用户名: 密码: 验证码:
猪FoxO1基因cDNA的克隆及对前体脂肪细胞和成肌细胞分化的调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们生活水平的提高,消费者对肉类产品的质量提出了更高的要求,不仅要求肉品瘦肉率高、脂肪分布适中,而且要求肉品优质。目前,肉产品的数量已能满足人们的消费需求,但其品质却越来越差。因此,研究肉质形成及其分子机理成为目前家畜育种科研工作者关注的焦点。导致肉质变差的因素很多,主要有脂肪的沉积部位发生改变,如肌内脂肪含量下降、皮下脂肪和腹脂沉积过多以及肌纤维颜色变苍白、肌纤维类型比例失调、PH值下降等。脂肪细胞和肌细胞是动物脂肪组织和肌肉组织主要组成单位,分别由前体脂肪细胞和成肌细胞分化而来,两类细胞的增殖与分化状况对脂肪形成和肌形成起关键作用。近年来研究表明,在啮齿动物鼠及其细胞系中,叉头转录因子O亚家族1(forkhead transcription factor group o1,Foxo1)可能是前体脂肪细胞和成肌细胞分化过程的重要调控因子,通过多条通路影响细胞增殖、分化、凋亡和细胞周期以及葡萄糖代谢和氧化应激等,暗示小鼠Foxo1在脂肪细胞和肌细胞的形成过程中发挥重要的调控作用。
     体脂沉积是脂肪细胞内甘油三脂聚积、脂滴从无到有、从多室变为单室的过程,实质是前体脂肪细胞增殖、分化及肥大共同作用的结果;而肌形成则是成肌细胞融合为肌管,进而成为多核的肌纤维的过程。前体脂肪细胞和成肌细胞原代培养体系为研究细胞分化及调控提供了一个可操作模型。推测猪FoxO1很可能与其它转录因子组成网络共同调控成脂和成肌过程。本实验首先通过RACE技术克隆了猪FoxO1 cDNA全长,并对其进行了序列分析和蛋白结构与功能的预测;其次,利用猪×仓鼠体细胞辐射杂种克隆板(IMpRH7000-rad)对FoxO1基因进行染色体精细定位,并运用Realtime PCR和Western blotting技术分析了猪FoxO1基因组织表达规律;再次,运用细胞培养技术研究了不同浓度的百藜芦醇和IGF-1对猪前体脂肪细胞和成肌细胞增殖与分化的影响,并初步探讨了可能的作用机理;最后,运用脂质体转染和RNAi技术研究了FoxO1对猪成肌和成脂关键基因时序表达的调控作用,获得如下结论:
     1.猪FoxO1基因cDNA克隆、序列分析及其蛋白结构与功能预测。5'和3'RACE克隆测序后,去掉载体序列、引物序列和重复的部分已知序列,经拼结得到cDNA全长序列2335bp,其中含有起始密码子ATG和终止密码子TGA,polyA序列,Genebank登陆号EF453379。运用生物信息学预测,猪FoxO1基因氨基酸序列长度为662AA,蛋白质分子量为69.93kD,等电点pH为6.295;具有Forkhead DNA结构域(AA 165-255),跨膜结构(AA90-113),但无信号肽;磷酸化位点预测结果显示含有51个Ser、8个Thr和4Tyr磷酸化位点;蛋白二级结构推测含有螺旋构象(helix)22%,折叠构象(sheet)19%,转角构象(turn)24%,无规则卷曲(coil)35%;预测了猪FoxO1 mRNA的二级结构,其结构的自由能为-671.5 kcal/mol。
     2.猪FoxO1基因染色体精细定位及其组织表达分析。运用RH辐射克隆板方法研究发现,猪FoxO1基因与标记SW1632紧密连锁,与SW1632的遗传距离为0.32cR,两点分析结果LOD值为12.17,故将猪FoxO1基因定位于11p13。组织表达分析发现,初生和180日龄时猪皮下脂肪、腹腔脂肪和肝脏组织FoxO1基因表达均相对较高,骨骼肌组织FoxO1基因表达则相对较低;初生与180日龄猪相比,相应组织中FoxO1表达量较高(P<0.05),提示猪FoxO1在这4种组织中可能发挥重要生理作用。
     3.百藜芦醇和IGF-1分别以剂量和时间依赖的方式抑制和促进猪前体脂肪细胞增殖与分化,以100μmol/L RES组和100 ng/mL IGF-1组作用最为明显,其机理可能与FoxO1 mRNA的上调或下调而导致PPARγmRNA表达变化有关,其中Sirt1可能起到辅助调节的作用。
     4.百藜芦醇和IGF-1分别以剂量和时间依赖的方式抑制和促进猪成肌细胞增殖与分化,以160μmol/L RES组和45 ng/mL IGF-1组作用最为明显,其机理可能与FoxO1 mRNA的上调或下调而导致MyoD mRNA表达变化有关。
     5.成功构建了猪FoxO1干扰表达载体。以原代猪前体脂肪细胞和成肌细胞为模型的研究中,证实脂质体的转染效率明显高于磷酸钙沉淀法。构建了3个猪FoxO1 siRNA表达载体,分别为pBS/U6-FoxO1-952、1303和1748,并运用脂质体转染猪前体脂肪细胞和成肌细胞,经RT-PCR和免疫荧光检测发现pBS/U6-FoxO1-1748对细胞内源FoxO1的抑制效果最明显。
     6.内源FoxO1表达的抑制可导致猪前体脂肪细胞和成肌细胞增殖与分化能力增强,原因很可能与关键成脂基因PPARγ、A-FABP、H-FABP、Sirt1、LPL和GADD45α及成肌基因MyoD、MEF2C、CaMKII、Sirt1、NFAT、MyoG、IGFBP5和GADD45α表达上调或下调有关。
Following the improvement of living standard, consumers proposes higher request for meat quality. They not only require high lean meat but also proper fat proportion. At present, the quantity of meat product has been satisfied for people, but the quality is becoming poor. Therefore, study on meat formation and molecular mechanism has been hotspot for animal scientist. There are many factors caused decrease of meat quality, mainly is the position change of fat deposition, such as decrease of intramuscular fat content, too much deposition of subcutaneous fat and abdomen fat, pale of muscle fiber, dysregulation of type and proportion of muscle fiber and PH diminish. Adipocyte and myocyte is the major component unit of animal adipose and muscle, respectively differentiated from preadipocyte and myoblast. The state of proliferation and differentiation is essential for fat and muscle formation. The studies in recent years showed that Foxo1 might be the key regulatory factor during process of preadipocyte and myoblast differentiation in mouse cell lines. It may influence cell proliferation, differentiation, apoptosis, and cell cycle through multiple ways, hinting that procine Foxo1 plays an important modulatory role during formation of adipocyte and myocyte.
     Fat deposition is the process that TG accumulation, lipid droplets de novo and from many small droplets change into single droplet, which result from interplay of preadipocyte proliferation, differentiation and hypertrophy. Muscle formation is the process that myoblast confluent into myotube and further become muscle fiber with multinuclear. The primary culture system of preadipocyte and myoblast provides an effective model for studying cell differentiation. It was supposed that FoxO1 interacted with other transcription factors to regulate fat and muscle formation. In this study, FoxO1 complete cDNA was firstly cloned with RACE method and performed sequence analysis and predict of protein structure and function. Then, the refined chromosome location of FoxO1 was operated by IMpRH7000-rad. The tissue expression of pig FoxO1 was detected by Realtime PCR and Western blotting. The effects of resveratrol and IGF-1 on proliferation and differentiation of pig preadipocyte and myoblast were analyzed using cell culture technique, which possible mechanism was primarily probed. Finally, the modulation of FoxO1 on time-spatial expression of genes concerned pig fat and muscle formation was checked by liposome and RNAi. The conclusion was as follows:
     1. cDNA cloning, sequencing analysis and predict of protein structure and function of pig FoxO1. After clone sequence of 5' and 3'RACE, removing vector, primer and partial repeat known sequence and, 2335bp of complete cDNA was obtained through sequence junction, among which containing initiation codon ATG, termination codon TGA,and polyA sequence. The Genebank number is EF453379. Predicting by bioinformation, the AA sequence length of pig FoxO1 was 662AA; molecular weight was 69.93kD; isoelectric point pH was 6.295. It had Forkhead DNA structural domain(AA165-255) and transmembrane structure(AA 90-113), but no signal peptide. The prediction of phosphorylation site indicated that there were 51 Ser, 8 Thr and 4 Tyr phosphorylation sites. The protein secondary structure speculated that there were 22% helix, 19% sheet, 24% turn and 35% coil conformation. The free energy of FoxO1 mRNA secondary structure in pig was -671.5 kcal/mol.
     2. The chromosome location and tissue expression analysis of procine FoxO1 gene. Using RH radiation clone plate found that procine FoxO1 was closely linked to marker SW1632. The genetic distance of FoxO1 with SW1632 was 0.32cR and LOD was 12.17, so procine FoxO1 was located in 11p13. The analysis of tissue expression indicated that FoxO1 was higher expressed in subcutaneous adipose, visceral adipose, liver and skeletal muscle in piglets and 180-day-old pigs, which piglets was higher than that of 180-day-old pigs. The tissue expression of procine FoxO1 indicated that FoxO1 might play an important physiological role in these four tissues.
     3. Resveratrol and IGF-1 could respectively repress and promote procine preadipocyte proliferation and differentiation in dose and time dependent manner. Among them, there were significantly difference in 100μmol/L RES and 100 ng/mL IGF-1 groups. This might be resulted from up-regulate or down-regulate of FoxO1 mRNA causing change of PPARγmRNA expression, which Sirt1 may play assisted modulatory role.
     4. Resveratrol and IGF-1 respectively repressed and promoted procine myoblast proliferation and differentiation in dose and time dependent manner. Among them, there were significantly difference in 160μmol/L RES and 45 ng/mL IGF-1 groups. It might be resulted from up-regulate or down-regulate of FoxO1 mRNA expression causing change of MyoD mRNA expression.
     5. Construction of procine FoxO1 RNAi expression vector. The study of procine primary preadiocyte and myoblast identified that the transfection efficiency of liposome was higher than method of calcium phosphate precipitation. It had been successfully constructed 3 FoxO1 siRNA expression vectors, pBS/U6-FoxO1-952, 1303 and 1748, respectively, then transfected into pig preadipocyte and myoblast by liposome. It was found that pBS/U6-FoxO1-1748 could effectively repress endogenous FoxO1 by RT-PCR and immunofluorescence.
     6. Inhibition of endogenous FoxO1 expression promoted the ability of pig preadipocyte and myoblast to form fat and muscle. The reason might be related to expression up-regulation or down-regulation of the key adipocyte genes PPARγ, A-FABP, H-FABP, Sirt1, LPL, GADD45αand muscle genes MyoD、MEF2C、CaMKII、Sirt1、NFAT、MyoG、IGFBP5 and GADD45α.
引文
[1] Holst D, Grimaldi PA.New factors in the regulation of adipose differentiation and metabolism. Curr Opin Lipidol [J]. 2002, 13:241-245.
    [2] Greenberg AS, McDaniel ML. Identifying the links between obesity, insulin resistance and beta cell function: potential role of adipocyte-derived cytokines in the pathogenesis of type 2 diabetes. Eur J Clin Invest [J]. 2002, l 3:24-34.
    [3] Taylor SM, Jones PA. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-Azacytidine[J]. Cell, 1979, 17:771-779.
    [4] Dani C, Smith AG, Dessolin S, et. al. Differentiation of embryonic stem cells into adipocyte in vitro[J]. J Cell Sci, 1997, 110:1279-1285.
    [5] Pittenger MF , Mackay AM, Beck SC , et al. Multilineage potential of adult human mesenchymal stem cells[J] .Science, 1999,284:143-147.
    [6] Green H, Meuth M.An established cell line and its differentiation in culture[J]. Cell, 1975, 5:19-27.
    [7] Wabitsch M, Brenner RE , Melzner I , et al. Characterization of a human preadipocyte cell strain with high capacity for adipose differentiation[J]. Int J Obes Relat Metab Disord, 2001 , 25:8-15.
    [8] Cornelius P, Macdougald OA, Lane MD. Regulation of adipocyte development [J]. Annu Rev Nutr, 1994, 14:99-129.
    [9] Tang QQ, Otto TC, Lane MD. Mitotic clonal expansion: A synchronous process required for adipogenesis [J]. Proc Natl Acad Sci USA, 2003, 100:44-49.
    [10] Ailhaud G.Early adipocyte differentiation[J].Biochem SocTrans, 1996, 24:400-402.
    [11] Wu Z, Bucher NL, Farmer SR. Induction of peroxisome proliferators-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta and glucocorticoids [J]. Mol Cell Biol, 1996, 16:4128-4136.
    [12] Spiegelman BM, Farmer SR.Decreases in tubulin and actin gene expression prior to morphological differentiation of 3T3 adipocytes [J]. Cell, 1982, 29:53-60.
    [13] Bruno Fe`ve.Adipogenesis: cellular and molecular aspects [J]. Best Practice & Research Clinical Endocrinology & Metabolism, Vol. 19, No. 4, pp. 483–499, 2005
    [14] 卢慧玲, 王宏伟, 林汉华. 前脂肪细胞分化为成熟脂肪细胞后的再增殖[J]. 基础医学与临床,2003, 23(6):608-611
    [15] Zhou YT, Wang ZW, Higa M, Newgard CB, Unger RH. Reversing adipocyte differentiation: implications for treatment of obesity[J]. Proc Natl Acad Sci USA, 1999, 96:2391–2395.
    [16] Sugihara H, Yonemitsu N, Miyabara S, Yun K. Primary cultures of unilocular fat cells: characteristics of growth in vitro and changes in differentiation properties[J]. Differentiation, 1986, 31:42–49.
    [17] Vierck J, Porto D, Dodson M. Induction of differentiation of adipofibroblasts using a defined treatment medium without DMI[J]. Basic Appl Myol, 2001, 11:1–6.
    [18] Vierck JL, McNamara JP, Dodson MV. Proliferation and differentiation of progeny of ovine unilocular fat cells (adipofibroblasts)[J]. In Vitro Cell Dev Biol Anim, 1996, 32:564–572.
    [19] Grimaldi PA. The roles of PPARs in adipocyte differentiation[J]. Prog Lipid Res, 2001, 40(4):269-281.
    [20] MacDougald OA, Mandrup S. Adipogenesis: forces that tip the scales[J].Trends Endocrinol Metab,2002, 13(1):5-11.
    [21] Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation[J]. Physiol Rev, 1998, 78(3):783-809.
    [22] Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis[J]. Annu Rev Cell Dev Biol, 2000, 16:145-171.
    [23] Vogel CF, Sciullo E, Park S,et al. Dioxin increases C/EBPbeta transcription by activating cAMP/protein kinase A[J]. J Biol Chem, 2004, 279(10):8886-8894.
    [24] Reusch JE, Colton LA, Klemm DJ. CREB activation induces adipogenesis in 3T3-L1 cells[J]. Mol Cell Biol, 2000, 20(3):1008-1020.
    [25] Tzameli I, Fang H, Ollero M, et al. Regulated production of a PPAR-gamma ligand during an early phase of adipocyte differentiation in 3T3-L1 adipocytes[J]. J Biol Chem, 2004.
    [26] Bennett CN, Ross SE, Longo KA, et al. Regulation of Wnt signaling during adipogenesis. J Biol Chem, 2002, 277(34):30998-31004.
    [27] Ailhaud G. Molecular mechanisms of adipocyte differentiation[J]. J Endocrinol, 1997, 155(2):201-202.
    [28] Zilberfarb V, Siquier K, Strosberg AD, Issad T. Effect of dexamethasone on adipocyte differentiation markers and tumour necrosis factor-alpha expression in human PAZ6 cells [J].Diabetologia, 2001, 44(3):377-386.
    [29] Shin SM, Kim K, Kim JK, et al. Dexamethasone reverses TGF-beta-mediated inhibition of primary rat preadipocyte differentiation. FEBS Lett, 2003, 543(1-3):25-30.
    [30] Amri EZ, Grimaldi P, Negrel R, Ailhaud G. Adipose conversion of ob17 cells. Insulin acts solely as a modulator in the expression of the differentiation program [J]. Exp Cell Res, 1984, 152(2):368-377.
    [31] Lehmann JM, Moore LB, Smith TA, et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma) [J]. J Biol Chem, 1995, 270(22):12953-12956.
    [32] Jin S, Zhai B, Qiu Z, et al. c-Crk, a substrate of the insulin-like growth factor-1 receptor tyrosine kinase, functions as an early signal mediator in the adipocyte differentiation process [J]. J Biol Chem ,2000, 275(44):34344-34352.
    [33] Gagnon A, Chen CS, Sorisky A. Activation of protein kinase B and induction of adipogenesis by insulin in 3T3-L1 preadipocytes: contribution of phosphoinositide-3,4,5-trisphosphate versus phosphoinositide-3,4-bisphosphate [J]. Diabetes, 1999, 48(4):691-698.
    [34] Magun R, Burgering BM, Coffer PJ, J et al. Expression of a constitutively activated form of protein kinase B (c-Akt) in 3T3-L1 preadipose cells causes spontaneous differentiation [J]. Endocrinology, 1996, 137(8):3590-3593.
    [35] Benito M, Porras A, Nebreda AR, Santos E. Differentiation of 3T3-L1 fibroblasts to adipocytes induced by transfection of ras oncogenes[J]. Science, 1991, 253(5019):565-568.
    [36] Porras A, Nebreda AR, Benito M, Santos E. Activation of Ras by insulin in 3T3 L1 cells does not involve GTPase-activating protein phosphorylation [J]. J Biol Chem, 1992, 267(29):21124-21131.
    [37] Uehara T, Tokumitsu Y, Nomura Y. Wortmannin inhibits insulin-induced Ras and mitogen-activated protein kinase activation related to adipocyte differentiation in 3T3-L1 fibroblasts [J]. Biochem Biophys Res Commun, 1995, 210(2):574-580.
    [38] Belmonte N, Phillips BW, Massiera F, et al. Activation of extracellular signal-regulated kinases and CREB/ATF-1 mediate the expression of CCAAT/enhancer binding proteins beta and -delta in preadipocytes [J]. Mol Endocrinol, 2001, 15(11):2037-2049.
    [39] Camp HS, Tafuri SR, Leff T. c-Jun N-terminal kinase phosphorylates peroxisome proliferator-activated receptor-gamma1 and negatively regulates its transcriptional activity [J]. Endocrinology, 1999, 140(1):392-397.
    [40] Prusty D, Park BH, Davis KE, Farmer SR. Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor gamma (PPARgamma ) and C/EBPalpha gene expression during the differentiation of 3T3-L1 preadipocytes [J]. J Biol Chem, 2002, 277(48):46226-46232.
    [41] Qiu Z, Wei Y, Chen N, et al. DNA synthesis and mitotic clonal expansion is not a required step for 3T3-L1 preadipocyte differentiation into adipocytes [J]. J Biol Chem, 2001, 276(15):11988-11995.
    [42] Engelman JA, Lisanti MP, Scherer PE. Specific inhibitors of p38 mitogen-activated protein kinase block 3T3-L1 adipogenesis [J]. J Biol Chem, 1998, 273(48):32111-32120.
    [43] Engelman JA, Berg AH, Lewis RY, et al. Constitutively active mitogen-activated protein kinase kinase 6 (MKK6) or salicylate induces spontaneous 3T3-L1 adipogenesis [J]. J Biol Chem, 1999, 274(50):35630-35638.
    [44] Mur C, Arribas M, Benito M, Valverde AM. Essential role of insulin-like growth factor I receptor in insulin-induced fetal brown adipocyte differentiation [J]. Endocrinology, 2003, 144(2):581-593.
    [45] Miki H, Yamauchi T, Suzuki R, et al. Essential role of insulin receptor substrate 1 (IRS-1) and IRS-2 in adipocyte differentiation [J]. Mol Cell Biol, 2001, 21(7):2521-2532.
    [46] Terauchi Y, Tsuji Y, Satoh S, et al. Increased insulin sensitivity and hypoglycaemia in mice lacking the p85 alpha subunit of phosphoinositide 3-kinase [J]. Nat Genet, 1999, 21(2):230-235.
    [47] Tomiyama K, Nakata H, Sasa H, et al. Wortmannin, a specific phosphatidylinositol 3-kinase inhibitor, inhibits adipocytic differentiation of 3T3-L1 cells [J]. Biochem Biophys Res Commun, 1995, 212(1):263-269.
    [48] Xia X, Serrero G. Inhibition of adipose differentiation by phosphatidylinositol 3-kinase inhibitors [J]. J Cell Physiol, 1999, 178(1):9-16.
    [49] Sakaue H, Ogawa W, Matsumoto M, et al. Posttranscriptional control of adipocyte differentiation through activation of phosphoinositide 3-kinase [J]. J Biol Chem, 1998, 273(44):28945-28952.
    [50] Hansen JB, Petersen RK, Jorgensen C, Kristiansen K. Deregulated MAPK activity prevents adipocyte differentiation of fibroblasts lacking the retinoblastoma protein [J]. J Biol Chem, 2002, 277(29):26335-26339.
    [51] Fajas L, Landsberg RL, Huss-Garcia Y, Sardet C, Lees JA, Auwerx J. E2Fs regulate adipocyte differentiation [J]. Dev Cell, 2002, 3(1):39-49.
    [52] Nakae J, Kitamura T, Kitamura Y, et al. The forkhead transcription factor Foxo1 regulates adipocyte differentiation [J]. Dev Cell, 2003, 4(1):119-129.
    [53] Usui I, Haruta T, Iwata M, et al. Retinoblastoma protein phosphorylation via PI 3-kinase and mTOR pathway regulates adipocyte differentiation [J]. Biochem Biophys Res Commun, 2000, 275(1):115-120.
    [54] Gagnon A, Lau S, Sorisky A. Rapamycin-sensitive phase of 3T3-L1 preadipocyte differentiation afterclonal expansion [J]. J Cell Physiol, 2001, 189(1):14-22.
    [55] Gao J, Li Z, Paulin D. A novel site, Mt, in the human desmin enhancer is necessary for maximal expression in skelcaal musrae [J]. J Biol Chem, 1998, 273(11):6402-6410.
    [56] Kuang W,Xu H, Vachon P H et al. Merosin-deficient congenital muscular dystrophy. Partial genetic correction in two mouse models [J]. J Clin Invest,1998, 102(4):844-851.
    [57] Coleman, ML, and Olson MF. Rho GTPase signalling pathways in the morphological changes associated with apoptosis [J]. Cell Death Differ, 2002, 9:493–504.
    [58] Gallo R, Serafini M, Castellani L, et al. Distinct effects of Rac1 on differentiation of primary avian myoblasts [J]. Mol Biol Cell, 1999, 10:3137–3150.
    [59] Hall A, and Nobes CD. Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton [J]. Philos Trans R Soc Lond B, 2000, 355:965–970.
    [60] Qu G, Yan H, and Strauch AR. Actin isoform utilization during differentiation and remodeling of BC3H1 myogenic cells [J]. J Cell Biochem, 1997, 67:514–527.
    [61] Sabourin LA, and Rudnicki MA. The molecular regulation of myogenesis [J]. Clin Genet, 2000, 57:16–25.
    [62] Zhang J P, Wong C, hiu D et al. p21(CIP1) and p57( KIP2) control muscle differentiation at the myogenin step. Genes Dev.1999, 13(2):213-219.
    [63] Arnold HH, Winter B. Muscle differentiation: more complexity to the network of myogenic regulators [J]. Curr Opin tenet Dew, 1998, 8(5):539-547.
    [64] Zhang J M, Chen I,Krausr M et al. Evolutionary conservation of MyoD function and differential utilization of E proteins [J]. Dev Biol,1999, 208 (2):465-473.
    [65] Lattanzi L, Salvatnri G, Coletta M, et al. High efficiency myogcnic conversion of hurman fibroblasta by adenoviral vector-mediated MyoD gene transfer. An alternative strategy for ex vivo gene therapy of primary myopathiea [J]. J Clin Invest,1998, 101(10):2119-2127
    [66] Barth J L, Morris J, Ivarie R. An Oot like binding factor regulates Myf-5 expression in primary avian cells [J]. Exp Cell Res,1998, 238 (2):430-438.
    [67] Kitzmann M, Vandromme M ,Schaeffer V et al. cdkl and cdk2-medi-ated phosphotylation of MyoD Ser200 in growing C2 myoblasts: role in modulating MyoD half-life and myogenic activity [J]. Mol Cell Biol,1999, 19(4):3167
    [68] Ruseo S. Tornatis D, Collo C. et al. Myogenic: conversion of NIH3T3 cells by exogenous MyoD family members: dissaciation of terminal differentiation from myotube forrnation. J Cell Sci,1998, 111 (6): 691-701.
    [69] Lin Q, Liu I, lauagisawa F, et al. Requirement o1 the MADS-box transcription factor MEF2C for vascular development [J]. Developrnent, 1998, 125(22):4565-4572.
    [70] Horycki AC, Li J, Jin F, et al. Pax3 functions in cell survival and in pax7 regulation [J]. Development, 1999, 126(8): 1665-1673.
    [71] Ewtan D Z, Caalican 8 A. Mohau S et al. Modulation of insulin-like growth factor actions in L6Al myoblasts by insulin-like growth factor binding protein (IGFBP)-4 and IGFBRS: a dual rule for IGFBP-5 [J]. J Cell Physiol,1998, 177(1): 47-54.
    [72] Nofniger D, Mivamoto A, Lyons K M et al. Notch signaling imposes two distinct blaksiu thedifferentiation of C2C12 myoblasts [J]. Development, 1999, 126(8):1689-1695.
    [73] Bailev P, Sartorelli V,Hamamori Y et al.`fhe orfrhan nuclear receptor, COUP-TF 1T, inhibits myogenesis by post-iranscriptional regulation of MyoD function:COUP-TF II directly interacts with p300 and MyoD [J]. Nucleic Acids Res,1998, 26(23):5501-5508.
    [74] Melnikova IN,Bounpheng M, Schatteman C, et al. Differential biological activities of mammalian DI proteins in muscle cells [J]. Ce11 Res, 1999, 247(1):94-101.
    [75] Lemercier C, Garrasco RA. The baaic helix-loop-helix transcription factor Mistl functions as a transcriptional repressor [J]. EMBO J, 1998, 17(5):1412-1420.
    [76] Kraut N, Snider L. Chen C M et al. Requirement of the mouse C-mfa gene for placental development and skeletal pattering [J]. EMBO J,1998, 17(21):6276-6282
    [77] Froeschie A, Alric S, Kitzmann M et al . Retinoic acid receptors and muscle b-HLH proteins: partner in retinoid-induced myogenesis [J]. Oncogene, 1998, 16(26): 3369-3376.
    [78] Zhanr P, Wong C, Liu D et al. 21(CIPI) and 57(KIP2) control muscle differentiation at the myogenin step [J]. Genes Dev,1999, 13 (2):213-223.
    [79] Zahludoff SD, Csete M, Wagner R et al, p27Kipl is expressed transiently in developing myotomes and enhances myogeneais [J]. Cell Growth Differ,1998, 9(1): 1-8.
    [80] Novitch BG, Spicor DB, Kim P S et al. pRb is required for MEF2 dependent gene expression as well as cell cycle arrest during skeletal muscle differentiation [J]. Curr Biof,1999, 9(9): 449-457.
    [81] Genciatr 1B C, De Santa F, Yuri Y L et al. Critical role played by cycoin D3 in the MyoD-mediated arrest of cell cycle during rnynblast differentiation [J]. Mol Cell Biol,1999, 19(7):5 203-211.
    [82] Zhang J M, Wei Q ,Zhao X et al. Coupling of the cell cycle,and myogenesis through the cyclin Dl-dependent interaction of MyoD with cdk4 [J]. EMBO J,1999, 18(4):926-934.
    [83] Kaestner K H, Knochel W, Martinez D E. Unified nomenclature for the winged helix/ forkhead transcrip tion factors [J]. Genes Dev, 2000, 14 (2): 142-146.
    [84] Clark K L, Halay E D, Lai E, et al. Cocrystal structure of the HNF-3/forkhead DNA-recognition motif resembles histone H5 [J].Nature, 1993, 364 (6436) : 412-420.
    [85] Accil ID, Arden K C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation [J]. Cell, 2004, 117 (4):421-426.
    [86] Anderson M J, Viars C S, Czekay S, et al. Cloning and characterization of three human forkhead genes that comp rise an FKHR-like gene subfamily [J]. Genomics, 1998, 47 (2): 187-199.
    [87] Furuyama T, Nakazawa T, Nakano I, et al. Identification of the differential distribution patterns of mRNAs and consensus binding sequences formouse DAF216 homologues [J]. Biochem J, 2000, 349: 629-634.
    [88] Jacpbs FM, Van-Der-Heide LP, Wijchers PJ, et al. FoxO6, a novelmember of the FoxO class of transcrip tion factors with distinct shuttling dynamics [J]. J Biol Chem, 2003, 278 (38): 35959 -35967.
    [89] Barthel A, Schmoll D, Unterman T G. FoxO proteins in insulin action and metabolism [J]. Trends EndocrinolMetab, 2005, 16(4): 183-189.
    [90] Zhao X, Gan L, Pan H, et al. Multip le elements regulate nuclear/cytoplasmic shuttling of FOXO1: characterization of phosphorylation and 14-3-3-dependent and independent mechanisms [J]. Biochem J, 2004, 378: 839-849.
    [91] Rena G, Woods Y L, Prescotta R, et al. Two novel phosphorylation sites on FKHR that are critical forits nuclear exclusion [J].EMBO J, 2002, 21 (9): 2263-2271.
    [92] Zhang X, Gan L, Pan H, et al. Phosphorylation of serine256 suppresses transactivation by FKHR ( FOXO1 ) by multiple mechanisms. Direct and indirect effects on nuclear/ cytop lasmic shuttling and DNA binding [J]. J Biol Chem, 2002, 277 (47): 45276-45284.
    [93] Van-Der-Heide L P, Jacobs FM, Burbach J P, et al. FoxO6 transcrip tional activity is regulated by Thr26 and Ser184, independent of nucleo-cytop lasmic shuttling [J]. Biochem J, 2005, 391:623-629.
    [94] Gan L, Han Y, Bastianetto S, et al. FoxO-dependent and –independent mechanisms mediate SirT1 effects on IGFBP-1 gene expression [J]. Biochem Biophys Res Commun, 2005, 337 (4): 1092 -1096.
    [95] Giannakou M E, Partridge L. The interaction between FOXO and SIRT1: tipp ing the balance towards survival [J]. Trends Cell Biol, 2004, 14 (8): 408-412.
    [96] Motta M C, Divecha N, Lemieuxm, et al. Mammalian SIRT1 represses forkhead transcription factors [J]. Cell, 2004, 116 (4):551-563.
    [97] Brunet A, Sweeney LB, Sturgill J F, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase [J]. Science, 2004, 303: 2011-2015.
    [98] Bois PR, Grosveld GC. FKHR (FOXO1a) is required for myotube fusion of primary mouse myoblasts [J]. EMBO J, 2003, 22 (5): 1147-1157.
    [99] Huang H, Regan KM, Wang F, et al. Skp2 inhibits FOXO1 intumor suppression through ubiquitin2mediated degradation [J]. Proc NatlAcad Sci U S A, 2005, 102 (5): 1649-1654.
    [100] Hum C, Lee D F, Xiaw, et al. IkappaB kinase p romotes tumorigenesis through inhibition of forkhead FOXO3a [J]. Cell, 2004, 117(2): 225-237.
    [101] Nakae J, Biggsw H, Kitamure T, et al. Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcrip tion factor FOXO1 [J]. Nat Genet, 2002, 32 (2): 245-253.
    [102] Furuyama T, Kitayama K, Yamashita H, et al. Forkhead transcrip tion factor FOXO1 ( FKHR ) dependent induction of PDK4 gene exp ression in skeletal muscle during energy dep rivation [J].Biochem J, 2003, 375 ( Pt 2) : 365-371.
    [103] Kamei Y, Mizukami J, Miura S, et al. A forkhead transcriptionfactor FKHR up-regulates lipop rotein lipase exp ression in skeletal muscle [J]. FEBS Lett, 2003, 536 (1-3): 232-236.
    [104] Wolfrum C, Asilmaz E, Luca E, et al. Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes [J]. Nature, 2004, 432: 1027-1032.
    [105] Medema R H, Kops G J, Bos J L, et al. AFX-like Forkhead transcrip tion factorsmediate cell cycle regulation by Ras and PKB through p27kip1 [J]. Nature, 2000, 404: 782-787.
    [106] Kops G J, Medema R H, Glassford J, et al. Control of cell cycle exit and entry by protein kinase B regulated forkhead transcrip tion factors [J]. Mol Cell Biol, 2002, 22 (7): 2025-2036.
    [107] Schmid TM, FernaERndez-De-Mattos S, Van-Der-Horst A, et al. Cell cycle inhibition by FoxO forkhead transcrip tion factors involves downregulation of cyclin D [J]. Mol Cell Biol, 2002, 22(22): 7842-7852.
    [108] Martinez L, Marques M, Garcia Z, et al. Control of cyclin G2 mRNA exp ression by forkhead transcrip tion factors: novel mechanism for cell cycle control by phosphoinositide 3-kinase and forkhead [J]. Mol Cell Biol, 2004, 24 (5): 2181-2189.
    [109] Armoni M, Harel C, Karni S, et al. FOXO1 represses peroxisome proliferator-activatedreceptor-gamma1 and -gamma2 gene promoters in primary adipocytes. A novel paradigm to increase insulin sensitivity [J].J Biol Chem, 2006, 281(29):19881-19891.
    [110] Burgering B M, Medma R H. Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB /Akt is off duty [J]. J Leukoc Biol, 2003, 73 (6): 689-701.
    [111] Greer E L, Brunet A. FOXO transcrip tion factors at the interface between longevity and tumor supp ression [J]. Oncogene, 2005, 24(50): 7410-7425.
    [112] Yang H, Zhao R, Yang H Y, et al. Constitutively active FOXO4 inhibits Akt activity, regulates p27 Kip1 stability, and supp resses HER2-mediated tumorigenicity [J]. Oncogene, 2005, 24 (11):1924 -1935.
    [113] Seoane J, Le H V, Shen L, et al. Integration of Smad and forkhead pathways in the control of neuroep ithelial and glioblastoma cell proliferation [J]. Cell, 2004, 117 (2): 211-223.
    [114] Essersm A, De-Vries-Smits L M, Barker N, et al. Functional interaction between beta-catenin and FOXO in oxidative stress signaling [J]. Science, 2005, 308 (5725): 1181 - 1184.
    [115] Yamamura Y, Lee W L, Inoue K, et al. RUNX3 cooperates with FoxO3a to induce apoptosis in gastric cancer cells [J]. J Biol Chem, 2006, 281 (8): 5267-5276.
    [116] Kim U Brikenkamp,Paul J Coffer. FOXO transcription factors as regulators of immune homeostasis: molecules to die for? [J]. The Journal of Immunology, 2003, 171(4):1623-1629.
    [117] Peter Carlsson, Margit Mahlapuu. Forkhead transcription factors: Key players in development and metabolism [J]. Dev Biol, 2002, 250(l):1-23
    [118] Hidalgo A, ffrench-ConstantC. Control of cell number by drosophila FOXO:downstream and feed back regulation of the insulin receptor pathway [J].Mech Dev, 2003, 120(11):1311-1325.
    [119] Martin AJ, Felix R,Stocker H, et al. The Drosophila Forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling [J].J Biol, 2003, 2 (3):20-28.
    [120] Kops GJ,and Burgering BM. Forkhead transcription factors: new insights into protein kinase B (cakt) signaling [J].J Mol Med,1999,77:656-665.
    [121] Daitoku H, Hatta M, Matsuzaki H, et al. Silent information regulator 2 potentiates Foxol-mediated transcription through its deacetylase activity [J]. Proc Natl Acad Sci USA, 2004, 101:10042-10047.
    [122] van der Horst A, Tertoolen LG, de Vries-Smits LM, et al. FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1) [J].J Biol Chem, 2004, 279:28873-28879.
    [123] Puig O, and Tjian R.Transcriptional feedback control of insulin receptor by dFOXO/FOXO1 [J]. Genes Dev, 2005, 19:2435-2446.
    [124] Unterman TG, Fareeduddin A, Harris MA, et al. Hepatocyte nuclear factor-3 (HNF-3) binds to the insulin response sequence in the IGF binding protein-1 (IGFBP-1) promoter and enhances promoter function [J]. Biochem Biophys Res Commun, 1994, 203:1835-1841.
    [125] O`Brien RM, Noisin EL, Suwanickul A, et al. Hepatic nuclear factor 3- and hormone-regulated expression of the phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein 1 genes [J]. Mol Cell Biol, 1995, 15:1747-1758.
    [126] Cichy SB, Uddin S, Danilkovich A, et al. Protein kinase B/Akt mediates effects of insulin on hepatic insulin-like growth factor-binding protein-1 gene expression through a conserved insulin response sequence [J]. J Biol Chem, 1998, 273:6482-6487.
    [127] Ogg S, Paradis S, Gottlieb S, et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans [J]. Nature , 1997, 389:994-999.
    [128] Lin,K .,Dorman,J .B .,Rodan,A .,andK enyon,C . daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans [J]. Science, 1997, 278:1319-1322.
    [129] Brunet A, Bonni A, Zigmond MJ,et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor [J]. Cell, 1999, 96:857-868.
    [130] Kops GJ, de Ruiter ND, Vries-Smits AM,et al. Direct control of the Forkhead transcription factor AFX by protein kinase B [J]. Nature, 1999, 398:630-634.
    [131] Guo S, Rena G, Cichy S, et al. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence [J]. J Biol Chem, 1999, 274, 17184-17192.
    [132] Brunet A, Park J, Tran H, et al. Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a) [J]. Mol Cell Biol, 2001, 21:952-965.
    [133] Nakae J, Kitamura T, Ogawa W, et al. Insulin regulation of gene expression through the forkhead transcription factor Foxo1 (Fkhr) requires kinases distinct from Akt [J]. Biochemistry, 2001, 40:11768-11776.
    [134] Oh SW, Mukhopadhyay A, Svrzikapa N, et al. JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16 [J]. Proc Natl Acad Sci USA, 2005, 102:4494-4499.
    [135] Nemoto S,Fergusson MM,and Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway [J]. Science , 2004, 306, 2105-2108
    [136] Matsumoto M,and Accili D. All roads lead to FoxO [J]. Cell Metab, 2005, 1:215-216.
    [137] Dowell P,Otto TC,Adi S,and Lane MD. Convergence of peroxisome proliferator-activated receptor gamma and Foxo1 signaling pathways [J]. J Biol Chem, 2003, 278, 45485-45491.
    [138] Yang T, Fu M, Pestell R, Sauve AA.SIRT1 and endocrine signaling[J].Trends Endocrinol Metab. 2006, 17(5):186-191.
    [139] Hirota K,Daitoku H,Matsuzaki H,et al. Hepatocyte nuclear factor-4 is a novel downstream target of insulin via FKHR as a signal-regulated transcriptional inhibitor [J]. J Biol Chem, 2003, 278:13056-13060.
    [140] Fernandezd M,Essafi A,Soeiro I,et al. FoxO3a and BCR-ABL regulate cyclin D2 transcription through a STAT5/BCL6-dependent mechanism [J]. Mol Cell Biol, 2004, 24:10058-10071.
    [141] Liu ZP,Wang Z,Yanagisawa H,et al. Phenotypic modulation of smooth muscle cells through interaction of Foxo4 and myocardin [J]. Dev. Cell, 2005, 9:261-270.
    [142] Sandri M,Sandri C,Gilbert A,et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy [J]. Cell, 2004, 117, 399-412.
    [143] Furuyama T , Kitayama K , Yamashita H , et al. Forkhead transcription factor FOXO1 (FKHR)-dependent induction of PDK4 gene expression in skeletal muscle during energy deprivation [J]. Biochem J, 2003, 375, 365-371.
    [144] Bastie CC,Nahle Z,McLoughlin T,et al. FoxO1 stimulates fatty acid uptake and oxidation in muscle cells through CD36-dependent and -independent mechanisms [J].J Biol Chem, 2005,280,14222-14229.
    [145] Zhang WW, Sandip P, Balwant C, et al. FoxO1 Regulates Multiple Metabolic Pathways in the Liver [J]. J Biol Chem, 2006, 281(15):10105-10117.
    [146] Kuriyama H,Shimomura 1,Kishida K,et al. Coordinated regulation of fat-specific and liver-specific glycerol channels, aquaporin adipose and aquaporin 9[J]. Diabetes, 2002, 51:2915-2921.
    [147]Ganss R , Weih F , and Schutz G. The cyclic adenosine 3', 5'-monophosphate- and the glucocorticoid-dependent enhancers are targets for insulin repression of tyrosine aminotransferase gene transcription[J]. Mol.Endocrinol, 1994, 8:895-903.
    [148]Stit TN,Drujan D,Clarke BA,et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors[J]. Mol Cell, 2004, 14:395-403.
    [149] Altomonte J,Cong L,Harbaran S,et al. Foxo1 mediates insulin action on apoC-III and triglyceride metabolism[J]. J Clin Invest, 2004, 114, 1493-1503
    [150] Bell GI,and Polonsky KS. Diabetes mellitus and genetically programmed defects in beta-cell function[J]. Nature, 2001, 414, 788-791.
    [151] Matsuoka TA,Zhao L,Artner I,et al. Members of the large Maf transcription family regulate insulin gene transcription in islet beta cells[J]. Mol Cell Biol, 2003, 23:6049-6062.
    [152] Pearson M,and Pelicci PG. PML interaction with p53 and its role in apoptosis and replicative senescence[J].Oncogene, 2001, 20:7250-7256.
    [153] Accili, D. Lilly lecture 2003: the struggle for mastery in insulin action:from triumvirate the struggle for to republic [J]. Diabetes, 2004, 53:1633-1642.
    [154] Kitamura T, Nakae J, Kitamura Y, et al. The forkhead transcription factor FoxOl links insulin signaling to Pdxl regulation of pancreaticb cell growth [J]. J Clin Invest ,2002, 110:1839-1847.
    [155] Haruka O, Marta L H, Hua V, et al. Role of the forkhead protein FoxO1 in beta cell compensation to insulin resistance [J]. J Clin Invest, 2006, 116(3):775-782.
    [156]Spiegelman BM, and Flier JS. Obesity and the regulation of energy balance [J]. Cell, 2001, 104:531–543.
    [157]Morrison RF,and Farmer SR. Role of PPARgamma in regulating a cascade expression of cyclin- dependent kinase inhibitors, p18(INK4c) and p21(Waf1/Cip1), during adipogenesis [J]. J Biol Chem, 1999, 274: 17088–17097.
    [158] Spiegelman BM, and Flier JS. Obesity and the regulation of energy balance [J]. Cell, 2001, 104:531–543.
    [159] Hansen JB, Petersen RK, Larsen BM, et al. Activation of peroxisome proliferator-activated receptor gamma bypasses the function of the retinoblastoma protein in adipocyte differentiation[J]. J Biol Chem, 1999, 274:2386–2393.
    [160] McKinsey TA, Zhang CL, and Olson EN. Control of muscle development by dueling HATs and HDACs [J]. Curr Opin Genet Dev, 2001, 11:497–504.
    [161] Hribal ML, Nakae J, Kitamura T, et al. Regulation of insulin-like growth factor–dependent myoblast differentiation by Foxo forkhead transcription factors [J].The Journal of Cell Biology, 2003, 162, (4):535–541.
    [162] Blumenthal R., Clague MJ, Durell SR, et al. Membrane fusion [J]. Chem Rev, 2003, 103:53–69.
    [163] Hernandez LD, Hoffman LR, Wolfsberg TG, et al. Virus-cell and cell-cell fusion [J]. Annu Rev Cell Dev Biol, 1996, 12:627-661.
    [164] Bois RJ, Brochard VF, Cleveland JL, et al. FoxO1a–Cyclic GMP-Dependent Kinase I Interactions Orchestrate Myoblast Fusion [J]. Molecular and Cellular Biology, 2005, 25(17):7645–7656.
    [165] Nishiyama T, Kii I, and Kudo A. Inactivation of Rho/ROCK signaling is crucial for the nuclear accumulation of FKHR and myoblast fusion [J].J. Biol. Chem, 2004, 279:47311–47319.
    [166] Choi SW, Baek MY, and Kang MS. Involvement of cyclic GMP in the fusion of chick embryonic myoblasts in culture [J]. Exp Cell Res, 1992, 199:129–133.
    [167] Molkentin JD, and Olson EN. Defining the regulatory networks for muscle development [J]. Curr Opin Genet Dev, 1996, 6:445–453.
    [168] Hribal ML, Nakae J, Kitamura T, et al.Regulation of insulin-like growth factor-dependent myoblast differentiation by Foxo forkhead transcription factors. The Journal of Cell Biology, 2003, 162, 535-541.
    [169] Matsumoto M, Han S, Kitamura T, Accili D.Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism[J]. J Clin Invest, 2006, 116:2464-2472.
    [170] 张成岗, 贺福初. 生物信息学方法与实践[M]. 北京:科学出版社,2002.
    [171] Frohman M A, Dush M K, Mrtin G R,et al. Rapid production of full-length cDNAs from rare transcripts: amplification using single gene-specific oligonuleotide primer[J]. Proc Natl Acad Sci USA,1988,85 (23):8998-9002.
    [172] 刑桂春, 张成岗, 魏汉东, 等.采用 RACE 技术获得全长人新基因 MAGE-D1[J].中国生物化学与分子生物学报,2001,17(2):203-208.
    [173] Schaefer BC. Revolutions in rapid amolification of cDNA ends: New Strategies for polymerase chain reaction cloning of full-length cDNA ends [J].Anal Biochem, 1995, 227:255-273.
    [174] Lee AJ, ElwynIsaac R and David Coates.The construction of a cDNA expression library for the sheep scab mite Psoroptes ovis[J].Vet Parasitol,1999,83(3-4):241-252.
    [175] Bej AK, Mahbubani MM. PCR Technology: Current Innovation [M]. Boca Raton, FL: CRC Press.1994, 141-145.
    [176]李关荣,鲁 成,夏庆友,等. cDNA 末端快速扩增技术(RACE)的优化和改良[J].生命科学研究,2003,7(3):189-197.
    [177] Yasutomi K, Shinji M, Miki S, et al. Skeletal Muscle FOXO1 (FKHR) Transgenic Mice Have Less Skeletal Muscle Mass, Down-regulated Type I (Slow Twitch/Red Muscle) Fiber Genes, and Impaired Glycemic Control.THE JOURNAL OF BIOLOGICAL CHEMISTRY , 2004, 279(39): 41114–41123.
    [178] 余 梅.猪 12 号染色体上 4 个新基因的分离、鉴定与物理定位[D].[博士学位论文],武汉:华中农业大学,2002.
    [179] 王彦芳.猪 PA28 和 PA700 基因家族相关基因的分离、定位、SNPs 检测及其与性状的关联分析[D].[博士学位论文],武汉:华中农业大学,2004
    [180] 杨金娥.猪 12 号染色体上 10 个新基因的分离、定位及其与部分性状的关联分析[D] [博士学位论文],武汉:华中农业大学,2004.
    [181] 朱正茂.猪胚胎骨骼肌基因表达的宏阵列分析及差异表达基因 cDNA 全长分离、定位、组织表达谱和多态研究[D].[博士学位论文],武汉:华中农业大举,2003.
    [182] Heid CA, Stevens J, Livak KJ, et al. Real time quantitative PCR [J]. Genome Res, 1996, 6(10): 986-994.
    [183]Allen DL, Unterman TG. Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors [J].Am J Physiol Cell Physiol. 2007, 292(1):C188-99.
    [184] Azain M.J. Role of fatty acid in adipocyte growth and development [J]. J Anim Sci, 2004, 82: 916-924.
    [185] Ding ST, Shinckel AP, Weber TE, and Mersmann HJ. Expression of porcine transcription factors and genes related to fatty acid metabolism in different tissue and genetic populations [J]. J Anim Sci, 2001, 78: 3127-2134.
    [186] Lee KC, Azain MJ, Hausman DB, and Ramsay TG. Somatotropin and adipose tissue metabolism: Substrate and temporal effects [J]. J Anim Sci, 2000, 78: 1236-1246.
    [187] Langcake P, Pryce RJ. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury [J]. Physiol Plant Pathol, 1976, 9: 77-86
    [188] Wang ZX , Zhang XJ , Zhou Y, et al. A Convenient Synthesis of Trans and Cis-3, 4′, 5-trihydroxystilbene [J]. Journal of Chinese Pharmaceutical Sciences, 2005, 14(4) :204-208.
    [189] Aggarwal BB, Bhardwaj A, Aggarwal RS et al. Role of resveratrol in prevention and therapy of cancer: Preclinical and clinical studies [J]. Anticancer Res, 2004, 24(5A): 2783~2840.
    [190] Picard F, Kurtev M, Chung N et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ [J]. Nature, 2004, 429: 771-776.
    [191] Cohen HY, Miller C, Bitterman KJ et al. Calorie Restriction Promotes Mammalian Cell Survival by inducing the SIRT1 Deacetylase [J]. Science, 2004, 305: 390-392.
    [192] Nakae J, Cao Y, Daitoku H, Fukamizu A, Ogawa W, Yano Y, Hayashi Y. The LXXLL motif of murine forkhead transcription factor FoxO1 mediates Sirt1-dependent transcriptional activity [J]. J Clin Invest. 2006,116(9):2473-2483.
    [193] Hiroaki D, Mitsutoki H, Hitomi M, Satoko A,et al, Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity [J]. PNAS 2004;101;10042-10047.
    [194] Ramirez JL, Castro F, Kuri W. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with oil red O [J]. Histochemistry, 1992, 97(6): 493-497.
    [195] Morrison RF, Farmer SR. Hormonal signaling and Transcriptional Control of Adipocyte Differentiation [J]. American Society for Nutritional Sciences, 2000, 130: 3116S-3121S
    [196] Chu M, Hu ZQ, Well, et al. Research of resveratrol on pituitary adenomas GH3 cell growth and molecular mechanism [J]. National Medical Journal of China, 2003, 83 (22):2004-2006.
    [197] Kim YA, Chob T, Lee YT, et al. Resveratrol inhibits cell proliferation and induces apoptosis of human breast carcinoma MCF27 cells [J]. Oncol Rep, 2004, 11 (2): 441-446
    [198] Yin H, Cheng GF. Resveratrol bi-regulates activation of nuclear factor–κB and HEK293 cell proliferation [J]. Chinese Science Bulletin,2005, 50(9):885-889.
    [199] Xiong X Y, Wu Y M, Zou Y et al. Comparison of effects of three drugs for Alzheimer’s disease onviability of mouse cortical neurons in vitro [J]. Chin J Clin Pharmacol Ther, 2004, 9(4): 399-402
    [200] Dong Z. Molecular mechanism of the chemop reventive effect of resveratrol [J]. Mutat Res, 2003, 523: 145-150.
    [201] Jia D, Heersche JN. Insulin-like growth factor-1 and -2 stimulate osteoprogenitor proliferation and differentiation and adipocyte formation in cell populations derived from adult rat bone [J].Bone, 2000,27:785–794.
    [202] Boone C, Gregoire F, Remacle C. Regulation of porcine adipogenesis in vitro, as compared with other species[J]. Domest Anim Endocrinol, 1999, 17:257–267.
    [203]S.K. Luo and J.L. Xi. Primary culture of preadipocyte from human adults [J]. J First Mil Med Univ/Di Yi Jun Yi Da Xue Xue Bao, 2005, 25(3):270-273
    [204] Smith PJ, Wise L, Berkowitz R, Wan C, Rubin CS. Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes [J]. J Biol Chem, 1988, 263:9402–9408.
    [205] Boney CM, Gruppuso PA, Faris RA, Frackelton ARJ. The critical role of Shc in insulin-like growth factor-I-mediated mitogenesis and differentiation in 3T3-L1 preadipocytes [J]. Mol Endocrinol, 2000, 14:805– 826.
    [206] Michal A, Chava H, Shiri K, et al. FOXO1 Represses Peroxisome Proliferator-activated Receptor-γ1 and -γ2 Gene Promoters in Primary Adipocytes :A NOVEL PARADIGM TO INCREASE INSULIN SENSITIVITY [J]. J BIO CHEM. 2006, 281(29): 19881–19891.
    [207] Hsieh T C , Wu J M. Differential effects on growth , cell cycle arrest , and induction of apoptosis by resveratrol in human prostate cancer cell lines [J]. Expr Cell Res, 1999, 249 : 109-115.
    [208] Webster C, Pavlath GK, Park DR , et al . Isolation of human myoblasts with the fluorescence activate cells sorter [J]. Exp Cell Res ,1988 ,174 (1) :252-260
    [209] Blau HM, Webster C. Isolation and characterization of human muscle cells [J]. Pro Natl Acad Sci USA, 1981, 78(9):56-61.
    [210] 徐蓬, 顾小明. 兔骨骼肌卫星细胞的体外培养及生长特征的研究[J]. 实用口腔医学杂志, 2000 , 16 (1): 7-11.
    [211] 秦瑞峰,顾小明,张浩. 不同培养条件对骨骼肌细胞增殖及分化的影响[J]. 实用口腔医学杂志,2000 ,16 (1) :14-16.
    [212]钟 芳,罗少军,汤少明.白藜芦醇抑制细胞增殖研究新进展[J].中草药,2003,34(5): 2-4.
    [213]周志明 ,冯义柏 ,周玉杰. 白藜芦醇对血管平滑肌细胞增殖的影响[J]. 中华老年心脑血管病杂志, 2004, 6 (5):335-337.
    [214] Fontecave M, Lepoivre M, Elieingand, et al. Resveratrol, a remarkable inhibitor of ribonucleotide reductase [J]. FEBS Lett, 1998, 421:277-279.
    [215] 黄桂林,李龙江,温玉明,王昌美,谢文杨. 新生 SD 大鼠成肌细胞体外培养的实验研究[J]. 实用口腔医学杂志, 2003 ,19 (1):14-16.
    [216] Dodson MV, Allen RE, Hossner KL. Ovine somatomedin, multiplication-stimulating activity, and insulin promote skeletal muscle satellite cell proliferation in vitro [J]. Endocrinology, 1985, 117:2357–2363.
    [217] Greene EA, Allen RE. Growth factor regulation of bovine satellite cell growth in vitro [J]. J Anim Sci ,1991, 69:146–152.
    [218] Cheng ZQ, Adi S, Wu NY, et al. Functional inactivation of the IGF-I receptor delays differentiation of skeletal muscle cells [J]. J Endocrinol, 2000, 167:175–182.
    [219] Tollefsen SE, Lajara R, McCusker RH, Clemmons DR, Rotwein P. Insulin-like growth factors (IGF) in muscle development. Expression of IGF-I, the IGF-I receptor, and an IGF binding protein during myoblast differentiation [J]. J Biol Chem, 1989, 264:13810–13817.
    [220] Chakravarthy MV, Abraha TW, Schwartz RJ,et al. Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3-kinase/Akt signaling pathway [J]. J Biol Chem, 2000, 275:35942–35952.
    [221] Sharp PA. RNA Interference-2001 [J]. Genes Dev , 2001, 15:485-490.
    [222] Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J]. Nature, 1998,391:806-811.
    [223] Qin XF, An DS, Chen IS andBaltimore D. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5 [J]. Proc Natl Acad Sci USA, 2003, 100:183-188.
    [224] Gitlin L, Karelsky S, Andino R. Short interfering RNA confers intracellular antiviral immunity in human cells [J]. Nature, 2002, 418:430-434.
    [225] Shi Y. Mammalian RNAi for the masses [J]. Trends Genet, 2003, 19:9–12.
    [226] Xia H, Mao Q, Paulson HL et al. siRNA-mediated gene silencing in vitro and in vivo [J]. Nat Biotechnol, 2002, 20:1006-1010.
    [227] Yang S, Tutton S, Pierce E, and Yoon K. Specific double-stranded RNA interference in undifferentiated mouse embryonic stem cells [J]. Mol Cell Biol, 2001, 21(22):7807-7816.
    [228] Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, and Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J]. Nature, 2001, 411: 494-498.
    [229] Elbashir SM, Harborth J, Weber K, et al. Analysis of gene functionin somatic mammalian cells using small interfering RNAs [J].Methods, 2002, 26(2):199-213.
    [230] Paul CP, Good PD, Winer I and Engelke DR.Effective expression of small interfering RNA in human cells [J]. Nat Biotechno, 2002, 20:505–508.
    [231] Harborth J , Elbash ir SM , V andenburgh K, et al. Sequence, chemical , and structural variation of small interfering RNA s and short hairpin RNAs and the effect on mammalian gene silencing [J]. Antisense Nucleic Acid Drug Dev, 2003, 13 (2):83-105.
    [232] Tuschl T. RNA interference and small interfering RNAs [J], Chembiochem, 2002, 2:239-245.
    [233] Saxena S, Jonsson ZO, Dutta A. Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells [J]. J Biol Chem, 2003,278(45):44312-44319.
    [234] Brummelkamp TR, Bernards R, and Agami R.. A system for stable expression of short interfering RNAs in mammalian cells [J]. Science, 2002, 296:550-553.
    [235] 林红学,傅更锋,郭丹等.RNA 干扰抑制 siHaB2 细胞中 Bcl-2 基因的表达 [J].细胞生物学杂志, 2005, 27(5):578-584.
    [236] Aoki Y, Cioca DP, Oidaira H , et al. RNA interference may be more potent than antisense RNA inhuman cancer cell lines [J]. Clin Exp Pharmacol Physiol, 2003, 30:96-102.
    [237] Song E, Lee SK, Wang J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis [J]. Nat Med, 2003, 9 (3):347-351.
    [238] Cioca DP, Aoki Y, Kiyosawa K. RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines [J]. Cancer Gene Ther, 2003, 10 (2) :125-133.
    [239] Maltin CA, Warkup CC, Matthews KR, et al. Pig muscle fiber characteristics as a source of variation in eating quality [J].Meat Sci, 1997, (47) : 237-248.
    [240] Lefaucheur L, Gerrard D. Muscle fiber plasticity in farm animals [J]. J Anim Sci, 1999, 77: 118-126.
    [241] Li Y, Lu RH, Luo GF, Pang WJ, Yang GS. Effects of different cryoprotectants on the viability and biological characteristics of porcine preadipocyte [J]. Cryobiology, 2006,53: 240–247.
    [242] Pang WJ, Bai L, Yang GS. Relationship Among H-FABP Gene Polymorphism, Intramuscular Fat Content, and Adipocyte Lipid Droplet Content in Main Pig Breeds with Different Genotypes in Western China [J]. Acta Genetica Sinica, Jun 2006, 33 (6):515–524.
    [243] Gerbens F, Verburg F J, Van Moerkerk H T, Engel B, Buist W, Veerkamp J H, Te Pas M F. Associations of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content in pigs [J]. J Anim Sci, 2001, 79 : 347-354.
    [244] Leibiger, IB and Berggren PO. Sirt1: a metabolic master switch that modulates lifespan [J]. Nat Med, 2006, 12, 34–36
    [245] Lemieux, M.E. et al. The Sirt1 deacetylase modulates the insulin-like growth factor signaling pathway in mammals [J]. Mech, Ageing Dev, 2005, 126, 1097–1105.
    [246] Larsen CM, Dossing MG, Papa S, et al. Growth arrest - and DNA -damage - inducible 45beta gene inhibits c- Jun N - terminal kinase and extracellular signal - regulated kinase and decreases IL-1 beta -induced apoptosis in insulin - producing INS - 1E cells [J]. Diabetologia, 2006, 49 (5):980-989.
    [247] Schlezinger JJ, Emberley J K, Sherr DH . Activation of multiple mitogen-activated protein kinases in Pro/Pre-B Cells by GW7845, a peroxisome proliferator-activated receptor gamma agonist , and their contribution to GW7845-induced apoptosis[J] . Toxicol Sci, 2006, 92 (2):433-444.
    [248] Hosaka T, Biggs WH, Tieu D, et al. Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification[J].Proc Natl Acad Sci USA, 2004, 101:2975–2980.
    [249] Furuyama T, Kitayama Y, Shimoda M,et al. Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice [J]. J Biol Chem, 2004, 279:34741–34749.
    [250] Smith GB, Mocarski ES. Contribution of GADD45 family members to cell death suppression by cellular by Bcl - XL and cytomegalovirus vMIA [J]. J Virol, 2005 ,79 (23) :14923-14932.
    [251] Furukawa HY, Yoshida AK, Ohta T, et al. FOXO forkhead transcription factors induce G(2)-M checkpoint in response to oxidative stress [J]. J Biol Chem, 2002, 277: 26729–26732
    [252] Schneider M, Wolf E, Hoeflich A, and Lahm H. IGF-binding protein-5: flexible player in the IGF system and effector on its own [J]. J Endocrinol, 2002, 172:423–440.
    [253] Black BL, Molkentin JD, Olson EN. Multiple roles for the MyoD basic region in transmission of transcriptional activation signals and interaction with MEF2C [J]. Mol Cell Biol,1998,18:69-77.
    [254] Shaw JP, Utz PJ, Durand DB, et al. Identification of a putative regulator of early T cell activation genes[J].1988, Science, 241:202-205.
    [255] Zhu WZ,Wang SQ,Chakir K,et al. Linkage of 1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase II [J].JClin Invest, 2003,111(5):617-625.
    [256] Chakkalakal JV, Stocksley MA, Harrison MA, et al. Expression of utrophin A mRNA correlates with the oxidative capacity of skeletal muscle fiber types and is regulated by calcineurin/NFAT signaling [J]. Proc. Natl. Acad. Sci. U. S. A., 2003, 100:7791–7796.
    [257] Karasseva, N, Tsika, G, Ji, J, et al. Transcription enhancer factor 1 binds multiple muscle MEF2 and A/T-rich elements during fast-to-slow skeletal muscle fiber type transitions [J]. Mol Cell Biol, 2003, 23:5143–5164
    [258] Ashmore CR, Tormpkins G. Postnatal development of muscle fiber types in domestic animals [J]. J Anim Sci, 1972, 34: 37-41.
    [259] Lin J, Wu H, Tarr PT, et al. Transcriptional coactivator PGC2α rives the formation of slow-twitch muscle fibers[J]. Nature, 2002, 418: 797-801.
    [260] Delling U, Tureckova J, Lim HW, et al. A calcineurin-NFATc3-dependent pathway regulates skeletal muscle differentiation and slow myosin heavy-chain expression [J]. Mol Cell Boil, 2000, 20 (17): 6600-6611.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700