Engel B A. A spatial decision support system for assessing agricultural non-point pollution[J].Water Resources Bulletin,1994,30(3):441-452.
    【135】Panuska J C, Moore I D, Kramer L A. Terrain analysis:integration into the agricultural non-point source pollution (AGNPS) model [J] Journal of Soil and Water Conservation,1991,45:59-64.
    【136】US Environmental Protection Agency. Better assessment science integrating point and non-point source[M]. Office of Water. EPA-823-B-98-006.
    【137】Arnold J G, Allen P M, Bernhardt G. A comprehensive surface groundwater flow model [J].Hydrol,1993,142:4769.
    【138】David P, Darren S. Toward integrating GIS and Catchments Models[J].Environment Modeling &Software,2000,15:451-459.
    【139】Susanna T Y Tong, Wenli Chen. Modeling the relationship between land use and surface water quality[J] Journal of Environmental Management,2002,66:377-393.
    【140】Bhaduri B L. A geographic information system based model of the long-term impact of land use change on non-point source pollution at a watershed scale[M]. Purdue:University,1998,23-30.
    【141】王晓燕.非点源污染及其管理[M].北京:海洋出版社,2003.
    【142】朱萱,鲁纪行等.农田非点源污染特征及负荷定量化方法探讨[J].环境科学,1985,6(5):6~11.
    【143】吴林祖.杭州城市径流污染特征的初步分析[J].上海环境科学,1987,(6):33~36.
    【144】温灼如,苏逸深,刘小靖等.苏州水网城市暴雨径流污染的研究[J].环境科学,1986,7(6):2~6.
    【145】刘枫,王华东,刘培桐.流域非点源污染的量化识别及其在于桥水库流域的应用[J].地理学报,1988,43(4):329~339.
    【146】施为光.城市降雨径流长期污染负荷模型的探讨[J].城市环境与城市生态,1993,6(2):6~10.
    【147】陈西平.城市径流对河流污染的GIS模型与计算[J].水利学报,1993,(2):57-63.
    【148】陈鸣剑.非点源水质模型研究[J].上海环境科学,1993,12(1):16~19.
    【149】熊运实:油田开发区水体的非点源石油污染实验研究[J].地理研究,1993,12(4):23~31.
    【150】周同梅等.非点源污染对重庆市綦江河流域的影响研究[J].环境保护,1996,15(6):31~35.
    【151】杨爱玲,朱颜明.地表水环境非点源污染研究[J].环境科学进展,1999,7(5):60~66.
    【152】李怀恩,沈晋.非点源污染数学模型[M],西安:西北工业大学出版社,1996.
    【153】徐力刚,张奇.流域非点源污染物输移模型研究现状及展望[J].农业环境科学学报,2006,25(增刊):316~322
    【154】Zagjloul N A, M A Abu Kiefa. Neural network solution of inverse parameters used in the sensitivity-calibration analyses of the SWMM model simulations[J]. Advances in Engineering Software, 2001,32:587-595.
    【155】CampbellC W, Sullivan SM. Simulating time-varying cave flow and water levels using the Storm WaterManagementModel[J].EngineeringGeology,2002,65:133-139.
    【156】高秋霞,李田.国外城市非点源径流水质模型简介[J].安全与环境工程,2003,10(4):9-12.
    【157】BicknellB R, et al.Hydrological Simulation Program-FortranUser's Manua,1 Version 12[EB/OL]. http: //www.epa.gov/ceampubl/swater/hspf/,2004.
    【158】S. Grunwald and L. D. Norton. Calibration and validation of a non-point source pollution model[J]. Agricultural Water Management,2000,45(1):17-390
    【159】Tony Allan. Deforestation:Social dynamics in watersheds and mountain ecosystems[J].Applied Geography,1989,9(4):305-306.
    【160】Beasley D B, Huggins L F, Monke E J. ANSWERS:A model for watershed planning[J].Transaction of theASAE,1980,23(4):938-944.
    【161】Bouraoui D B, Huggins L F. ANSWER-2000:Nonpoint source nutrient transport model[J]. Journal ofEnvironmentalEngineering ASCE,1999,42(6):1723-1731.
    【162】Neitsch S L, JG Arnold, JR Kiniry, JRW illiams. Soil and Water Assessment Tool Theoretical Documentation, Version 2000[EB/OL]. http://www.brc.tamus.edu/swat.2004.
    【163】Borah D K, BeraM. Watershed-scale hydrologic and nonpoint-source pollution models:review of mathematical bases [J].Transaction of theASAE,2003,46(6):1553-1566
    【164】于涛,孟伟,Edwin Ongle等.我国非点源负荷研究中的问题探讨[J].环境科学学报,2008,28(3):401-407.
    【165】陈友媛,惠二青,金春姬等.非点源污染负荷的水文估算方法[J].环境科学研究,.2003,16(1):10-13.
    【166】李怀恩.估算非点源污染负荷的平均浓度法及其应用[J].环境科学学报,2000,20(4):397-400.
    【167】洪小康,李怀恩.水质水量相关法在非点源污染负荷估算中的应用[J].西安理工大学学报,2000,16(4):384-386.
    【168】李怀恩,蔡明.非点源营养负荷-泥沙关系的建立及其应用[J].地理科学,2003,23(4):460-463.
    【169】H.E, Li, J.H.W.Lee,A.Koenig & A.WJayawardena. Nutrient load estimation in nonpoint source pollution of Hong Kong region[J]. Water Science & Technology,2005,51 (3-4):209-216.
    【170】蔡明,李怀恩,庄咏涛.改进的输出系数法在流域非点源污染负荷估算中的应用[J].水利学报,2004,7:40-45
    【171】蔡明,李怀恩,庄咏涛.估算流域非点源污染负荷的降雨量差值法[J].西北农林科技大学学报(自然科学版),2005,23(4):102-106.
    【172】李强坤,李怀恩,胡亚伟等.基于单元分析的青铜峡灌区农业非点源污染估算[J].生态与农村环境学报,2007,23(4):33-36.
    【173】李强坤,李怀恩,胡亚伟等.黄河干流潼关断面非点源污染负荷估算[J].水科学进展,2008,19(4):460-466.
    【174】《黑河引水工程水源保护研究》课题组.黑河引水工程水源保护研究技术总报告[R].陕西:黑河引水工程水源保护研究课题组,1998:33-35.
    【175】李怀恩,庄咏涛.预测非点源营养负荷的输出系数法研究进展与应用[J].西安理工大学学报,2003,19(4):307-312.
    【176】王永胜.关中抽灌区农田非点源污染及水源保护研究[D].西安:西安建筑科技大学,2000.
    【177】周海红,张志杰.关中清灌区农田生态系统污染现状研究[J].环境污染与防治,2001,23(6):309-311.
    【178】赵剑强.路面径流污染特性及排污规律的研究[D].西安:西安建筑科技大学,2000.
    【179】张荔,赵串串,林金辉等.分布式水文模型在渭河流域水环境分析中的应用[J].西安建筑科技大学学报(自然科学版),2007,(1):61-65.
    【180】胥彦玲,李怀恩,贾海娟等.陕西省黑河流域水土流失型非点源污染估算[J].水土保持通报,2005,(10):78-80.
    【181】胥彦玲,李怀恩,倪永明等.基于USLE的黑河流域非点源污染定量研究[J].西北农林科技大学学报(自然科学版),2006,(3):138-142.
    【182】李怀恩,胥彦玲,张强等.黑河流域磷迁移转化过程连续模拟研究[J].环境科学,2006,(7):1292-1298.
    【183】张荔,王娜,曹礼梅,王晓昌等.水箱模型在小流域水文水质模拟中的应用研究[J].西安建筑科技大 学学报(自然科学版),2007,(1):123-126.
    【184】王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1999.
    【185】Nello Cristianini著,李国正译.支持向量机导论[M].北京:电子工业出版社,2004.
    【186】曹鸿兴.动力系统自记忆性原理—预报和计算应用[M].北京:地质出版社,2002.
    【187】Arnold, J G, Williams, J R, Srinivasan, R, et al. Large area hydrologic modeling and assessment part I: Model development[J]. Journal of the American Water Resources Association,1998,34(1):73-89.
    【188】Romanowicz, A A, Vanclooster, M, Rounsevell, M, et al. Sensitivity of the SWAT model to the soil and land use data parametrisation: a case study in the Thyle catchment, Belgium[J]. Ecological Modelling, 2005,187(1):27-39.
    【189】万超.潘家口水库上游流域面源污染的模拟研究[D].北京:清华大学,2002
    【190】Bera, M, Borah, D K. Watershed-scale hydrologic and nonpoint-source pollution models: Review of mathematical bases [J]. Transactions of the American Society of Agricultural Engineers,2003, 46(6):1553-1566.
    【191】国家环境保护总局.《地表水和污水监测技术规范》(HJ/T91-2002)[M].北京:中国环境科学出版社,2002.4-8.
    【192】国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.210-284.
    【193】陈静生,何大伟,张宇.黄河水的COD值能够真实反映其污染状况吗?[J].环境化学,2003,22(6):611-614.
    【194】陈静生,张宇,于涛,等.对黄河泥沙有机质的溶解特性和降解特性的研究.环境科学学报,2004,24(1):1-5.
    【195】]陈静生,张宇,于涛,等.泥沙对黄河水质参数COD、高锰酸钾指数和BOD5的影响.环境科学学报,2004,24(3):1-7.
    【196】胡国华,赵沛伦,肖翔群.黄河泥沙特性及对水环境的影响[J].水利水电技术,2004,35(8):17-20
    【197】J. Mortatti,J. M. Moraes,R. L. Victoria and L. A. Martinelli. Hydrograph Separation of the Amazon River:A Methodological Study[J]. Aquatic Geochemistry 1997,3:117-128.
    【198】Arnold,J.G., Allen,P.M. Automated methods for estimating base-flow and groundwater recharge from stream-flow[J]. Journal of the American Water Resources Association,1999,35(2):411-424.
    【199】Arnold,J.G.,P.M. Allen,R.S. Muttiah,etal. Automated base-flow separation and recession analysis techniques[J].Groundwater,1995,(33):1010-1018.
    【200】Nathan,R.J. and T.A.McMahon. Evaluation of Automated Techniques for Base-flow and Recession Analysis[J]. Water Resources Research,1990,26(7):1465-1473.
    【201】杨桂莲,郝芳华,刘昌明等.基于SWAT模型的基流估算及评价[J].地理科学进展,2003,22(5):463-471.
    【202】王玲杰.农业非点源污染年负荷量估算方法研究[D].合肥:合肥工业大学,2005.
    【203】Frink, C.R. Estimating nutrient exports to estuaries[J].Journal of Environmental Quality, 1991,20:717-724
    【204】秦蓓蕾,王文圣,丁晶.偏最小二乘回归模型在水文相关分析中的应用[J].四川大学学报(工程科学版),2003,35(4):115-118
    【205】杨晓丽,张运陶,朱斌.元素缺损偏最小二乘法的程序实现及应用[J].吉林化工学院学报,2004,21(2):102-104
    【206】陈南祥,曹连海,徐建新.偏最小二乘回归神经网络在径流预报中的应用[J].灌溉排水学报,2005,24(1):54-56.
    【207】王文圣,丁晶,赵玉龙,等.基于偏最小二乘回归的年用电量预测研究[J].中国电机工程学报,2003,23(10):17-21
    【208】邓念武,徐晖.单因变量的偏最小二乘回归模型及其应用[J].武汉大学学报(工学版),2001,34(2):14-16.
    【209】鲍全盛,曹利军,王华东.密云水库非点源污染负荷评价研究[J].水资源保护,1997,(1):8-11.
    【210】Vapnik V N. The Nature of Statistical Learning Theory[M].NY:Springer-Verlag,1995.
    【211】张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-43.
    【212】Vapnik V, Golowich S, Smda A. Supportvector method for function approximation, regression estimation, and signal processing[A].In: Mozer M, Jordan M, Petsche T (eds).Neural Information Processing Systems[M].MIT Press,1997,9.
    【213】卢敏,张展羽,冯宝平.支持向量机在径流预报中的应用探讨[J].人民长江,2005,36(8):38-47.
    【214】王景雷,吴景社,孙景生.支持向量机在地下水位预报中的应用研究[J].水利学报,2003,(5):122-129.
    【215】王亮,张宏伟,牛志广.支持向量机在城市用水量短期预测中的应用[J].天津大学学报,2005,Vol.38(11):1021-1025.
    【216】李亚伟,陈守煜,韩小军.基于支持向量机SVR的黄河凌汛预报方法[J].大连理工大学学报,2006,46(2):272-275.
    【217】Liong S Y, Sivapragasm C. Flood stage forecasting with support vector machines [J]. Journal of the American Water Resources Association,2002,Vol.38(1):173-186.
    【218】张林,刘先珊,阴和俊等.基于时间序列的支持向量机在负荷预测中的应用[J].电网技术,2004,Vol.28(19):38-41.
    【219】Muller K-R, Smola A J, Ratsch G, et al. Predicting time series with support vector machines[Z].In: Proc of ICANN'97, Springer Lecture Notes in Computer Science,1997,999-1005.
    【220】Cortes C. Vapnike V. Support-vector networks. Machine Learning[J],1995,(20):273-297.
    【221】Lu Chunyu, Yan Pingfan, Zhang Changshui, Zhou Jie. Face recognition using support vector machine[A]. In: proc. of ICANN'98, Beijing,1998:652-655.
    【222】Keerthiss, Lin C J. Asymptotic behaviors of support vector machines with Gaussian kernel [J].Neural Comput,2003, Vol.15(7):1667-1689.
    【223】Lin H T, Lin C J. A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods[R].Taipei:Department of Computer Science and Information Engineering, National Taiwan University,2003.
    【224】阎威武,邵惠鹤.支持向量机和最小二乘支持向量机的比较及应用研究[J].控制与决策,2003,18(3):358-360.
    【225】曹鸿兴.大气运动的自记忆性方程[J].中国科学(B辑).1993,23(1):102-112
    【226】Feng Guolin, Cao Hongxing, Gao Xinquan, et al. Prediction of precipitation during Summer Monsoon with self-memorial model [M]. Advances in Atmospheric Sciences,2001,18(5):701-709
    【227】陆君安,夏军,等.动力系统的自记忆数值预报[J].数学杂志,1998,18(增刊):11-14.
    【228】贾晓静,曹鸿兴,等.一种动态数据的新建模法及其预报应用[J].应用气象学报,2002,13(1):96-101.
    【229】李荣峰,沈冰,张金凯.考虑周期性变化的地下水埋深预测自记忆模型[J].农业工程学报,2005,21(7):34-37.
    【230】Bosch D.D, Theurer F D, Bingner R L, et al.1998.Evaluation of the AnnAGNPS water quality model[A].Am Soc of Agr Eng Annual Meeting Orlando [C].Florida. Paper No.982195.12 pp.
    【231】Shilpa B, Mulik P, Kalita K. Water quality assessment for a Kansas watershed using AnnAGNPS model[A]. AnASAE/CSAE Meeting Presentation Paper [C]. No.992223.
    【232】Tsou ming-Shu, ZHAN Xiao-youg. Estimation of runoff and sediment yield in the Redrock Creek watershed using AnnAGNPS and GIS [J]. Journal of Environmental Sciences,2004,16(5):865-867.
    【233】Suttles J B, Vellidis G, Bosch D D, et al. Watershed-scale simulation of sediment and nutrient loads in Georgia coastal plain streams using the Annualized AGNPS Mode[J]. Transactions of the ASAE,2003,46 (5): 1325-1335.
    【234】Yuan Y P, Bingmer R L, Reibich R A. Evluation of AnnAGNPS on Mississippi Delta MSEA watersheds[A].Transaction of the American Society of Agricultural Engineers[C].2001,45(5):1183-1190.
    【235】Yuan Y P, Dabney S M, Bingner R L. Cost effectiveness of agricultural BMPs for sediment reduction in the Missis-sippi Delta[J]. Journal of Soil and Water Conservation,2002,57(5):259-567.
    【236】Yuan Y P, Bingner R L, Rebich R A. Evaluation of AnnAGNPS nitrogen loading in an agricultural water-shed1[J]. Journal of the American Water Resources Association,2003,39(2):457-466.
    【237】王飞儿,吕唤春,陈英旭,等.基于AnnAGNPS模型的千岛湖流域氮、磷输出总量预测[J].农业工程学报,2003,19(6):281-284.
    【238】朱松,陈英旭.小流域N、P污染负荷的构成比重研究[J].环境污染与防治,2003,25(4):226-227.
    【239】黄金良,洪华生,杜鹏飞,等.AnnAGNPS模型在九龙江典型小流域的适用性检验[J].环境科学学,报,2005,25(8):1135-1142.
    【240】洪华生,黄金良,张珞平,等.AnnAGNPS模型在九龙江流域农业非点源污染模拟应用[J].环境科学,2005,26(4):63-69.
    【241】黄金良,洪华生,张珞平.基于GIS和模型的流域非点源污染控制区划[J].环境科学研究,2006,19(4):119-124.
    【242】洪华生,张玉珍,曹文志.九龙江五川流域农业非点源污染研究[M].北京:科学出版社,2007.
    【243】洪华生,黄金良,曹文志.九龙江流域农业非点源污染机理与控制研究[M].北京:科学出版社,2008.
    【244】贾宁凤,段建南,李保国等.基于AnnAGNPS模型的黄土高原小流域土壤侵蚀定量评价[J].农业工程学报,2006,22(12):23-27.
    【245】邹桂红,崔建勇.基于AnnAGNPS模型的农业非点源污染模拟[J].农业工程学报,2007,23(12):11-17.
    【246】USDA NRCS.Fact sheet: Watershed-Scale Pollutant Loading Model -AnnAGNPS v2.11 [EB/OL].http: //www.sedlab.olemiss.edu/agnps/reg_download.html.
    【247】USDA ARS, NRCS.AnnAGNPS Version 2:User Documentation,26 October 2001 [EB/OL]. http://www.sedlab.olemiss.edu/agnps/reg_download.html
    【248】Robert Darden, Ronald L.Bingner.AGNPS 2001 Input Data Preparation Model Technical Reference, Version 2, January 2001 [EB/OL]. http://www.sedlab.olemiss.edu/agnps/reg download.html
    【249】FredD. Theurer, Ronald L.Bingner. AnnAGNPS TECHNICAL PROCESSES Documen -tation Version2, December 2001
    【250】United States Department of Agriculture, Natural Resources Conservation Service and Conservation Engineering Division [M]. Urban Hydrology for Small Watersheds TR-55,1986:17-20.
    【251】Richardson C W, Foster G R, Wright D A. Estimation of erosion index from daily rainfall amount[J]. Transaction of the ASAE,1983,26(1):153-156.
    【252】王万中,焦菊英,郝小品等.中国降雨侵蚀力R值的计算与分布[J].水土保持学报,1995,9(4):5-18.
    【253】Nemes A, Arya L M, Shouse P J, et al. Evaluation of different procedures to interpolate particle-size distribu-tion to achieve compatibility within soil databases [J].Geoderma,1999,90:187-202.
    【254】Saxton K E, Rawls W J, Romberger J S, et al. Estimating Generalized Soil-water Characteristics from Texture[EB/OL]. http://www.beyse.wsu/sexton/article.
    【255】朱显谟.黄土高原土壤与农业[M].北京:农业出版社,1989:184-185.
    【256】Renard K G, Foster G R, Weesies G A, et al. Predicting Soil Erosion by Water:A Guide to Conservation Planning With the Revised Universal Soil Loss Equation(RUSLE)[M]. U.S.Department of Agriculture, Agriculture Hand-book No.703,July1996.
    【257】Binger R C, Mutchler C K, Murphee C E. Predictive capabilities of erosion models for different storm sizes[J].Transactions of American Society Agricultural Engineer-ing,1992,35(2):505-513.
    【258】J. Mortatti, J. M. Moraes, R. L. Victoria and L. A. Martinelli. Hydrograph Separation of the Amazon River: A Methodological Study[J]. Aquatic Geochemistry 1997,3:117-128.
    【259】Arnold, J.G., Allen, P.M. Automated methods for estimating base-flow and groundwater recharge from stream-flow[J]. Journal of the American Water Resources Association,1999,35(2):411-424.
    【260】Arnold, J.G., P.M. Allen, R.S. Muttiah, etal. Automated base-flow separation and recession analysis techniques[J]. Groundwater,1995,(33):1010-1018.
    【261】Mostaghimi S, Park S W, Cooke R A, et al. Assessment of management alternatives on a small agricultural water-shed[J]. Water Research,1997,31(8):1867-1878.
    【262】薛丽娟.太湖西苕溪流域径流过程模拟[D].大连:大连理工大学,2006.
    【263】Srinivasan R, Arnold J G, Jones C A. Hydrologic modeling of the United States with the Soil and Water Assessment Tool[J]. Water Resources Development,1988,4(3):315-325.
    【264】Manguerra H B, Engel B A. Hydrologic parameterization of watersheds for runoff prediction using SWAT[J]. Journal of the American Water Resources Association,1998,34(5):1149-1162.
    【265】Hernandez M, Miller S N, Goodrich D C. Modeling Runoff response to land cover and rainfall spatial variability in semi-arid watersheds[J]. Environmental Monitoring and Assessment,2000,64:285-298.
    【266】Celine C, Ghislain M, Faycal B. A long-term hydrological modeling of the Upper Guadiana river basin[J]. Physics and Chemistry of the Earth.2003,28:193-200.
    【267】Cruise J F, Limaye A S. Assessment of impacts of climate change on water quality in the southeastern United States[J] Journal of the American Water Resources Association,1999,35 (6):1539-1550.
    【268】Stonefelt M C, Fontame T A, Hotchkiss R H. Impacts of climate change on Missouri river basin water yield[J]. Journal of the American Water Resources Association,2001,37:1119-1129.
    【269】Chaplot V, Salet A, Jaynes D B. Effect of the accuracy of spatial rainfall information on the modeling of water sediment, and NO3-N loads at watershed level[J] Journal of Hydrology,2005,312:223-234.
    【270】Saleh A, Arnold J G, Gassman P W. Application of Swat for the Upper North Bosque River Watershed[J].Transactions of the American Society of Agricultural Engineers,2000,43(5):1077-1087.
    【271】Eileen CDMackay. Effects of distribution-based parameter aggregation on a spatially distributed agricultural nonpoint source pollution model [J]. Journal of Hydrology.2004,295:211-224.
    【272】Chanasyk D S, Mapfumo E, Willms W. Quantification and simulation of surface runoff from fescue grassland watersheds[J]. Agricultural Water Management,2003,59:137-153.
    【273】Hernandez M, Miller S N, Goodrich D C. Modeling runoff response to land cover and rainfall spatial variability in semi-arid watersheds[J].Environmental Monitoring and Assessment,2000,64:285-298.
    【274】ripathi MP, Panda R K, Raghuwanshi N S. Identification and Prioritisation of Critical Sub-watersheds for Soil Conservation Management using the SWAT Model[J].Biosystems Engineering,2003,85(3):365-379.
    【275】Romanowicz AA, Vanclooster M, Rounsevell M, Junesse I L. Sensitivity of the SWAT model to the soil and land use data parametrisation:a case study in the Thyle catchment, Belgium[J]. Ecological Modelling,2005,187(1):27-39.
    【276】黄清华,张万昌.SWAT分布式水文模型在黑河干流山区流域的改进及应用[J].南京大业大学学报(自然科学版),2004,28(2):22-26.
    【277】杨桂莲,郝群芳.基于SWAT模型的基流估算及评价—以洛河流域为例[J].地理科学进展,2003, 22:463-471.
    【278】王中根,刘昌明,黄友波.SWAT模型的原理、结构及应用研究[J].地理科学进展,2003,22(1):80-86.
    【279】朱新军,王中根,李建新,于磊等.SWAT模型在漳卫河流域应用研究[J].地理科学进展.2006,25(5):105-111.
    【280】盛春淑,罗定贵.基于AVSWAT丰乐河流域水文预测[J].中国农学通报,2006,22(9):493-497.
    【281】郝芳华,陈利群,刘昌明.土地利用变化对产流和产沙的影响分析[J].水土保持学报,2004,18(3):5-8.
    【282】刘昌明,李道峰,田英等.基于DEM的分布式水文模型在大尺度流域应用研究[J].地理科学进展,2003,22(3):437-447.
    【283】张运生.GIS和遥感辅助下的江西潋水河流域化学径流模拟讨论[D].南京:南京师范大学,2003.
    【284】贺国平,张彤,周东.土地覆被和气候变化的水文响应研究[J].北京水务,2006,(3):27-31.
    【285】郝芳华,孙峰,张建永.官厅水库流域非点源污染研究进展[J]..地学前沿,2002,9(2):385-386.
    【286】郝芳华,程红光,杨胜天.非点源污染模型——理论方法与应用[M].北京:中国环境科学出版社,2006.
    【287】万超,张思聪.基于GIS的潘家口水库面源污染负荷计算[J].水力发电学报,2003,(3):5-8.
    【288】胡远安,程声通,贾海峰等.袁水上游小流域非点源污染研究——实验设计与数据初步分析[J].农业环境科学学报.2003,22(3):442-445.
    【289】庞靖鹏.非点源污染分布式模拟——以密云水库水源地保护为例[D].北京:北京师范大学,2007.
    【290】桂峰,于革.洪湖流域传统农业条件下营养盐输移模拟研究[J].第四纪研究.2006,26(5):849-856.
    【291】胡连伍,王学军,周定贵等.基于SWAT2000模型的流域氮营养素环境自净效率模拟以杭埠—丰乐河流域为例[J].地理与地理信息科学.2006,22(2):35-38.
    【292】张雪松,郝芳华,程红光等.亚流域划分对分布式水文模型模拟结果的影响[J].水利学报.2004,11(1):119-123.
    【293】任希岩,张雪松,郝芳华等.DEM分辨率对产流产沙模拟影响研究[J].水土保持研究,2004,11(1):1-5.
    【294】Daniel E. Storm, Michael White, Michael D. Smolen, Hailin Zhang, Modeling Phosphorous Loading for the Lake Eucha Basin[R]. Oklahoma:Biosystems and Agricultural Engineering Department of Oklahoma State University,2001.
    【295】Kuenzler B J, Craig N J. Land Use and Nutrient Yields of the Chowan River Watershed, in: Correll D L[J]. Watershed Research Perspectives,1986,77-107.
    【296】S.L. Neitsch, J.G Arnold, J.R. Kiniry, J.R. Williams, Soil and Water Assessment Tool User's Manual Version 2000[M]. Agriculture Research Service and Blackland Research Center,2001.
    【297】Nash,J. E., Sutcliffe, J. V. River flow forecasting through conceptual models[J]. J. Hydrol,1970,10: 282-290.
    【298】朱科,张万昌.基于径流模拟的汉江上游区水资源对气候变化响应的研究[J].资源科学,2005, 27(2):16-22.
    【299】张雪松,郝芳华,杨志峰等.基于SWAT模型的中尺度流域产流产沙模拟研究[J].水土保持研究,2003,10(4):38-42.
    【300】Santhi, C, J G Arnold,J R Williams,et al. validation of the SWAT model on large river basin with point and non-point sources[J].Journal of the American Water Resources Association,2001,37 (5) 1169-1188.
    【301】Jennifer Benaman,Christine A. Shoemaker and Douglas A. Haith. Modeling Non-Point Source Pollution Using a Distributed Watershed Model for the Cannonsville Reservoir Basin,Delaware County,New York[C]. World Water Congress,2001.
    【302】K. Eckhardt,J.G.Arnold. Automatic calibration of a distributed catchment model[J]. Journal of Hydrology,2001,251:103-109.
    【303】T. A. Fontaine,T. S. Cruickshank,et al. Development of a snowfall-snowmelt routine for mountainous terrain for the soil water assessment tool[J]. Journal of Hydrology,2002,262:209-223.
    【304】M. P. Rrpathi,R. K. Panda,N. Sraghuwashi. Identification and prioritization of critical sub-watersheds for soil conservation management using the SWAT model[J]. Biosystems Engineering,2003,85 (3) 365-379.
    【305】S. L. Neitsch,J. G. Arnold,J. R. Kiniry,et al. soil and water assessment tool user's manual[M]. Texas Water Resources Institute,College Station,2002.
    【306】张侠,葛向东,濮励杰等.土地利用的经济生态分析和耕地保护机制研究[J].自然资源学报,17(6): 677-683.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700