用户名: 密码: 验证码:
羟肟酸树脂的合成及其对矿山酸性废水的吸附特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用羟胺法合成了新型羟肟酸树脂(PHA),研究了其对Fe3+和Cu2+的吸附性能与吸附机理;并采用PHA吸附法回收矿山酸性废水中的Cu2+。
     以悬浮交联共聚法制备了甲基丙烯酸甲酯-二乙烯基苯交联共聚物(PMMA-DVB);PMMA-DVB与羟胺在碱性条件下羟肟化,合成了PHA树脂。考察了反应温度、反应时间、反应物比例等对PMMA-DVB的产率和结构性能以及PHA树脂吸附性能的影响,确定优化工艺条件。采用元素分析、红外光谱和热重等手段对PHA进行了表征。
     静态吸附实验结果表明,PHA吸附平衡时间为150 min;PHA的吸附容量随着金属离子初始浓度的增大以及温度的升高而增大;吸附容量受pH影响较大,Cu2+和Fe3+的最佳吸附pH分别为5.0和2.8。在Cu2+-Fe3+二元体系中,PHA对Fe3+有着较高的吸附选择性;采用H28O4溶液可解吸PHA上吸附的金属离子,PHA的洗脱性能和重复利用性能良好。动态吸附实验结果表明随着Cu2+浓度、流速的增加,穿透速度加快,树脂利用率下降。动态解吸实验中,在H28O4溶液体积一定的条件下,解吸率随着H2SO4浓度的增加和溶液流速的降低而增加。
     研究了PHA的吸附动力学、等温吸附机理和吸附热力学,探讨了其对Cu2+和Fe3+的吸附机理。PHA对Cu2+和Fe3+吸附可能是由液膜扩散、颗粒扩散和化学反应共同控制的,吸附反应近似于一级反应;PHA的等温吸附能较好地符合Langmuir模型,为单分子层吸附;吸附过程的△H>0,△G<0,证明PHA对Cu2+和Fe3+的吸附为自发的吸热反应。吸附前后的红外光谱对比揭示了吸附过程中Cu2+、Fe3+与PHA的羟肟酸基团发生了配位。
     采用方解石中和矿山酸性废水沉淀去除Fe3+,再用PHA回收Cu2+。研究了方解石的粒度、用量对酸性废水中和效果的影响。结果表明,方解石的粒度越小,用量越大,废水中和效果越好。某矿山废水处理实验表明,采用方解石中和-PHA吸附法,能够使废水达标排放,Cu2+的回收率可达92.85%,富集比为9.85。
In this study, a new poly(hydroxamic acid) resin (PHA) was synthesized and its adsorption properties and mechanism to Cu2+ and Fe3+ were studied. The aplication in recovering Cu2+ from acid mine drainage (AMD) by PHA adsorption technology was carried out.
     Poly(methyl methacrylate-divinylbenzene) (PMMA-DVB) was prepared by cross linking suspension polymerization. PHA chelating resin was synthesized by the reaction of PMMA-DVB and hydroxylamine in base condition. The effect of temperature, reaction time and reactant ratio for productivity and structure performance of PMMA-DVB and adsorption capacities of PHA were investigated. PHA was charaterized by IR、elemental analysis, TG and so on.
     The results of adsorption in batch method indicate that the adsorption process of PHA reach equilibrium after 150 minutes. Adsorption capacities increase with the increase of temparature and the initial concentration of metal ions. Adsorption capacities is effected strongly by pH and the best pH for Cu2+ and Fe3+ are individually 5.0 and 2.8. The selectivity of PHA for Fe3+ is stronger in Cu2+-Fe3+ binary system. H2SO4 solutions were applied to desorption of metal ions on PHA, and the results indicate that elution and regeneration properties are very good. The results of adsorption in the column experiment indicate that with increasing the flow rate and Cu2+ initial concentration, the breakthrough point reached ahead, and the efficiency of the resin function groups decreased. The dynamic desorption experiment indicate that desorption rate increase with the increase of H2SO4 concentration and the decrease of flow rate, at determinate H2SO4 solutions volume.
     Adsorption kinetics, isotherm and thermodynamics were researched, and the adsorption mechanism of PHA to Cu2+ and Fe3+ was discussed. The adsorption process was controlled by liquid film diffusion, particle diffusion and chemical reaction simultaneously. The adsorption reaction approximately equal to first order reaction. Isotherm adsorption process can be well described by Langmuir models, which indicats that the adsorption is a monolayer one; In the process,△H is plus and△G is negative, indicated that the adsorption of PHA for Cu2+ and Fe3+ is spontaneous and endothermic. IR contrastive analysis before and after adsorption reveal that Cu2+ and Fe3+ coordinate with hydroxamic acid group on PHA in adsorption.
     A project of neutralizing AMD by calcite to precipitate Fe3+ and then adsorbing Cu2+ by PHA was carried out. The effect of granularity and dosage of calcite on neutralization result was studied. The result indicate that neutralization efficiency increase with the increase of dosage and the decrease of granularity. The results of treating experiment by the calcite neutralization-PHA adsorption technique on certain AMD indicate that the effluent liquid reach emission standard, percent recovery for Cu2+ attained 92.85% and enrichment ratio was 9.85.
引文
[1]刘翰朝.我国21世纪水资源挑战与节水型社会经济模式的探讨.水利与建筑工程学报,2006,4(2):73-77
    [2]胡海祥.重金属废水治理技术概况及发展方向.中国资源综合利用,2008,26(2):22-25
    [3]戴玉华,饶运章,吴红,等.矿山酸性废水与重金属污染规律研究.黄金,2007,28(7):45-48
    [4]刘有才,钟宏,刘洪萍.重金属废水处理技术研究现状与发展趋势.广东化工,2005,4(4):36-40
    [5]金熙.工业水处理技术问题及常用数据.北京:化学工业出版社,1997,115-117
    [6]Santos S, MachadoR, Joana N C, et al. Treatment of acid mining waters. Minerals Engineering,2004,17(2):225-232
    [7]李新春.石灰石-石灰乳二段法处理选厂酸性废水的试验探索及可行性分析.新疆有色金属,2007,30(4):42-45
    [8]张学洪,许立巍,朱义年,等.石灰石和方解石预处理酸性含氟废水的试验研究.矿冶工程,2005,25(2):49-53
    [9]徐亮.白云石过滤中和硫酸型酸性废水工艺技术研究.江苏理工大学学报,1998,19(5):85-89
    [10]Mirbagheri S A, Hosseini S N. Pilot plant investigation on petrochemical wastewater treatment for the removal of copper and chromium with the objective of reuse. Desalination,2004,171(1):85-93
    [11]PepeHerrera S, HiroyukiUchiyama, Toshifumi Igarash, et al. Acidmine drainage treatment through a two-step neutralization ferrite-formation process in northern Japan:Physical and chemical characterization of the sludge. Minerals Engineering,2007,20(14):1309-1314
    [12]彭容秋.重金属冶金工厂环境保护.长沙:中南大学出版社,2006:205-210
    [13]鲁栋梁,夏璐,温堡林.铁氧体法处理含铜、锌、镉重金属废水的实验研究.金属矿山,2009(2):154-167
    [14]李静红,王淑英,张艳,等.常温中和铁氧体法处理低浓度含镍废水的研究.工业水处理,2008,28(8):25-27
    [15]Jonsson J, Jonsson J, Lovgren L. Precipitation of secondary Fe(Ⅲ) minerals from acid mine drainage. Applied Geochemistry,2006,21(3):437-445
    [16]廖国礼,吴超.资源开发环境重金属污染与控制.长沙:中南大学出版社, 2006:282-288
    [17]光建新.铁屑还原法处理含铬废水的研究.电镀与环保,2007,26(3):42-43
    [18]Lii Y J, Hong W L, Gao Y, et al. The Thermodynamics and Kinetics on the Solvent Sublation of Ni. Chinese Journal of Chemical Physics,2006,19(2): 159-164
    [19]Eom T H, Lee C H, Kim J H, et al. Development of an ion exchange system for plating wastewater treatment. Desalination,2005,180(1-3):163-172
    [20]徐新阳,尚·阿嘎布.矿山酸性含铜废水的处理研究.金属矿山,2006(11):76-78
    [21]Acharya J, Sahu J N, Mohanty C R, et al. Meikap. Removal of lead(Ⅱ) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chemical Engineering Journal,2009,149(1-3):249-262
    [22]Mohan D, Chander S. Removal and recovery of metal ions from acid mine drainage using lignite-A low costsorbent. Journal of Hazardous Materials,2006, 137(3):1545-1553
    [23]Singh C K, Sahu J N, Mahalik K K, et al. Studies on the removal of Pb(Ⅱ) from wastewater by activated carbon developed from Tamarind wood activated with sulphuric acid. Journal of Hazardous Materials,2008,153(1-2):221-228
    [24]Shin E J, Lauve A, Carey M, et a.l.The development of bio-carbon adsorbents from Lodgepole Pine to remediate acid mine drainage in the Rocky Mountains. Biomass and Bioenergy,2008,32(3):267-276
    [25]王菲,王连军,李健生,等.大孔螯合树脂对pb2+的吸附行为及机理.过程工程学报,2008,8(3):466-471
    [26]张健,高保娇,卢金华.水杨酸型螯合树脂对Fe(Ⅲ)离子的螯合吸附行为.物理化学学报,2009,25(3):532-538
    [27]Baraka A, Hall P J, Heslop M J. Preparation and characterization of melamine-formaldehyde-DTPA chelating resin and its use as an adsorbent for heavy metals removal from waste water. Reactive & FunctionalPolymers,2007,67(7): 585-600
    [28]孙胜玲,王丽,吴瑾,等.壳聚糖及其衍生物对金属离子的吸附研究(下).高分子通报,2005(6):32-36
    [29]Wantanaphong J, Mooney S J, Bailey E H, Natural and waste materials as metal sorbents in permeable reactive barriers (PRBs). Environmental Chemistry Letters,2005,3(1):19-23
    [30]Amuda O S, Giwa A A, Bello IA. Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochemical Engineering Journal,2007,36(2):174-181
    [31]申颖.高分子螯合树脂的制备及性能研究:[硕士学位论文].哈尔滨:哈尔滨工程大学,2007
    [32]钟常明,许振良,方夕晖,等.超低压反渗透膜处理矿山酸性废水及回用.水处理技术,2007,33(6):77-80
    [33]Ozaki H, Sharma K, Saktaywin W. Performance of an ultra-low-pressure reverse osmosis membrane(ULPROM) for separating heavy metal effects of interference parameters. Desalination,2002,144(1-3):287-294
    [34]林达,谢水波,姜赛红,等.重金属生物吸附研究进展.铀矿冶,2007,26(2):96-100
    [35]蔡卓平,段舜山.微藻对污水中重金属的生物吸附.生态科学,2008,27(6):499-505
    [36]Jong T, Parry D L. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs. WaterResearch,2003,37(1):3379-3389
    [37]杨勇.湿地系统处理重金属废水的应用研究:[硕士学位论文].上海:同济大学,2007
    [38]王帅.聚酯基硫脲树脂的合成及其对贵金属离子的吸附分离性能:[博士学位论文].长沙:中南大学,2008
    [39]Pearson R G. Hard and soft acids and bases. Journal of the American Chemical Society.1963,85(22):3533-3539
    [40]张双庆,张超灿,贺昌海.聚醚型螯合树脂的合成及其等温吸附性能.化工中间体,2009,5(1):31-36
    [41]Ding S M, Zhang X Y, Feng X H, et al. Synthesis of N, N'-diallyl dibenzo 18-crown-6 crown ether crosslinked chitosan and their adsorption properties for metal ions. Reactive and Functional Polymers,2006,66(3):357-363
    [42]汤红仙,金加洪,陈强,等.多胺型螯合树脂的制备及吸附性能研究.材料导报,2009,23(8):88-105
    [43]时京喜,纪春暖,许国纯,等.含双亚砜及3-氨基吡啶螯合树脂的合成、表征及其吸附性能.离子交换与吸附,2008,24(6):504-511
    [44]刘梅,朱桂茹,苏燕,等.偕胺肟基纤维的合成及对铀的吸附性能研究.水处理技术,2009,35(7):259-264
    [45]Alakhras F A, Dari K A, Mubarak M S. Synthesis and chelating properties of some poly(amidoxime-hydroxamic acid) resins toward some trivalent lanthanide metal ions. Journal of Applied Polymer Science,2005,97(2):691-696
    [46]Lin L C, Li J K, Juang R S. Removal of Cu(Ⅱ) and Ni(I Ⅱ) from aqueous solutions using batch and fixed-bed ion exchange processes. Desalination,2008, 225(1-3):249-259
    [47]王惠君,孙静亚.亚胺基二乙酸树脂对镍吸附的配位比研究.浙江海洋学院学报(自然科学版),2004,23(2):137-139
    [48]Rivas B L, Pooley S A, Soto M, et al. Water-soluble copolymers of 1-vinyl-2-pyrro lidone and acrylamide derivatives:synthesis, characterization, and metal binding capability studied by liquid-phase polymer-based retention technique. Journal of Applied Polymer Science,1999,72(6):741-750
    [49]王碧,许桂丽,胡星琪.含羟肟酸侧基高分子重金属捕集剂处理含铅废水的研究.化学研究与应用,2008,20(5):561-564
    [50]曲荣君,王春华,孙昌梅,等.汞(Ⅱ)在螯合树脂聚[对乙烯苄基-(2-羟乙基)硫醚]上的吸附机理.分析化学,2004,32(4):445-450
    [51]许海峰,唐瑞仁,曹佐英,等.壳聚糖黄原酸盐对Cu-(2+)的吸附性能.应用化学,2008,25(6):673-676
    [52]Atiav A A. Adsorption of silver and gold on resins derived from bisthiourea and application to retrieval of silver ions from processed photo films. Hydrometallurgy,2005,80(3):98-106
    [53]Emre B, Mustafa G, Ali O A. Separation and recovery of palladium(II) from base metal ions by melamine-formaldehyde-thiourea(MFT) chelating resin. Hydrom-etallurgy,2009,95(1-2):15-21
    [54]赵振新,马步伟,梁志宏.硫代酰胺基螯合纤维的合成及其吸附性能研究.离子交换与吸附,2006,22(5):392-401
    [55]杨丽梅,李玲,黄松涛,等.氨基膦酸型螯合树脂对水溶液中Ni2+,Fe2+,Fe3+吸附行为的研究.稀有金属,2009,33(3):401-405
    [56]肖江.稀土矿物捕收剂异羟肟酸的现状与发展方向.稀土,1995,16(6):51-55
    [57]Desaraju P, Winston A. Synthesis and Iron Complexation Studies of Bis-Hydroxamic Acid. Journal of Coordination Chemistry,1986,14(3): 241-248
    [58]郑贵山,刘炯天,陈天修.羟肟酸钠浮选赤铁矿的研究.矿冶,2009,18(4):9-12
    [59]曾伟,曾贵玉,秦圣英.异羟肟酸的合成与应用研究新进展.有机化学,2003,23(11):1213-1218
    [60]符剑刚,钟宏,吴长永,等.羟胺法合成羟肟酸的研究进展.广东有色金属 学报,2005,15(1):65-69
    [61]李梅,钟宏,郭艳.羟肟酸的合成方法及其在浮选中的应用展.广州化工2009,37(5):9-12
    [62]林江顺,高颖剑.C5-9羟肟酸浮选赤铁矿.有色金属,1999,51(3):45-48
    [63]Agrawal Y K, Kunji P S. Synthesis and dissociation constants of calix(6)arene hydroxamic acids. Iranian Journal of Science & Technology, Transaction A, 2005,29(A1):1-8
    [64]Gorlovskii S I, Khobotova N P. Synthesis of surfactantcomplex-forming hydroxamic acids and their use in beneficiation of rare metal. CA,1976,66: 4983-4987
    [65]符剑刚,钟宏,张正国,等.以猪油为原料合成羟肟酸.中南大学学报(自然科学版),2004,35(2):239-243
    [66]朱常英,钱庭宝,高钺.三烯丙基三聚异氰酸酯与二乙烯基苯混合交联大孔聚丙烯腈树脂的肟化反应.离子交换与吸附,1989,5(2):81-86
    [67]Lutfor M R, Sidik S, Yunus W M Z W, et al. Synthesis and Characterization of Poly(hydroxamic acid) Chelating Resin from Poly(methyl acrylate)-Grafted Sago Starch. Journal of Applied Polymer Science,2001,79(7):1256-1264
    [68]Haron M J, Shafie N A, Yusof N A, et al. Sorption of Cu(Ⅱ) by chemically grafted hydroxamic acid-zeolite. The Malaysian Journal of Analytical Sciences, 2009,13(1):52-62
    [69]Haron M J, Tiansih M, Ibrahim N A, et al. Sorption of Cu(Ⅱ) by poly (hydroxamic acid) chelating exchanger prepared from pol(ymethyl acrylate) grafted oil palm empty fruit bunch(OPEFB). BioResources,2009,4(4): 1305-1318
    [70]钟宏.一种制备高分子量的含异羟肟酸基团的水溶性聚合物的方法.中国专利,CN1872885,2006-12-06
    [71]卢红梅,钟宏.氧肟酸型淀粉合成的工艺条件实验研究.轻金属,2002(6):23-26
    [72]李海普.改性高分子药剂对铝硅矿物浮选作用机理及其结构一性能研究:[博士学位论文].长沙:中南大学,2002
    [73]Lee T S, Hong S. Synthesis of porous poly(hydroxamic acid)from poly(ethyl acrylate-co-divinylbenzene). Polymer Bulletin,1994,32(3):273-279
    [74]Isikver Y, Saraydin D, Sahiner N. Poly(hydroxamic acid) hydrogels from poly(acrylamide):preparation and characterization. Polymer Bulletin,2001, 47(1):71-79
    [75]Saraydin D, Isikver Y, Sahiner N. Uranyl ion binding properties of poly(hydroxamic acid) hydrogels. Polymer Bulletin,2001,47(1):81-89
    [76]Khodadadi R, Fakhri S A, Entezami A A. Poly(hydroxamic acid) Chelating Resin:The Synthesis and Uses. Journal of Polymer Science and Technology, 1995,4(4):248-255
    [77]Agrawal Y K, Kaur H. Synthesis, characterization and applications of poly (β-styryl) hydroxamic acids. Reactive and Functional Polymers,1999,42(1): 1-9
    [78]Trivedi U V, Menon S K, Agrawal Y K. Polymer supported calix[6]arene hydroxamic acid, a novel chelating resin. Reactive and Functional Polymers, 2002,50(3):205-216
    [79]张学文,蔡鹏,黄巧云,等.抗重金属细菌对土壤胶体和矿物比表面积的影响.华中农业大学学报(自然科学版),2006,25(4):393-396
    [80]王爱萍.PDTU系列聚酯基硫脲树脂的合成及其对Pt(Ⅳ)、Pd(Ⅱ)吸附性能与机理的研究:[硕士学位论文].长沙:中南大学,2008
    [81]何炳林,黄文强.离子交换与吸附树脂.上海:上海科技教育出版社,1994:93-133
    [82]Michaels A S. Simplified Method of Interpreting Kinetic Data in Fixed-Bed Ion Exchange. Industrial and Engineering Chemistry.1952,44(8):1922-1930
    [83]陈敬军.Fe(Ⅲ)负载型螯合树脂吸附砷(Ⅴ)的研究:[硕士学位论文].南昌:南昌大学,2005
    [84]李风,席永婷.碘量法测定铜矿石中铜方法的改进.岩矿测试,2009,28(1):77-78
    [85]李霞,叶红齐,张丽艳,等.EDTA分光光度法测定铜金粉中的高含量铜.粉末冶金材料科学与工程,2008,3(6):373-376
    [86]中华人民共和国国家环境保护部.HJ 485-2009.水质铜的测定-二乙基二硫代氨基甲酸钠分光光度法.北京:中国环境科学出版社,2009-11-01
    [87]冒爱荣.火焰原子吸收光谱法测定镀铬液中铜的含量.理化检验(化学分册),2009,45(7):842-843
    [88]张云,于雪涛.滴定计算分析法同时测定Fe(Ⅲ)与Fe(Ⅱ)的研究.2004,20(6):631-633
    [89]田莉玉,刘淑芹,高敏.火焰原子吸收光谱法测定天然水中微量铁的形态.理化检验(化学分册),2003,39(5):291-292
    [90]中华人民共和国国家环境保护部.HJ/T 345-2007.水质铁的测定-邻菲啰啉分光光度法.北京:中国环境科学出版社,2007-05-01
    [91]Boyd G E, Adason A W, Myers L S. The exchange adsoption of ions from aquous solution by organic zeolites. Journal of the American Chemisray Society,1947, 69(3):2836-2848
    [92]马红梅,朱志良,张荣华,等.弱碱性环氧阴离子交换树脂去除水中铜的动力学研究.离子交换与吸附,2006,22(6):519-526
    [93]Bhattacharyya K G, Gupta S S. Pb(II) uptake by kaolinite and montmorillonite
    in aqueous medium:Influence of acid activation of the clays. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2006,277(1-3):191-200
    [94]Allen S J, Mckay G, Porter J F. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Journal of Colloid and Interface Science.2004,280(2):322-333
    [95]Sun C M, Qu R J, Jia C N, et al. A chelating resin containing S, N and O atoms: Synthesis and adsorption properties for Hg(Ⅱ). European Polymer Journal,2006, 42(1):188-194
    [96]兰秋平.德兴铜矿酸性废水处理调控系统的建立与应用.矿业快报,26(2):56-58
    [97]徐亮.白云石过滤中和硫酸型酸性废水工艺技术研究.江苏理工大学学报,1998,19(5):85-89
    [98]刘定富.电镀废水中分离铁(Ⅲ)的研究.贵州工业大学学报(自然科学版),2007,36(6):90-93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700