用户名: 密码: 验证码:
厌氧氨氧化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮素污染已危及人类健康和生态安全,为了控制氮素污染,环保工作者求知创新,不辱使命,推出了众多新型废水脱氮技术。其中,厌氧氨氧化技术具有高效、稳定、经济等优点,一经问世便博得大家青睐。然而,厌氧氨氧化菌生长缓慢,工程启动时间很长,严重制约了推广应用。根据电子受体的不同,厌氧氨氧化可分为亚硝酸盐型厌氧氨氧化(NH_4~++N0O_2~-→N_2+H_2O,N-anammox)和硫酸盐型厌氧氨氧化(NH_4~++SO_4~(-2)→N_2+S+H_2O,S-anammox)。对于亚硝酸盐型厌氧氨氧化,本课题从优化营养条件和改进反应器构型着手,攻坚克难,实现了对菌体的“开源截流”(促进细胞生长,高效持留菌体)。对于硫酸盐型厌氧氨氧化,本课题从创建自养条件切入,开拓进取,证实了硫酸盐型厌氧氨氧化的存在,为氮、硫地球生物化学循环提供了新的认识。主要研究结果如下:
     1)发明了亚硝酸盐型厌氧氨氧化生物膜膨胀床反应器。试验发现:①以反硝化污泥启动亚硝酸盐型厌氧氨氧化工艺,可依次呈现菌体自溶阶段、活性停滞阶段和活性提高阶段。②反应器容积总氮去除率可高达3.02 kgN·m~(-3)·d~(-1)。③反应器内的接种污泥逐渐从深黄色絮状污泥转变成棕灰色颗粒污泥,再进一步转变成红色颗粒污泥。④红色颗粒污泥中的优势亚硝酸盐型厌氧氨氧化菌为“Candidatus Brocadia”,它是反应器亚硝酸盐型厌氧氨氧化功能的主要承载者。
     2)探明了亚铁和高铁离子对亚硝酸盐型厌氧氨氧化菌的影响。试验发现:①亚铁和高铁离子对亚硝酸盐型厌氧氨氧化菌的基质转化具有促进作用,这种促进作用随亚铁或高铁离子浓度升高而增强;当Fe~(2+)离子浓度和Fe~(3+)离子浓度分别为4.60 mg·L~(-1)时,试验反应器对NH_4~+-N和NO_2~--N的去除速率分别为对照反应器的1.95倍和1.71倍以及2.18倍和2.84倍。②Fe~(2+)离子和Fe~(3+)离子能够缓解基质亚硝酸对亚硝酸盐型厌氧氨氧化菌的抑制作用。③常用的亚硝酸盐型厌氧氨氧化菌培养基中铁离子含量不足,提高亚硝酸盐型厌氧氨氧化菌培养基中Fe~(2+)离子或Fe~(3+)离子浓度,可促进亚硝酸盐型厌氧氨氧化菌生长;在高浓度亚铁作用下,试验反应器的VS和ATP分别是对照反应器的2.16倍和3.53倍;在高浓度高铁作用下,试验反应器的VS和ATP依次是对照反应器的4.15倍和3.37倍。④提高铁离子浓度可增大亚硝酸盐型厌氧氨氧化菌对总溶解性铁的转化量,改变亚硝酸盐型厌氧氨氧化菌铁和血红素含量;提高Fe~(2+)离子浓度,亚硝酸盐型厌氧氨氧化菌的铁含量和血红素C含量同时增加;提高Fe~(3+)离子浓度,亚硝酸盐型厌氧氨氧化菌的铁含量增加,血红素C含量下降。⑤高浓度Fe~(2+)离子的长期作用可改变亚硝酸盐型厌氧氨氧化菌的细胞结构,细胞内产生不明灰色区域;但高浓度Fe~(3+)离子的长期作用不影响亚硝酸盐型厌氧氨氧化菌细胞结构。⑥Fe~(2+)离子和Fe~(3+)离子的长期作用可改变反应器内的微生物菌群结构,其中许多微生物属于非培养细菌,潜在菌源丰富。
     3)证明了自养型硫酸盐型厌氧氨氧化的存在。NH_4~+和SO_4~(2-)的化学性质稳定,两者间不发生化学反应。在厌氧反应器中接种厌氧消化污泥,利用含有NH_4~+和SO_4~(2-)的无机培养基可驯化厌氧消化污泥,使其产生硫酸盐型厌氧氨氧化功能。在高基质浓度下,NH_4~+-N和SO_4~(2-)-S浓度平均降低71.67 mg·L~(-1和18.94 mg·L~(-1)。高基质浓度和低氧化还原电位可促进硫酸盐型厌氧氨氧化。
Nitrogenous pollution has posed hazardous effects on human health and ecological safety.Environmentalists have tried their best to develop several novel nitrogen removal technologies to solve the problem.Anaerobic ammonium oxidation(anammox) has attracted much attention because it was highly efficient,stable and cost-effective. However,the long start-up period of the process due to extremely slow growth rate of anammox bacteria retards its application.Anammox process can be categoried into two kinds,including nitrite-dependent anammox(N-anammox) and sulfate-dependent anammox(S-anammox) based on different electron receptors.As for N-anammox process,endevours were made to enhance bacteria growth and cell retention in by medium optimization and reactor configuration improvement.As for S-anammox,the experiment was conducted in autotrophic conditions,and the existence of autotrophic S-anammox process was confirmed.The study provided new knowledge for biogeochemical cycle of nitrogenous and sulfurous compounds.Major research results are as follows:
     1) A new N-anammox expanded-bed reactor was invented.It was discovered that:①The start-up course of N-anammox process inoculated with denitrifying sludge could be divided into three stages including autolysis phase,activity lag phase and activity elevation phase.②The maximum total nitrogen removal rate reached 3.02kg N·m~(-3)·d~(-1).③The seeding sludge in the reactor turned from khaki flocs to sandybrown granules and finally to red granules.④The predominant N-anammox bacteria in red granules was "Candidatus Brocadia", which was the major contributor to the N-anammox process in the reactor.
     2) The effects of ferrous and ferric ion on N-anammox bacteria were investigated. It was found that:①Ferrous and ferric ion stimulated substrate removal of N-anammox bacteria and the stimulatory effect was enhanced with increased ferrous or ferric ion concentration.NH_4~+-N and NO_2~--N removal rates in the test reactor were 1.95- and 1.71-fold of those in the control reactor when ferrous ion concentration was 4.60mg·L~(-1);NH_4~+-N and NO_2~--N removal rates in the test reactor were 2.18- and 2.84-fold of those in the control reactor when ferric ion concentration was 4.60mg·L~(-1).②The inhibitory effect of substrate NO_2~--N to N-anammox bacteria could be relieved by ferrous and ferric ion.③The fequently used medium for N-anammox bacteria was lack of iron.The growth of N-anammox bacteria was enhanced by increment of ferrous or ferric ion in the medium.The VS and ATP of the test reactor in ferrous ion experiment was 2.16- and 3.53-fold of those in the control reactor;the VS and ATP of the test reactor in ferric ion experiment was 4.15- and 3.37-fold of those in the control reactor.④Conversion of total dissolved iron was increased by extra addition of ferrous or ferric ion.Ferrous ion addition resulted in iron and Heme C content increment,and ferric ion addition lead to iron content increment but Heme C decrease.⑤Long-term effect of ferrous-ion-replete condition resulted in cellular structure alteration of N-anammox bacteria.An unknown grey area appeared,but no similar area appeared in N-anammox bacteria under ferric-ion-replete condition.⑥The microbial community altered with extra addition of ferrous or ferric ion.Most of the microorganisms were uncultred bacteria,which implies that the potential microbial resource is abundant.
     3) The existence of autotrophic S-anammox was confirmed.The results showed that both SO_4~(2-) and NH_4~+ were chemically stable.They did not react with each other in the absence of biological catalyst(sludge).Anaerobic digested sludge cultivated in an anaerobic reactor for three years took on the ability of oxidizing ammonium with sulfate anaerobically.The average reduction of NH_4~+-N and SO_4~(2-)-S were 71.67mg·L~(-1) and 18.94mg·L~(-1) at high subtrate concentrations. The experiment demonstrated that high substrate concentrations and low oxidation-reduction potential(ORP) were favourable for the biological reaction.
引文
Aeckersberg F, Rainey F A, Widdel F. Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions [J]. Archives of Microbiology, 1998,170(5): 361-369.
    Ahn Y H, Choi H C. Autotrophic nitrogen removal from sludge liquids in upflow sludge bed reactor with external aeration [J]. Process Biochemistry, 2006, 41(9): 1945-1950.
    Ahn Y H, Kim H C. Nutrient removal and microbial granulation in an anaerobic process treating inorganic and organic nitrogenous wastewater [J]. Water Science and Technology, 2004, 50(6): 207-215.
    Aleem M I H, Sewell D L. Mechanism of nitrite oxidation and oxidoreductase systems in Nitrobacter agilis [J]. Current Microbiology, 1981, 5(5): 267-272.
    Amano T, Yoshinaga I, Okada K, et al. Detection of anammox activity and diversity of anammox bacteria-related 16S rRNA genes in coastal marine sediment in Japan [J]. Microbes and Environments, 2007, 22(3): 232-242.
    Andrews S C. Iron storage in bacteria [J]. Advances in Microbial Physiology, 1998, 40: 281-351.
    Andrews S C, Robinson A K, Rodriguez-Quinones F. Bacterial iron homeostasis [J]. FEMS Microbiology Reviews, 2003, 27(2-3): 215-237.
    Berry E A, Trumpower B L. Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra [J]. Analytical Biochemistry, 1987,161(1): 1-15.
    Bian S, Cowan J A. Protein-bound iron-sulfur centers. Form, function and assembly [J]. Coordination Chemistry Reviews, 1999, 190-192: 1049-1066.
    
    Burgess J E, Quarmby J, Stephenson T. Role of micronutrients in activated sludge-based biotreatment of industrial effluents [J]. Biotechnology Advances, 1999, 17(1): 49-70.
    Cai J, Zheng P, Qaisar Mahmood. Effect of sulfide to nitrate ratios on the simultaneous anaerobic sulfide and nitrate removal [J]. Bioresource Technology, 2008, 99(13): 5520-5527.
    Chamchoi N, Nitisoravut S. Anammox enrichment from different conventional sludges [J]. Chemosphere, 2007, 66(11): 2225-2232.
    Chen C, Wang A, Ren N, et al. High-rate denitrifying sulfide removal process in expanded granular sludge bed reactor [J]. Bioresource Technology, 2009, 100(7): 2316-2319.
    陈旭良,郑平,金仁村,等.味精废水厌氧氨氧化生物脱氮的研究[J].环境科学学报,2007,27(5):747-752.
    Cirpus I E Y,Geerts W,Hermans J H M,et al.Challenging protein purification from anammox bacteria[J].International Journal of Biological Macromolecules,2006,39(1-3):88-94.
    Ciudad G,Rubilar O,Munoz P,et al.Partial nitrification of high ammonia concentration wastewater as a part of a shortcut biological nitrogen removal process[J].Process Biochemistry,2005,40(5):1715-1719.
    戴树桂,王晓蓉,邓南圣,等.环境化学[M].北京:高等教育出版社,2006.
    Dalsgaard T,Canfield D E,Petersen J,et al.N_2 production by the anammox reaction in the anoxic water column of Golfo Dulce,Costa Rica[J].Nature,2003,422(6932):606-608.
    Dapena-Mora A,Fernandez I,Campos J L,et al.Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production[J].Enzyme and Microbial Technology,2007,40(4):859-865.
    Dobbek H,Svetlitchnyi V,Gremer L,et al.Crystal structure of a carbon monoxide dehydrogenase reveals a[Ni-4Fe-5S]cluster[J].Science,2001,293(5533):1281-1285.
    Dong X,Tollner E W.Evaluation of Anammox and denitrification during anaerobic digestion of poultry manure[J].Bioresoure Technology,2003,86(2):139-145.
    Doukov T I,Iverson T M,Seravalli J,et al.A Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase[J].Science,2002,298(5593):567-572.
    Drake H L.Occurrence of nickel in carbon monoxide dehydrogenase from Clostridium pasteurianum and Clostridium thermoaceticum[J].Journal of Bacteriology,1982,149(2):561-566.
    Drake H L,Hu S I,Wood H G.Purification of carbon monoxide dehydrogenase,a nickel enzyme from Clostridium thermoaceticum[J].The Journal of Biological Chemistry,1980,255(15):7174-7180.
    Drennan C L,Heo J,Sintchak M D,et al.Life on carbon monoxide:X-ray structure of Rhodospirillum rubrum Ni-Fe-S carbon monoxide dehydrogenase[J].PNAS,2001,98(21):11973-11978.
    董凌霄,吕永涛,韩勤有,等.硫酸盐还原对氨氧化的影响及其抑制特性研究[J]. 西安建筑科技大学学报(自然科学版),2006,38(3):425-428.
    Egli K,Fanger U,Alvarez P J J,et al.Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate[J].Archives of Microbiology,2001,175(3):198-207.
    Erdner D L,Anderson D M.Ferredoxin and flavodoxin as biochemical indicators of iron limitation during open-ocean iron enrichment[J].Limnology and Oceanography,1999,44(7):1609-1615.
    Fdz-Polanco F,Fdz-Polanco M,Fernandez N,et al.New process for simultaneous removal of nitrogen and sulphur under anaerobic conditions[J].Water Research,2001,35(4):1111-1114.
    Furukawa K,Inatomi Y,Qiao S,et al.Innovative treatment system for digester liquor using anammox process[J].Bioresource Technology,2009.doi:10.1016/j.biortech.2008.11.055
    Fux C,Boehler M,Huber P,et al.Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation(anammox) in a pilot plant[J].Journal of Biotechnology,2002,99(3):295-306.
    Galushko A,Minz D,Schink B,et al.Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium[J].Environmental Microbiology,1999,1(5):415-420.
    国家环境保护总局.水和废水监测分析方法[M].北京:中国环境科学出版社,2005.
    Hao X,Heijnen J J,van Loosdrecht M C M.Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal(CANON) process [J].Biotechnology & Bioengineering,2002,77(3):266-277.
    Hellinga C,Schellen A A J C,Mulder J W,et al.The Sharon process:an innovative method for nitrogen removal from ammonium-rich wastewater[J].Water Science and Technology,1998,37(9):183-187.
    Hippen A,Rosenwinkel K H,Baumgarten G,et al.Aerobic deammonification:a new experience in the treatment of wastewaters[J].Water Science and Technology,1997,35(10):111-120.
    Hu S I,Pezacka E,Wood H G.Acetate synthesis from carbon monoxide by Clostridium thermoaceticum[J].The Journal of Biological Chemistry,1984,259(14):8892-8897.
    Hwang I S,Min K S,Choi E,et al.Nitrogen removal from piggery waste using the combined SHARON and ANAMMOX process[J].Water Science and Technology,2005,52(10-11):487-494.
    Jetten M S M,Op den Camp H J M,Kuenen J G,et al.Taxonomic description of the family Anammoxaceae[M]//Hedlund B,Krieg N R,Paster B J,et al.Bergey's Manual of Systematic Bacteriology.2nd edition.New York:Springer,in press.
    金仁村,郑平,胡宝兰.好氧污泥颗粒化机理及其影响因素[J].浙江大学学报(农业与生命科学版),2006,32(2):200-205.
    Kartal B,Rattray J,van Niftrik L A,et al.Candidatus "Anammoxoglobus propionicus"a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria[J].Systematic and Applied Microbiology,2007,30(1):39-49.
    Kartal B,van Niftrik L,Rattray J,et al.Candidatus "Brocadia fulgida":an autofluorescent anaerobic ammonium oxidizing bacterium[J].FEMS Microbiological Ecology,2008,63(1):46-55.
    Kartal B,van Niftrik L,Sliekers O,et al.Application,eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria[J].Reviews in Environmental Science and Biotechnology,2004,3(3):255-264.
    Kuenen J G,Jetten M S M.Extraordinary anaerobic ammonium-oxidizing bacteria[J].ASM News,2001,67(9):456-463.
    Kumaraswamy R,Sjollema K,Kuenen G,et al.Nitrate-dependent[Fe(Ⅱ)EDTA]~(2-)oxidation by Paracoccus ferrooxidans sp.nov.,isolated from a denitrifying bioreactor[J].Systematic and Applied Microbiology,2006,29(4):276-286.
    Kuypers M M M,Sliekers A O,Lavik G,et al.Anaerobic ammonium oxidation by anammox bacteria in the Black Sea[J].Nature,2003,422(6932):608-611.
    Li Y Z,He Y L,Ohandja D G,et al.Simultaneous nitrification-denitrification achieved by an innovative internal-loop airlift MBR:comparative study[J].Bioresource Technology,2008,99(13):5867-5872.
    李建政.环境工程微生物学[M].北京:化学工业出版社,2004.
    Liamleam W,Annachhatre A P.Electron donors for biological sulfate reduction[J].Biotechnology Advances,2007,25(5):452-463.
    Lindsay M R,Webb R I,Strous M,et al.Cell compartmentalisation in planctomycetes:novel types of structural organisation for the bacterial cell[J].Archives of Microbiology,2001,175(6):413-429.
    Liu S,Yang F,Gong Z,et al.Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal[J].Bioresource Technology,2008,99(15):6817-6825.
    Lu W P,Jablonski P E,Rasche M,et al.Characterization of the metal centers of the Ni/Fe-S component of the carbon-monoxide dehydrogenase enzyme complex from methanosarcina thermophila[J].The Journal of Biological Chemistry,1994,269(13):9736-9742.
    吕永涛,董凌霄,叶向德,等.厌氧氨氧化在生物转盘系统中的实现[J].环境科学学报,2007,27(5):753-757.
    Ma Y,Peng Y,Wang S,et al.Achieving nitrogen removal via nitrite in a pilot-scale continuous pre-denitrification plant[J].Water research,2009,43(3):563-572.
    Mahmood Q.Process performance,optimization and microbiology of anoxic sulfide biooxidation using nitrite as electron acceptor[Ph.D Dissertation],Hangzhou,Zhejiang University,2007.
    Menon S,Ragsdale S W.The Role of an iron-sulfur cluster in an enzymatic methylation reaction[J].The Journal of Biological Chemistry,1999,274(17):11513-11518.
    闵航,陈美慈,赵宇华,等.厌氧微生物学[M].杭州:浙江大学出版社,1993.
    Mizuta K,Matsumoto T,Hatate Y,et al.Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal[J].Bioresource Technology,2004,95(3):255-257.
    M(u|¨)nch E V,Lant P,Keller J.Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors[J].Water research,1996,30(2):277-284.
    Nauhaus K,Albrecht M,Elvert M,et al.In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate[J].Environmental Microbiology,2007,9(1):187-196.
    Nauhaus K,Boetius A,Kr(u|¨)ger M,et al.In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediments from a marine gas hydrate area [J].Environmental Microbiology,2002,4(5):296-305.
    Nielsen M,Bollmann A,Sliekers O,et al.Kinetics,diffusional limitation and microscale distribution of chemistry and organisms in a CANON reactor[J].FEMS Microbiology Ecology,2005,51(2):247-256.
    Petrucci R H,Harwood W S,Herring F G.普通化学原理与应用(第八版,影印版)[M].北京:高等教育出版社,2004.
    Pezacka E, Wood H. Acetyl-CoA pathway of autotrophic growth [J]. The journal of Biological Chemistry, 1988,263(31): 16000-16006.
    Pynaert K, Smets B F, Wyffels S, et al. Characterization of an autotrophic nitrogen-removing biofilm from a highly loaded lab-scale rotating biological contactor [J]. Applied and Environmental Microbiology, 2003, 69(6): 3626-3635.
    Quan Z X, Rhee S K, Zuo J E, et al. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor [J]. Environmental Microbiology, 2008, 10(11): 3130-3139.
    Ragsdale S W. Enzymology of the acetyl-CoA pathway of CO_2 fixation [J]. Critical Reviews in Biochemistry and Molecular Biology, 1991, 26(3/4): 261-300.
    Rattray J E, van de Vossenberg J, Hopmans E C, et al. Ladderane lipid distribution in four genera of anammox bacteria [J]. Archives of Microbiology, 2008, 190(1): 51-66.
    Rinaldo S, Brunori M, Cutruzzola F, et al. Nitrite controls the release of nitric oxide in Pseudomonas aeruginosa cd_1 nitrite reductase [J]. Biochemical and Biophysical Research Communications, 2007, 363(3): 662-666.
    Robertson L A, Kuenen J. Combined heterotrophic nitrification and aerobic denitrification in Thiosphaera pantotropha and other bacteria [J]. Antonie van Leeuwenhoek, 1990, 57(3): 139-152.
    Robertson L A, van Niel E W J, Torremans R A M, et al. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha [J]. Applied and Environmental Microbiology, 1988, 54(11): 2812-2818.
    Ruiz G, Jeison D, Rubilar O, et al. Nitrification-denitrification via nitrite accumulation for nitrogen removal from wastewaters [J]. Bioresource Technology, 2006, 97(2): 330-335.
    Sabumon P C. Development of a novel process for anoxic ammonia removal with sulphidogenesis [J]. Process Biochemistry, 2008, 43(9): 984-991.
    Sawada E, Satoh T, Kitamura H, et al. Purification and properties of a dissimilatory nitrite reductase of a denitrifying phototrophic bacterium [J]. Plant and Cell Physiology, 1978,19(8): 1339-1351.
    Sawayama S. Possibility of anoxic ferric ammonium oxidation [J]. Journal of Bioscience and Bioengineering, 2006,101(1): 70-72.
    Schalk J, de Vries S, Kuenen J G, et al. Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation[J].Biochemistry,2000,39(18):5405-5412.
    Schmid M,Twachtmann U,Klein M,et al.Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation[J].Systematic and Applied Microbiology,2000,23(1):93-106.
    Schmid M,Walsh K,Webb R,et al.Candidatus"Scalindua brodae",sp.Nov.,Candidatus "Scalindua wagneri",sp.Nov.,two new species of anaerobic ammonium oxidizing bacteria[J].Systematic and Applied Microbiology,2003,26(4):529-538.
    Schouten S,Strous M,Kuypers M M M,et al.Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria[J].Applied and Environmental Microbiology,2004,70(6):3785-3788.
    Schubert D J,Durisch-Kaiser E,Wehrli B,et al.Anaerobic ammonium oxidation in a tropical freshwater system(Lake Tanganyika)[J].Environmental Microbiology,2006,8(10):1857-1863.
    沈平,左建恶,杨洋.接种不同污泥的厌氧氨氧化反应器的启动与运行[J].中国沼气,2004,22(3):3-7.
    Shimamura M,Nishiyama T,Shigetomo H,et al.Isolation of a multiheme protein with features of a hydrazine-oxidizing enzyme from an anaerobic ammonium-oxidizing enrichment culture[J].Applied and Environmental Microbiology,2007,73(4):1065-1072.
    Shimamura M,Nishiyama T,Shinya K,et al.Another multiheme protein,hydroxylamine oxidoreductase abundantly produced in an anammox bacterium besides the hydrazine-oxidizing enzyme[J].Journal of Bioscience and Bioengineering,2008,105(3):243-248.
    Sinninghe Damste J S,Rijpstra W I C,Schouten S,et al.The occurrence of hopanoids in planctomycetes:implications for the sedimentary biomarker record[J].Organic Geochemistry,2004,35(5):561-566.
    Sinninghe Damste J S,Strous M,Rijpstra W I C,et al.Linearly concatenated cyclobutane lipids form a dense bacterial membrane[J].Nature,2002,419(6908):708-712.
    Sliekers A O,Derwort N,Gomez J L C,et al.Completely autotrophic nitrogen removal over nitrite in one single reactor[J].Water Research,2002,36(10):2475-2482.
    Sliekers A O, Third KA, Abma, W, et al. CANON and anammox in a gas-lift reactor [J]. FEMS Microbiology Letters, 2003, 218(2): 330-344.
    Spagni A, Marsili-Libelli S. Nitrogen removal via nitrite in a sequencing batch reactor treating sanitary landfill leachate [J]. Bioresource Technology, 2009, 100(2): 609-614.
    Starr M P, Schmidt J M. Genus Planctomyces Gimesi [M]. Bergey's Manual of Systematic Bacteriology. New York: Springer, 1995.
    Stickland H L. The determination of small quantities of bacteria by means of the biuret reaction [J]. Journal of General Microbiology, 1951, 5(4): 698-703.
    Strous M. Microbiology of Anaerobic Ammonium Oxidation. [Ph.D Thesis]. Delft, TU Technical University, 2000.
    Strous M, Fuerst J A, Kramer E H M, et al. Missing lithotroph identified as new planctomycete [J]. Nature, 1999a, 400(6743): 446-449.
    Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms [J]. Applied Microbiology and Biotechnology, 1998, 50(5): 589-596.
    Strous M, Jetten M S M. Anaerobic oxidation of methane and ammonium [J]. Annual Review of Microbiology, 2004, 58: 99-117.
    Strous M, Kuenen J G, Fuerst J A, et al, The anammox case - a new experimental manifesto for microbiological co-physiology [J]. Antonie van Leeuwenhoek, 2002, 81(1/4): 693-702.
    Strous M, Kuenen J G, Jetten M S M. Key physiology of anaerobic ammonium oxidation [J]. Applied and Environmental Microbiology, 1999b, 65(7): 3248-3250.
    Strous M, Pelletier E, Mangenot S, et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome [J]. Nature, 2006, 440(7085): 790-794.
    Strous M, van Gerven E, Kuenen J G, et al. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (Anammox) sludge [J]. Applied and Environmental Microbiology, 1997a, 63(6): 2446-2448.
    Strous M, van Gerven E, Zheng P, et al. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (ANAMMOX) process in different reactor configurations [J]. Water Research, 1997b, 31(8): 1955-1962.
    孙锦宜.含氮废水处理技术与应用[M].北京:化学工业出版社,2003.
    Sundermeyer-Klinger H,Meyer W,Warninghoff B,et al.Membrane-bound nitrite oxidoreductase of Nitrobacter:evidence for a nitrate reductase system[J].Archives of Microbiology,1984,140(2-3):153-158.
    Thamdrup B,Dalsgaard T.Production of N_2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments[J].Applied and Environmental Microbiology,2002,68(3):1312-1318.
    Third K A,Paxman J,Schmid M,et al.Enrichment of anammox from activated sludge and its application in the CANON process[J].Microbial Ecology,2005,49(2):236-244.
    Third K A,Sliekers A O,Kuenen J G,et al.The CANON system(completely autotrophic nitrogen-removal over nitrite) under ammonium limitation:interaction and competition between three groups of bacteria[J].Systematic and Applied Microbiology,2001,4(4):588-596.
    Thore A,Lundin A,Ansehn S.Firefly luciferase ATP assay as a screening method for bacteriuria[J].Journal of Clinical Microbiology,1983,17(2):218-224.
    Toh S K,Ashbolt N J.Adaptation of anaerobic ammonium-oxidising consortium to synthetic coke-ovens wastewater[J].Applied and Microbiological Biotechnology,2002,59(2-3):344-352.
    Toh S K,Webb R I,Ashbolt N J.Enrichment of autotrophic anaerobic ammonium-oxidizing consortia from various wastewaters.Microbial Ecology,2002,43(1):154-167.
    Tsushima I,Ogasawara Y,Kindaichi T,et al.Development of high-rate anaerobic ammonium-oxidizing(anammox) biofilm reactors[J].Water Research,2007,41(8):1623-1634.
    van de Graaf A A,de Bruijn P,Robertson L A,et al.Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor[J].Microbiology (UK),1996,142(8):2187-2196.
    van de Graaf A A,de Bruijn P,Robertson L A,et al.Metabolic pathway of anaerobic ammonium oxidation on the basis of ~(15)N studies in a fluidized bed reactor[J].Microbiology(UK),1997,143(7):2415-2421.
    van der Star W R L,van de Graaf M J,Kartal B,et al.Response of anaerobic ammonium-oxidizing bacteria to hydroxylamine[J].Applied and Environmental Microbiology,2008,74(14):4417-4426.
    van Dongen U,Jetten M S M,van Loosdrecht M C M.The SHARON-Anammox process for treatment of ammonium rich wastewater[J].Water Science and Technology,2001,44(1):153-160.
    van Niftrik L,Geerts W J C,van Donselaar E G,et al.Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria:cell plan,glycogen storage,and localization of cytochrome c proteins[J].Journal of bacteriology,2008a,190(2):708-717.
    van Niftrik L A,Fuerst J A,Sinninghe Damste J S,et al.The anammoxosome:an intracytoplasmic compartment in anammox bacteria[J].FEMS Microbiology Letters,2004,233(1):7-13.
    van Niftrik L A,Geerts W J C,van Donselaar E G,et al.Combined structural and chemical analysis of the anammoxosome:a membrane-bounded intracytoplasmic compartment in anammox bacteria[J].Journal of Structural Biology,2008b,161(3):401-410.
    Volcke E I P,van Loosdrecht M C M,Vanrolleghem PA,et al.Controlling the nitrite:ammonium ratio in a SHARON reactor in view of its coupling with an Anammox process[J].Water Science and Technology,2006,53(4-5):45-54.
    Wang J,Peng Y,Wang S,et al.Nitrogen removal by simultaneous nitrification and denitrification via nitrite in a sequence hybrid biological reactor[J].Chinese Journal of Chemical Engineering,2008,16(5):778-784.
    王家玲,李顺鹏,黄正.环境微生物学[M].北京:高等教育出版社,2003.
    Wei X,Vajrala N,Hauser L,et al.Iron nutrition and physiological responses to iron stress in Nitrosomonas europaea[J].Archives of Microbiology,2006,186(2):107-118.
    Woebken D,Lam P,Kuypers M M M,et al.A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones[J].Environmental Microbiology,2008,10(11):3106-3119.
    Yamamoto T,Takaki K,Koyama T,et al.Novel partial nitritation treatment for anaerobic digestion liquor of swine wastewater using swim-bed technology[J].Journal of Bioscience and Bioengineering,2006,102(6):497-503.
    瞿中和,王喜中,丁明孝.细胞生物学[M].第3版.北京:高等教育出版社,2007.
    张少辉,郑平,华玉妹.反硝化生物膜启动厌氧氨氧化反应器的研究[J].环境科学学报,2004,24(2):220-224.
    Zhang Y,Ruan X H,Op den Camp H J M,et al.Diversity and abundance of aerobic and anaerobic ammonium-oxidizing bacteria in freshwater sediments of the Xinyi River (China)[J].Environmental Microbiology,2007,9(9):2375-2382.
    张忠智,鲁莽,魏小芳,等.脱氮硫杆菌的生态特性及其应用[J].化学与生物工程,2005,22(2):52-54.
    Zhao H W,Mavinic D S,Oldman W K,et al.Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage[J].Water Research,1999,33(4):961-970.
    Zhao Q L,Li W,You S J.Simultaneous removal of ammonium-nitrogen and sulphate from wastewaters with an anaerobic attached-growth bioreactor[J].Water Science and Technology,2006,54(8):27-35.
    Zhu H,Fang H H P,Zhang T,et al.Effect of ferrous ion on photo heterotrophic hydrogen production by Rhodobacter sphaeroids[J].International Journal of Hydrogen Energy,2007,32(17):4112-4118.
    郑平,冯孝善,Jetten M M M,等.ANAMMOX流化床反应器性能的研究[J].环境科学学报,1998,18(4):367-372.
    郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700