用户名: 密码: 验证码:
不确定性条件下地下水石油污染物模拟与修复
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对不确定性条件下地下水污染物迁移转化的模拟和预测,本文提出一个改进分式模糊模拟(Modified Fractional Fuzzy Simulation,简称MFFS)方法用于预测在自然衰减条件下的含水层中甲苯和氧浓度。该方法将地下水污染物迁移模型、模糊参数分析集成为基本框架。与传统的分式模糊模拟比较,该方法减少了模糊参数的中间点,因此也减少了模拟时间。将该方法应用于中国北京平谷地区的含水层,其中有三个参数(纵向弥散度、水力传导系数和给水度)为模糊集。从污染地区的模拟结果可知不同的输入参数在不同时间和模糊截集水平都有不同的影响。同时根据自然衰减条件下模拟所得到的地下水甲苯和氧浓度分布,分别对该区域地下水进行P&T方案以及P&T和原位生物修复联用方案的水质模拟,在取得较好的修复效果的同时,也验证了MFFS的实用性。研究结果表明在不确定性条件下,MFFS方法不仅在地下水场地模拟过程中十分有效,同时也能够为风险评价、修复工程设计以及过程控制提供坚实的技术支持。
Uncertainties have been found to widely exist in contaminant fate and transport in groundwater systems. Therefore, this study aims to propose a modified fractional fuzzy simulation (MFFS) method to predict the uncertainty in toluene and oxygen concentrations in groundwater systems under microbial attenuation conditions. The method integrates contaminant fate and transport models and fuzzy parameters analysis within a general framework. Compared to the conventional fractional fuzzy simulation (FFS), fewer interior points of fuzzy parameters can be used, thus reducing the simulation time. The method is applied to an aquifer of the Pinggu site in Beijing, China, where three parameters (longitudinal dispersivity, hydraulic conductivity and storage coefficient) are represented as fuzzy sets. According to the spatial-temporal distributions of toluene and oxygen concentrations, this study proposes two remediation systems: pump and treat (P&T) and in-situ bioremediation. In terms the MFFS results, both the two remediation systems demonstrate a good effect on toluene removal. It is thus indicated that the method is useful for not only groundwater simulation, but also risk assessment, remediation design and process control under complex parameter uncertainty.
引文
[1]Chen. Z., G. H. Huang. and A. Chakma. Hybrid fuzzy-stochastic modeling approach for assessing environmental risks at contaminated groundwater systems[J]. Journal of Environmental Engineering.2003.129(1):79-88
    [2]Rutherford S. Groundwater use in Canada-case study summary, West Coast Environmental Law, Vancouver, BC,2004 Canada
    [3]Huang, G. H., Z. Chen. Tontiwachwuthikul, P. and Chakma, A. Environmental risk assessment for underground storage tanks through an interval parameter fuzzy relation analysis approach[J]. Energy Sources.1999.21(1-2):75-96
    [4]马莹,马俊杰.石油开采对地下水的污染及防治对策[J].地下水.2010,32(2):56-57
    [5]Wirthensohn T., P. Schoeberl. Pilot plant experiences using physical and biological treatment steps for the remediation of groundwater from a former MGP site[J]. Journal of Hazardous Materials.2009,163(1),43-52
    [6]孙讷正,梁文康.地下水污染数学模拟的多单元均衡法[J].山东大学学报.1982(3):12-32
    [7]杜东,马震,方成.国内外地下水污染研究的现状及发展趋势[J].山西建筑,2007,33(2):194-195
    [8]王蕊,王中根.地表水和地下水耦合模型研究进展[J].地理科学进展.2008,27(4):37-41
    [9]薛禹群.中国地下水数值模拟的现状与展望[J].高校地质学报.2010,16(1):1-6
    [10]邵景力,赵宗壮.华北平原地下水流模拟及地下水资源评价[J].资源科学.2009,31(3):361-367
    [11]Mao X., H. Prommer. Three-dimensional model for multi-component reactive transport with variable density groundwater flow[J]. Environmental Modelling & Software.2006,21(5):615-628
    [12]Zhang F., Yeh Gour-Tsyh. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions[J]. Journal of Contaminant Hydrology.2007,92(1-2):10-32
    [13]Cho J., V.A. Barone. Simulation of land use impacts on groundwater levels and streamflow in a Virginia watershed[J]. Agricultural Water Management.2009,96(1): 1-11
    [14]王许兵,周书葵.地下水数学模拟方法综述[J].市政技术.2009,27(4):371-373
    [15]Huang Y.F., G.H. Huang. An integrated numerical and physical modeling system for an enhanced in situ bioremediation process[J]. Environmental Pollution.2006, 144(3):872-885
    [16]Almasri M.N., J.J. Kaluarachchi. Modeling nitrate contamination of groundwater in agricultural watersheds. Modeling nitrate contamination of groundwater in agricultural watersheds[J]. Journal of Hydrology.2007,343(3-4):211-229
    [17]Qin X.S., G.H. Huang. Simulation-based process optimization for surfactant-enhanced aquifer remediation at heterogeneous DNAPL-contaminated sites[J]. Science of the Total Environment.2007,381(1-3):17-37
    [18]He L., G.H. Huang. An integrated simulation, inference, and optimization method for identifying groundwater remediation strategies at petroleum-contaminated aquifers in western Canada[J]. Water Research.2008,42(10-11):2629-2639
    [19]Semprini L., G.D. Hopkins. Pilot scale field studies of in situ bioremediation of chlorinated solvents[J]. Journal of Hazardous Materials.1992,32(2-3):145-162
    [20]Borden Robert C., P.B. Bedient. Transport of dissolved hydrocarbons influenced by oxygen-limited biodegradation:1. Theoretical development[J]. Water Resources Research.1986,22(13):1973-1982
    [21]Corapcioglu M. Y., A.L. Baehr. A compositional multiphase model for groundwater contamination by petroleum products:1. Theoretical considerations[J]. Water Resources Research.1987,23(1):191-200
    [22]Rifai H.S., P.B. Bedient. Comparison of biodegradation kinetics with an instantaneous reaction model for groundwater[J]. Water Resources Research.1990, 26(4):637-645
    [23]Chen Y.M., L.M. Abriola. Modeling transport and biodegradation of benzene and toluene in sandy aquifer material:Comparisons With experimental measurements[J]. Water Resources Research.1992,28(7):1833-1847
    [24]Brusseau M.L. Rate-limited mass transfer and transport of organic solutes in porous media that contain immobile immiscible organic liquid[J]. Water Resources Research. 1992,28(1):33-45
    [25]Luong J. H. T. Generalization of monod kinetics for analysis of growth data with substrate inhibition[J]. Biotechnology and Bioengineering.1984,29(2):242-248
    [26]Sarker R.I., W. Ogawa. Characterization of a glucose transport system in Vibrio parahaemolyticus[J]. Journal of Bacteriology.1994,176(23):7378-7382
    [27]Vissers M.J.M., M. van der Perk. The stability of groundwater flow systems in unconfined sandy aquifers in the Netherlands[J]. Journal of Hydrology.2008,348: 292-304
    [28]James, B. R., J.P. Gwo, and L. Toran. Risk-cost decision framework for aquifer remediation design[J]. Journal of Water Resources Planning and Management.1996, 122 (6):414-420
    [29]Maxwell, R. M. Understanding the Effects of Uncertainty and Variability on Groundwater-Driven Health Risk Assessment[D]. Ph.D. dissertation, University of California, Berkeley,1998
    [30]Maxwell, R. M., S. D. Pelmulder, A. F. B. Tompson, and W. E. Kastenberg. On the development of a new methodology for groundwater-driven health risk assessment[J]. Water Resources Research.1998,34(4):833-847
    [31]Huang, Y. F., J. B. Li, G. H. Huang, A. Chakma, and X. S. Qin. An integrated simulation-optimization approach for real time dynamic modeling and process control of surfactant enhanced remediation at petroleum contaminated site[J]. ASCE Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management.2003b, 7(2):95-105
    [32]Mills, W. B., K. M. Johnson, S. Liu, J. Y. Loh, and C. S. Lew. Multimedia riskbased soil cleanup at a gasoline-contaminated site using vapour extraction[J]. Ground Water Monitoring & Remediation.1996,16(3):168-178
    [33]McNab, W. W., and B. P. Dooher. Uncertainty analyses of fuel hydrocarbon biodegradation signatures in ground water by probabilistic modeling[J]. Ground Water.1998,36(4):691-698
    [34]Maxwell, R. M., W. E. Kastenberg, and Y. Rubin. A methodology to integrate site characterization information into groundwater-driven health risk assessmen[J]. Water Resources Research.1999,35(9):2841-2855
    [35]Varljen, M., and J. Shafer. Assessment of uncertainty in time-related capture zones using conditional simulation of hydraulic conductivity[J]. Ground Water.1991,29(5): 737-748
    [36]Bennett, D. H., A. L. James, T. E. McKone, and C. M. Oldenburg. On uncertainty in remediation analysis:variance propagation from subsurface transport to exposure Modeling[J]. Reliability Engineering and System Safety.1998,62(1-2):117-129
    [37]Tam, E. K. L., and P. H. Byer. Remediation of contaminated lands:a decision methodology for site owners[J]. Journal of Environmental Management.2002,64(4): 387-400
    [38]Guo H.C., L. Liu, G.H. Huang. A stochastic water quality forecasting system for the Yiluo River[J]. Journal of Environmental Informatics.2003,1:18-32
    [39]Lahkim M.B., L.A. Garcia. Stochastic modeling of exposure and risk in a contaminated heterogeneous aquifer (I):Monte Carlo uncertainty analysis[J]. Environmental Engineering Science.1999,16:315-328
    [40]Liu L., R.X. Hao, and S.Y. Cheng. A possibilistic analysis approach for assessing environmental risks from drinking groundwater at petroleum-contaminated sites[J]. Journal of Environmental Informatics.2003 2(1):31-37
    [41]Hu B.X., J.C. Wu. Stochastic study on groundwater flow and solute transport in a porous medium with multi-scale heterogeneity[J]. Advances in Water Resources. 2003,26:541-560
    [42]Hassan A.E., H.M. Bekhit. Using Markov Chain Monte Carlo to quantify parameter uncertainty and its effect on predictions of a groundwater flow model[J]. Environmental Modelling & Software.2009,24:749-763
    [43]Xiang Y. Y., S. Mishra. Probabilistic multiphase flow modeling using the limit-state method[J]. Ground Water.1997,35(5):820-824
    [44]Zhu J., J.F. Sykes. Stochastic simulations of NAPL mass transport in variably saturated heterogeneous porous media[J]. Transport in Porous Media.2000,39(3): 289-314
    [45]Bashi-Azghadi S.N., R. Kerachian. Characterizing an unknown pollution source in groundwater resources systems using PSVM and PNN[J]. Expert Systems with Applications.2010,37:7154-7161
    [46]Malmstrom M.E., S. Berglund. Combined effects of spatially variable flow and mineralogy on the attenuation of acid mine drainage in groundwater[J]. Applied Geochemistry.2008,23:1419-1436
    [47]Farmani R., H.J. Henriksen. An evolutionary Bayesian belief network methodology for optimum management of groundwater contamination[J]. Environmental Modelling & Software.2009,24:303-310
    [48]Maqsood I., J.B. Li, G.H. Huang. Inexact multiphase modeling system for the management of uncertainty in subsurface contamination[J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management.2003,7(2):86~94
    [49]Naff R.L., D.F. Haley, and E.A. Sudicky. High-resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media,1. methodology and flow results[J]. Water Resources Research.1998a,34 (4):663-677.
    [50]Pohlmann K.F., A.E. Hassan, and J.B. Chapman. Modeling density-driven flow and radionuclide transport at an underground nuclear test:uncertainty analysis and effect of parameter correlation[J]. Water Resources Research.2002,38 (5):17-1-17-18
    [51]Vernieuwe H., N.E.C. Verhoest. Cluster-based fuzzy models for groundwater flow in the unsaturated zone[J]. Advances in Water Resources.2007,30:701-714
    [52]Hu Z.Y., G.H. Huang. A fuzzy process controller for in situ groundwater bioremediation[J]. Engineering Applications of Artificial Intelligence.2003,16: 131-147
    [53]Woldt W., M. Dahab. Management of diffuse pollution in groundwater under imprecise conditions using fuzzy models[J]. Water Science and Technology.1996,33: 249-257.
    [54]Ayvaz M.T., H. Karahan. Aquifer parameter and zone structure estimation using kernel-based fuzzy c-means clustering and genetic algorithm[J]. Journal of Hydrology.2007,343:240-253
    [55]Freissinet C., M. Vauclin. Comparison of first-order analysis and fuzzy set approach for the evaluation of imprecision in a pesticide groundwater pollution screening model[J]. Journal of Contaminant Hydrology.1999,37:21-43
    [56]Mathon B.R., M.M. Ozbek. Transmissivity and storage coefficient estimation by coupling the Cooper-Jacob method and modified fuzzy least-squares regression[J]. Journal of Hydrology.2008,353:267-274
    [57]Verma P., P. Singh. Uncertainty analysis of transport of water and pesticide in an unsaturated layered soil profile using fuzzy set theory[J]. Applied Mathematical Modelling.2009,33:770-782
    [58]He L., G.H. Huang. A simulation-based fuzzy chance-constrained programming model for optimal groundwater remediation under uncertainty[J]. Advances in Water Resources.2008,31:1622-1635
    [59]Marseguerra M., E. Zio. Monte Carlo simulation of the effects of human intrusion on groundwater contaminant transport[J]. Mathematics and Computers in Simulation. 1998,47:361-369
    [60]Meca A.S., F. Alhama. An efficient model for solving density driven groundwater flow problems based on the network simulation method[J]. Journal of Hydrology. 20073,39:39-53
    [61]Mayer A.S., C.T. Kelley. Optimal design for problems involving flow and transport phenomena in saturated subsurface systems[J]. Advances in Water Resources.2002, 25:1233-1256
    [62]Erickson M., A. Mayer. Multi-objective optimal design of groundwater remediation systems:application of the niched Pareto genetic algorithm (NPGA) [J]. Advances in Water Resources.2002,25:51-65
    [63]Borden R.C., P.B. Bedient. Transport of dissolved hydrocarbons influenced by oxygen limited biodegradation:1. Theoretical development[J]. Water Resources Research.1986,22:1973-1982
    [64]Zadeh L.A.. The concept of a linguistic variable and its application to approximate reasoning[J]. Information and Control.1968,12:94-102
    [65]Dong W., H.C. Shah. Vertex method for computing functions of fuzzy variables[J]. Fuzzy Sets and Systems.1987,24:65-78
    [66]Hanss M.. The transformation method for the simulation and analysis of systems with uncertain parameters[J]. Fuzzy Sets and Systems.2002,130:277-289
    [67]Lin Y.P.. Simulation modeling and process control of composting systems under complexity and uncertainty[D]. Ph.D. Dissertation, University of Regina, Regina, Canada(2006)
    [68]The Interstate Technology & Regulatory Council MTBE and Other Fuel Oxygenates Tea. Overview of Groundwater Remediation Technologies for MTBE and TBA[M]. Interstate Technology & Regulatory Council,2005:39-52
    [69]周怀东,彭文启.水污染与水环境修复[M].北京:化学工业出版社,2005
    [70]吴俊文,郑西来,高增文等.地下水有机污染修复的渗透反应格栅技术[J].工程勘察.2005,6:20-23
    [71]王文超.浅议污染地下水的修复技术[J].西南给排水.2007,29(5):9-11
    [72]潘芳,杜锁军.地下水污染生物修复技术研究进展[J].江苏环境科技.2008,21(1):112-116

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700