用户名: 密码: 验证码:
人造菱铁矿造粒条件及其除砷性征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砷作为水中三致作用的污染物,导致了许多环境问题,目前还有很多人处于高砷饮用水区,使得饮用水中的砷问题越来越受到人们的关注。人造菱铁矿对去除水中砷有很高的效率。但是人造菱铁矿为粉末,会带来携带不方便和粉尘污染等问题。要将人造菱铁矿用于实际饮用水的除砷中,就要将其造成颗粒。
     本文研究了人造菱铁矿造粒的条件以及除砷性征。人造菱铁矿造粒的最佳条件是70℃,90 min。去除As(III)和As(V)的平衡时间都为24 h。对于As(III)和As(V)来说,准一级和准二级动力学都可以较好的模拟砷的吸附量随时间的变化。15℃、25℃、35℃、45℃时Freundlich方程可以更好的模拟As(III)和As(V)的等温吸附。温度的升高有利于吸附的进行。人造菱铁矿颗粒除As(III)和As(V)都是吸热的自发反应。Cl-、SiO_3~(2-)、PO_4~(3-)的存在会降低As(III)的吸附量。对于As(V), SiO_3~(2-)、PO_4~(3-)的存在会降低As(V)的吸附量。
     对于柱实验,蒸馏水配的含As(V)的高砷水在50 d时超出饮用水标准,累计处理水量为106.3 L。在做水质对吸附柱处理砷效果研究中,加阴离子的高砷水处理水量高于去离子水配的高砷水处理水量高于自来水配的高砷水处理水量;在做砷浓度对吸附柱处理砷效果研究中,处理高浓度砷(As(V)浓度为2 mg/L)的吸附柱相对于低浓度(As(V)浓度为1 mg/L)来说,累计吸附砷量多于低浓度吸附柱。在做流速对吸附柱处理砷效果研究中,流速为3.5 mL/min除砷效果最佳(高于6 mL/min和2 mL/min)。
     在做价态对吸附柱处理砷效果研究中,吸附柱对于As(III)的处理时间和处理水量都要好于As(III)与As(V)混合的效果。对于吸附完的吸附柱进行了解吸和再生的研究,解吸用0.1 mol/L的NaOH,240 h时解吸率达到84.40%,用pH值为4的HCl对解吸完的吸附柱进行再生,24 h后出水呈酸性,再将吸附柱用蒸馏水冲至中性再生完毕。通过再生效果研究,再生率为50.6%。
     通过做XRD、SEM、XRF和XANES等的分析,得出人造菱铁矿颗粒除砷为专性吸附与非专性同时存在的去除过程。
High Arsenic groundwater has become a serious environmental issue mainly due to its worldwide distribution and chronic health effects. Previous investigation has shown that synthetic siderite efficiently removes arsenic from groundwater. Siderite pelleting is essential for its actual application in removing arsenic from waters.
     This study mainly focused on pelleting processes and characteristics of arsenic adsorption on pelleted material. Results show that the best condition for pelleting was sintering for 90 min at 70℃. The equilibrium time was about 24 h. The adsorption process was well described by both pseudo-first-order and pseudo-second-order kinetics model for both As(III) and As(V). The data better fitted Freundlich isotherm in all temperatures (15℃, 25℃, 35℃, 45℃) than Langmuir isotherm for both As(III) and As(V). Higher adsorption capacity was observed at higher temperature. Both As(III) and As(V) adsorption were spontaneous. The presence of Cl-, SiO_3~(2-), or PO_4~(3-) lowers As(III) adsorption on the pelleted material. The presence of SiO_3~(2-), or PO_4~(3-) lowers As(V) adsorption on the pelleted material.
     For column experiments, the breakthrough time was 50 d, and the total flow is 106.3 L (initial As(V) concentration 1 mg/L, flow rate 2 mL/min). This study showed the effect of water chemistry, initial As concentration, flow rate and As species on breakthrough curves of arsenic removal by pelleted synthetic siderite. The results show that water chemistry affects As removal with the highest capacity for deionized water-synthesized As solution with coexisting anions, followed by deionized water-synthesized As solution and tap water synthesized As solution. Flow rate has influence on As removal with the highest removal efficiency at 3.5 mL/min, followed by 6 mL/min and flow rate 2 mL/min. Besides, As species also has effect on As removal with the highest removal efficiency for 1 mg/L As(III), followed by 0.5 mg/L As(III) and 0.5 mg/L As(V), and 1 mg/L As(V). The removal capacity for 1 mg/L As(V) was higher than that for 2 mg/L As(V) in breakthrough time.
     Pelleted synthetic siderite column was effectively regenerated after adsorption of arsenic when elution was applied with 0.1 mol/L NaOH solution. After 240 h, the elution proportion is 84.40%. HCl (pH=4) solution was used for regeneration. Regeneration efficiency is up to 50.6%.
     The data of XRD, SEM, XRF and XANES show that arsenic was removal by means of both chemical adsorption and coprecipitation.
引文
Banerjee K, Amy G L, Prevost M, et al. Kinetic and thermodynamic aspects of adsorption of arsenic onto granular ferric hydroxide(GFH). Water Research, 2008, 42: 3371-3378
    Bang S, Patel M, Lippincott L, et al. Removal of arsenic from groundwater by granular titanium dioxide adsorbent. Chemosphere, 2005, 60(3): 389-397
    Biterna M, Antonoglou L, Lazou E, et al. Arsenite removal from waters by zero valent iron: Batch and column tests. Chemosphere, 2010, 78(1): 7-12
    Chuang C L, Fan M, Xu M, et al. Adsorption of arsenic(V)by activated carbon prepared from oat hulls. Chemosphere, 2005, 61: 478-483
    Cullen W R, Reimer K J. Arsenic speciation in the environment. Chemical Review, 1989, 89(4): 713-774
    Debasish M, Debaraj M, Gautam R C, et al. Effect of dissolved organic matter on the adsorption ad stability of As(V) on manganese wad. Separation Purification Technology, 2006, 49(3): 223-229
    DeMarco J M, SenGupta K A, Greenleaf E J. Arsenic removal using a polymeric/inorganic hybrid sorbent. Water Research, 2003, 37(1): 164-176
    Do?sováB, Grygar T, Martaus A, et al. Sorption of AsV on aluminosilicates treated with FeII nanoparticles. Journal of Colloid and Interface Science, 2006, 302: 424–431
    Gu Z M, Fang J, Deng B L. Preparation and evaluation of GAC-based Fe-containing adsorbents for arsenic removal. Environmental Science & Technology, 2005, 39: 3833-3843
    Guo H M, Li Y, Zhao K. Arsenate removal from aqueous solution using synthetic siderite. Journal of Hazardous Materials, 2010, 176(1-3): 174-180
    Guo H M, Stüben D, Berner Z. Adsorption of arsenic(III) and arsenic(V) from groundwater using natural siderite as the adsorbent. Journal of Colloid and Interface Science, 2007, 315: 47-53
    Guo H, Stüben D, Berner Z. Arsenic removal from water using natural iron mineral-quartz sand columns, Science of the Total Environment, 2007, 377: 142-151
    Gupta A, Sankararamakrishnan N. Column studies on the evaluation of novel spacer granules for the removal of arsenite and arsenate from contaminated water. Bioresource Technology, 2010, 101: 2173-2179
    Horváth V K, Jánosi I M, Vella P J. Anomalous density dependence of static friction in sand. Physical Review E, 1996, 54: 2005-2009
    IARC(International Agency for Research on Cancer). Some Drinking Water Disinfectants and Contaminants, Including Arsenic. IARC Monogr Eval Carcinog Risk Hum, 2004, 84: 269-477
    Jeon C S, Baek K, Park J K, et al. Adsorption characteristics of As(V) on iron-coated zeolite. Journal of Hazardous Materials, 2008, 163(2-3): 804-808
    Katsoyiannis I A, Zouboulis A I. Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Research, 2002, 36: 5141-5155
    Katsoyiannis I, Zouboulis A, Althoff H, et al. As(III) removal from groundwaters using fixed-bed upflow bioreactors. Chemosphere, 2002, 47: 325-332
    Kim M J, Nriagu J, Haack S. Arsenic species and chemistry in groundwater of southeast Michigan. Environmental Pollution, 2002, 120: 379-390
    Korte N E, Femando Q. A review of arsenic(III) in groundwater. Critical Review in Environ mental Control, 1991, 21(1): 1-39
    Manning A, Goldberg S. Modelling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Journal of Soil Science of America, 1996, 60: 121-131
    Masscheleyn P H, DeLaune R D, Patrick W H. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ mental Science & Technology, 1991, 25(8): 1414-1419
    Munoz J A, Gonzalo A, Valiente M. Arsenic adsorption by Fe(III)-loaded opencelled cellulose sponge: thermodynamic and selectivity aspects. Environ mental Science & Technology, 2002, 36: 3405-3411
    Namasivayam C, Senthilkumar S. Removal of arsenic(V) from aqueous solution using industrial solid waste: adsorption rates and equilibrium studies. Industrial & Engineering Chemistry Research, 1998, 37: 4816-4822
    NRC(National Research Council). Arsenic in Drinking Water. Washington DC: Update National Academy press, 2001
    Ouvrard S, Simonnot M O, Donato P, et al. Diffusion-controlled adsorption of arsenate on a natural manganese oxide. Industrial & Engineering Chemistry Research, 2002, 41: 6194-6199
    Ouvrard S, Simonnot M O, Sardin M. Reactive behavior of natural manganese oxides toward the adsorption of phosphate and arsenate, Industrial & Engineering Chemistry Research, 2002, 41: 2785-2791
    Pratap C, Shigeru K, Toshinori K, et al. Arsenic adsorption from aqueous solution on synthetic zeolites. Journal of Hazardous Materials, 2009, 162: 440-447
    Raven K P, Jain A, Loeppert R H. Arsenite and arsenate adsorption on ferrihydrite:kinetics, equilibrium, and adsorption envelope. Environ mental Science & Technology, 1998, 32: 344-349
    Smedley P L, Kinniburgh D G. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 2002, 17: 517-568
    Sun X, Doner E. An investigation of arsenate and arsenite bonding structures on goethite by FTIR. Soil Science, 1996, 161(12): 865-872
    Vaaramaa K, Lehto J. Removal of metals and anions from drinking water by ion exchange. Desalination, 2003, 155(2): 157-170
    Valenzuela O L, Borja-Aburto VH, Garcia-Vargas G G, et al. Urinary trivalent methylated arsenic species in a population chronically exposed to inorganic arsenic. Environmental Health perspectives, 2005, 113(3): 250-254
    Vassilevae, Proinova I, Hadjiivanov K. Solid phase extraction of heavy metal ions on a highsurface area titanium dioxide (anatase). Analyst, 1996, 121(5): 607-612
    Waychunas A, Rea A, Fuller C, et al. Surface chemistry of ferrigydrite: Part1 EXAFS studies fo the geometry of coprecipitated and adsorbed arsenate. Geochemical Cosmochim Acta, 1993, 57(10): 2251-2269
    Zhang Q L, Lin Y C, Chen X, et al. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water. Journal of Hazardous Materials, 2007, 142 : 1–53
    Zhu L, Fu P, Wan G. surface chemistry and adsorption mechanism of iron oxide minerals from laterite developed on carbonate rock. Huanjing Kexue Xuebao, 1997, 17(2): 174-178
    陈春宁,石林,熊正为等. Fe0对饮用水中砷的去除效率及影响因素.安全与环境学报, 2007, 7(4):46-49
    邓书平.改性粉煤灰吸附处理含砷废水研究.矿冶,2008,17(3):107-109
    郭华明,杨素珍,沈照理.富砷地下水研究进展.地球科学进展,2007,22(11):1109-1117
    李秋蓉,欧阳通,张萍,等. Nano-HCO吸附剂的制备及其除As(Ⅲ)性能.华侨大学学报(自然科学版),2009,30(6):677-680
    刘建,闫英桃,王慧.高岭土的改性及其从含砷水中除砷性能研究.应用化工,2009,38(8):1100-1104
    孙殿军,王丽华,姜树林等.中国大陆地方性砷中毒病情与防治动态,现状的分析.中国地方病防治杂志,2002,17(2):107-108
    孙殿军.应进一步加强我国地方性砷中毒现场流行病学研究.中国地方病学杂志,2006,25(1):1-2
    提芸,张旭,佟迪等.砷污染的危害及除砷方法探讨辽宁化工. 2008,37(9):629-631
    王强,卜锦春,魏世强,等.赤铁矿对砷的吸附解吸及氧化特征.环境科学学报,2008,28(8):1612-1617
    王焰新.地下水污染与防治.北京:高等教育出版社,2007
    魏瑞霞,陈金龙,陈连龙,等. 2-噻吩乙酸在3种树脂上的吸附行为研究.高分子学报,2004,8(4):471-477
    吴云海,谢正威,胡玥等.茶叶渣吸附水中砷的动力学与热力学研究.湖北农业科学,2010,49(4):859-862
    杨仕清,张怀武.纳米材料科学的研究现状与未来.电子科技导报,1995,11:2-5
    姚乐.改性膨润土吸附处理含砷废水实验研究.科学技术与工程,2010,10(16):4093-4095
    张玉琴.活性氧化铝去除地下水中微量砷的实验.环境监控与预警,2010,2(3):50-51 56
    甄青,欧阳通,林金盾.氢氧化铈对水中砷的吸附特性研究.环境卫生工程,2008,16(5):13-15 17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700