用户名: 密码: 验证码:
人的新基因PCIA1的全长克隆和初步功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:2003年底,人类基因组测序计划已经完成,2004年在Nature杂志上公布了修正的人类基因组图谱,人类基因组计划已从结构基因组时代迈入功能基因组时代,未来主要任务就是定位人类基因,研究它们的生物学功能及基因间的相互作用等。最近研究发现人类总的基因数目为20,000-25,000个,比以前所估计的要少得多,但大多数基因功能未知。因此,克隆新基因并阐明这些基因的功能及其基因间的相互作用显得尤为重要。本研究在筛选新的靶分子时获得了一条人的新基因序列PCIA1,为尽快获得新基因的功能提示,需获取新基因的全长序列,进行初步的生物信息学分析,并进行初步的功能研究。
     方法:本研究在重组cDNA表达文库的血清学分析(Serological analysis of recombinant cDNA expression library,SEREX)技术基础上,筛选到一个基因部分片段,生物信息学分析发现此基因为人的新基因的片段。我们采用RACE(Rapid Amplification of cDNA Ends)技术结合EST(Expressed Sequence Tags)序列拼接技术获得了新基因PCIA1的全长cDNA序列,用RT-PCR技术检测了该新基因的人的组织表达谱,以PCIA1和GFP融合蛋白及免疫组织化学检测PCIA1基因的亚细胞定位,并结合多种生物信息学手段对其可能的性质和功能进行初步的分析和预测。进而,为进一步研究该基因的功能,我们将PCIA1基因连接至原核表达载体pQE30,
Objectives: Completed in 2003, the Human Genome Project (HGP) identified all the approximately 20,000-25,000 genes in human DNA. These data mean that human whole genes are much smaller than we expected before, and a large amount of these genes are genes of unknown function. Our further work is to identify these genes and their function. In our previous study, we identified part of a novel human cDNA using SEREX technique. In order to study the possible function of this gene, full-length cDNA must be obtained and bioinformatic analysis as well as fundermental functional analysis should be performed.
    Methods: We screened part of the gene sequence of a new gene used SEREX (Serological analysis of recombinant cDNA expression library) approach. The full-length cDNA of the novel gene was obtained by RACE technology and then identified by RT-PCR. Various bioinformatic methods were used to analyze and predict the feature and possible functions of the novel gene. The tissue expression of the novel gene was identified by RT-PCR and the subcellular localization was identified by GFP fused protein as well as immunohistochemistry. The prokaryotic protein and polyclonal antibody were prepared. We further cloned it into eukaryotic expression vector and
引文
1. FS Collins, Lander ES, Rogers J, et al. Finishing the euchromatic sequence of the human genome. Nature, 2004; 431: 931-945
    
    2. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature, 2001; 409: 860-921.
    
    3. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science, 2001; 291:1304-1351.
    
    4. Fleischmann RD, Adams MD, White O, et al. Whole-genome random sequencing and assembly of Hae-mophilus influenzae Rd. Science, 1995; 269:496-512.
    
    5. The international human genome sequencing consortium. Initial sequencing and analysis of the human genome. Nature, 2001; 409: 860-921.
    
    6. The mouse genome sequencing consortium. Initial sequencing and comparative analysis of the mouse genome. Nature, 2002; 420: 520-562.
    
    7. National Research Council. Mapping and Sequencing the Human Genome. National Academy Press, Washington DC, 1988.
    
    8. Aparicio S, Chapman J, Stupka E, et al. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science, 2002; 297:1301-1310
    
    9. Zhang MQ. Computational prediction of eukaryotic proteincoding genes. Nature Rev Genet, 2002; 3: 698-709.
    
    10. Sachidanandam R,Weissman D,Schmidt SC, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 2001; 409: 928-933.
    
    11. Gardner MJ, Hall N, Fung E, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature, 2002; 419: 498-511.
    
    12. Banerjee N, Zhang, MX. Functional genomics as applied to mapping transcription regulatory networks. Curr Opin Microbiol, 2002; 5:\ 313-317.
    
    13. Hang Y, Frohman MA. Using rapid amplification of cDNA ends (RACE) to obtain full-length cDNAs. Methods Mol Biol, 1997; 69: 61.
    
    14. Han WD, Yu L, Lou FD, et al. The Application of RACE Technique to Clone the Full-Length cDNA of A Novel Leukemia Associated Gene LRP16. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2001; 9:18.
    
    15. AG Matthysse, K Deschet, M Williams, et al. Smith A functional cellulose synthase from ascidian epidermis. PNAS, 2004; 101: 986-991.
    
    16. M Geiszt, J-B Kopp, P Varnai, et al. Identification of Renox, an NAD(P)H oxidase in kidney. PNAS, 2000; 97: 8010-8014.
    
    17. W Capoen, S Goormachtig, RD Rycke, et al. SrSymRK, a plant receptor essential for symbiosome formation. PNAS, 2005; 102: 10369-10374.
    
    18. F Feng, A Davis, JA Lake, et al. Ring Finger Protein ZIN Interacts with Human Immunodeficiency Virus Type 1 Vif. Journal of Virology, 2004; 78: 10574-10581.
    
    19. Rehm BH. Bioinformatic tools for DNA/protein sequence analysis, functional assignment of genes and protein classification. Appl Microbiol Biotechnol, 2001; 57: 579-592.
    
    20. Leung AK, Andersen JS, Mann M, et al. Bioinformatic analysis of the nucleolus. Biochem J, 2003; 376: 553-569.
    21. Lynn DJ, Higgs R, Gaines S, et al. Bioinformatic discovery and initial characterisation of nine novel antimicrobial peptide genes in the chicken. Immunogenetics. 2004; 56: 170-177.
    22. Breton G. Danyluk J, Charron JB, et al. Expression profiling and bioinformatic analyses of a novel stress-regulated multispanning transmembrane protein family from cereals and Arabidopsis. Plant Physiol, 2003; 132: 64-74.
    23. Guo Y, Cheng H, Huang X, et al. Gene structure, multiple alternative splicing, and expression in gonads of zebrafish Dmrt 1. Biochern Biophys Res Commun, 2005; 330: 950-957.
    24. RS Kamath, AG Fraser, Y Dong, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 2003; 421: 231-237
    25. Richardson PM, Zon LI. Molecular cloning of a cDNA with a novel domain present in the tre-2 oncogene and the yeast cell cycle regulators BUB2 and cdc16. Oncogene, 1995; 11: 1139-1148.
    26. Burge, C., Karlin, S. Prediction of complete gene structures in human genomic DNA. J Mol, 1997; 268, 78-94.
    27. Horton P, Nakai K. Better prediction of protein cellular localization sites with the k newest neighbor classifier. Proc. Int. Conf Intellig. Syst. Mol. Biol, 1997; 5: 147-152.
    28. Feng Y, Zhang Y, Jing G, et al. Soluble expression in Escherichia coli, purification and characterization of a human TF-1 cell apoptosis-related protein TFAR19. Protein Expr Purif 2002; 25: 323-329.
    29. Liu RS, Huang H, Yang Q, et al. Purification of alpha-sarcin and an antiftmgal protein from mold (Aspergillus giganteus) by chitin affinity chromatography. Protein Expr Purif. 2002; 25: 50-58.
    30. Li L, Wang JX, Zhao XF, et al. High level expression, purification, and characterization of the shrimp antimicrobial peptide, Ch-penaeidin, in Pichia pastoris. Protein Expr Purif, 2005; 39: 144-151.
    31. Feng J, Qing Li F, Li Q, et al. Expression and purification of Rhizobium leguminosarum NodD. Protein Expr Purif, 2002; 26: 321-328.
    32. Yang T, Jiang Y, Jiangye Chen. The identification and subcellular localization of human MRK. Biomol Eng, 2002; 19: 1-4.
    33. Mudhar HS, Pollock R, Wang C, et al. PDGF and its receptors in the developing rodent retina and optic nerve Development, 1993; 118; 539-552.
    34. Holgren, L, Glaser, A, Pfeifer-Ohlsson, S, et al. Angiogenesis during human extraembryonic development involves the spatiotemporal control of PDGF ligand and receptor gene expression Development, 1991; 113: 749-754.
    35. Hellstrom M, Kalen M, Lindahl P, et al. Role of PDGF-B and PDGFR-β in recruitment of vascular smooth muscle cells and pericyte during embryonic blood vessel formation in the mouse Development, 1999; 126: 3047-3055..
    36. Carl-Henrik Heldin, Bengt Wermark. Mechanism of Action and In Vivo Role of Platelet-Derived Growth Factor. Physiological Reviews, 1999; 79: 1283-1316.
    37. Ming Yi, Erkki Ruoslahti. A fibronectin fragment inhibits tumor growth, angiogenesis, and metastasis. Proc. Natl. Acad. Sci. USA, 2001; 98: 620-624.
    
    38. SL Leu, Stephen C.-T. Lam, Lester F. Lau. Pro-angiogenic Activities of CYR61 (CCNl) Mediated through Integrins αvβ3 and α6β1 in Human Umbilical Vein Endothelial Cells. J. Biol. Chem. 2002, 277: 46248-46255.
    
    39. Miaw-Sheue Tsai, Ann E. Hornby, Johnathon Lakins, et al. Expression and Function of CYR61, an Angiogenic Factor, in Breast Cancer Cell Lines and Tumor Biopsiesl. Cancer Research. 2000, 60: 5603-5607.
    
    40. AM Babic, ML Kireeva, TV Kolesnikova, et al. CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc. Natl. Acad. Sci. USA.1998, 95: 6355-6360.
    
    41. Senoo M, Matsumura Y, Habu S. TAp63gamma (p51A) and dNp63alpha (p73L), two major isoforms of the p63 gene, exert opposite effects on the vascular endothelial growth factor (VEGF) gene expression. Oncogene, 2002; 21:2455-2465.
    
    42. Noszczyk B H, Majewski S T. p63 expression during normal cutaneous wound healing in humans. Plast Reconstr Surg, 2001,108: 1242—1250.
    
    43. Liefer K M, koster M I, Wang X J, et al. Down regulation of p63 is required for epidermal UV B induced apoptosis. Cancer Res, 2000; 60: 4016-4020..
    
    44. Ianakiev P, Kilpatrick MW, Toudiarska I, et al. Splithand/split foot malformation is caused by mutations in the p63 gene on 2q27. Am J Hum Genet, 2000; 67: 59-66.
    
    45. Park B J, Lee S J, Kim J I, et al. Frequent alteration of p63 expression in human primary bladder carcinomas. Cancer Res, 2000; 60: 3370—3374.
    
    46. Mills AA, Zheng B, Wang X J, et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature, 1999, 398: 708—713.
    
    47. Glickman J N, Yang A, Shahsafaei A, et al. Expression of p53 related protein p63 in the gastrointestinal tract and in esophageal metaplastic and neoplastic disorders. Hum Pathol, 2001; 32: 1157—1165.
    
    48. Ito Y, Takeda T, Wakasa K, et al. Expression of p73 and p63 proteins in pancreatic adenocarcinoma: p73 overexpression is inversely correlated with biological aggressiveness. Int J Mol Med, 2001; 8: 67—71.
    
    49. JJ Huang, MC Lin, YX Bai, et al. Ectopic expression of a COOH-terminal fragment of the human telomerase reverse transcriptase leads to telomere dysfunction and reduction of growth and tumorigenicity in HeLa cells. Cancer Research, 2002; 62: 3226-3232.
    
    50. T Tsuji, Y Sun, K Kishimoto, et al. Angiogenin is translocated to the nucleus of HeLa cells and is involved in ribosomal RNA transcription and cell proliferation. Cancer Research, 2005; 65: 1352-1360.
    
    51. A Psyrri1 , RA DeFilippis, A Edwards, et al. Role of the retinoblastoma pathway in senescence triggered by repression of the human papillomavirus E7 protein in cervical carcinoma cells. Cancer Research 2004, 64: 3079-3086.
    
    52. V Bottero, V Busuttil, A Loubat, et al. Activation of nuclear factor k B through the IKK complex by the topoisomerase poisons SN38 and doxorubicin, a brake to apoptosis in HeLa human carcinoma cells. Cancer Research. 2001, 61; 7785-7791.
    
    53. MA Bogoyevitcha b, Ingrid Boehma, Aaron Oakleyc, et al. Targeting the JNK MAPK cascade for inhibition: basic science and therapeutic potential. Biochimica et Biophysica Acta, 2004; 1697: 89-101
    54. K Sabapathy, YL Hu, T Kallunki, et al. JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Current Biology, 1999; 9: 116-125.
    1. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature, 2001; 409: 860-921.
    2. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science, 2001; 291: 1304-13513.
    3. Wiemann S, Weil B, Wellenreuther R, et al. Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs. Genome Research, 2001; 11: 422-435.
    4. Dunham I, Shimizu N, Roe BA, et al. The DNA sequence of human chromosome 22. Nature, 1999; 402: 489-495.
    5. FS Collins, Lander ES, Rogers J, et al. Finishing the euchromatic sequence of the human genome. Nature, 2004; 431: 931-945.
    6. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature, 2001; 409: 860-921.
    7. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science, 2001; 291: 1304-1351.
    8. Fleischmann RD, Adams MD, White O, et al. Whole-genome random sequencing and assembly of Hae-mophilus influenzae Rd. Science, 1995; 269: 496-512.
    9.张春霆.生物信息学的现状与展望.世界科技研究与发展,2000,(6):17-20.
    10. Baldi P, Brunak S. Bioinformatics: the machine learning approach. Massachusetts Institute of Technology, Second printing, 1998.
    11. Leung AK, Andersen JS, Mann M, et al. Bioinformatic analysis of the nucleolus. Biochem J, 2003; 376: 553-569.
    12. Lynn D J, Higgs R, Gaines S, et al. Bioinformatic discovery and initial characterisation of nine novel antimicrobial peptide genes in the chicken. Immunogenetics. 2004; 56: 170-177.
    13. Breton G. Danyluk J, Charron JB, et al. Expression profiling and bioinformatic analyses of a novel stress-regulated multispanning transmembrane protein family from cereals and Arabidopsis. Plant Physiol, 2003; 132: 64-74.
    14. Guo Y, Cheng H, Huang X, et al. Gene structure, multiple alternative splicing, and expression in gonads of zebrafish Dmrt1. Biochem Biophys Res Commun, 2005; 330: 950-957.
    15. Dicks J, Anderson M, Cardle, et al. UK Corporation Net: A collection of databases and bioinformatics resources for crop plant genomics [J]. Nucleic Acid Research, 2000: 104-107.
    16. Witkins MR, Gasteiger E, Bairoch A, et al. Protein identification and analysis tools in the ExPASy server. Methods Molecule Biology, 1999; 112: 531-552.
    17. JA Taylor, RS Johnson. Sequence database searches via de novo peptide sequencing by tandem mass spectrometry. Rapid Comm. Mass Spectrum, 1997; 11: 1067-1075.
    18. Kamel A. Abd-Elsalam. Web-based bioinformatic resources for protein and nucleic acids sequence alignment. African Journal of Biotechnology, 2003; 2, 714-718,
    19. Gaskell JG. Multiple Sequence Alignment Tools on the Web. BioTechniques, 2000; 29: 60-62.
    20. Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acid Res, 2002, 30: 3059-3066.
    
    21. Blumberg H, Conklin D, Xu WF, et al. Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell, 2001; 104: 9-19.
    
    22. Huminiecki L, Bicknell R. In silico cloning of novel endothelial specific genes. Genome Research, 2000; 10: 1796-1806.
    
    23. Schultz J, Doerk T, Ponting CP, et al. More than 1000 putative new human signalling proteins revealed by EST data mining. Nat Genet, 2000; 25: 201-204.
    
    24. Capone MC, Gorman DM, Ching EP, et al. Identification through bioinformatics of cDNAs encoding human thymic shared Ag21/ stem cell Ag22. A new member of the human Ly26 family. J Immunol, 1996, 157: 969-973.
    
    25. Camargo AA, Samaia HP, Dias-Neto E, Simao DF, et al. The contribution of 700000 ORF sequence tags to the definition of the human transcriptome. Proc Natl Acad Sci USA, 2001; 28: 12103-12108.
    
    26. Hogenesch JB, Ching KA, Batalov S, et al. A comparison of the Celera and Ensembl predicted gene sets reveals little overlap in novel genes. Cell, 2001; 106: 413-415.
    
    27. Gopal S, Schroeder M, Pieper U, et al. Homology based annotation yields 1042 new candidate genes in the Drosophila melanogaster genome. Nature Genetics, 2001; 27: 337-340.
    
    28. Schena M, DNA Microarrays: a practical approach. 139-164, Oxford University Press, 1999.
    29. Schmitt AO, Specht T, Beckmann G, et al. Exhaustive mining of EST libraries for genes differentially expressed in normal and tumor tissues. Nucleic Acids Res, 1999; 27:4251-4260.
    
    30. Marth GT, Korf I, Yandell MD, et al. A general approach to single-nucleotide polymorphism discovery. Nature Genet, 1999; 23: 452-456.
    
    31.Delcher AL, Kasif S, Fleischmann RD, et al. Alignment of whole genomes. Nucleic Acids Res, 1999; 27: 2369-2376.
    
    32. Tatusova TA, Madden TL. Blast 2 sequences - a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett, 1999; 174: 247-250.
    
    33. Webb BM, Liu JS, Lawrence CE. BALSA: Bayesian Algorithm for Local Sequence Alignment. Nucleic Acids Res, 2002; 30:1268-1277.
    
    34. Notredame C, Higgins D, Heringa J. T-Coffee: A novel method for multiple sequence alignments. J. Mol. Biol, 2000; 302: 205-217.
    
    35. Rehm BHA. Bioinformatic tools for DNA/protein sequence analysis, functional assignment of genes and protein classification. Appl. Microbiol Biotechnol, 2001; 57: 579-592.
    
    36. Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acid Res, 2002; 30: 3059-3066.
    
    37. Thomas G Graeber, David Eisenberg. Bioinformatic identification of potential autocrine signaling loops in cancers from gene expression profiles. Nature Genetics, 2001; 29: 295-300.
    
    38. Xenarios I, Fernandez E, Salwinski L, et al. DIP: The Database of Interacting Proteins: 2001 update. Nucleic Acids Res, 2001; 29: 239-241.
    
    39. Kikuno R, Nagase T, Suyama M, et al. HUGE: a database for human large proteins identified in the Kazusa cDNA sequencing project. Nucleic Acids Res, 2000; 28: 331-332.
    
    40. Marcotte EM, Pellegrini M, Thompson MJ, et al. A combined algorithm for genome-wide prediction of protein function. Nature, 1999; 402: 83-86.
    
    41. Enright AJ, IIiopoulos I, Kyrpides NC, et al. Protein interaction maps for complete genomes based on gene fusion events. Nature, 1999; 402: 86-90.
    
    42. Skolnick J, Fetrow JS. From genes to protein structure and function: novel applications of computational approaches in genomic era. TIBTECH, 2000; 18: 34-39.
    
    43. Kell DB, King RD. On the optimization of classes for the assignment of unidentified reading frames in functional genomics programmes: the need for machine learning. TIBTECH, 2000; 18:93-98.
    
    44. PF Hallin, David Ussery. CBS Genome Atlas Database: a dynamic storage for bioinformatic results and sequence data. Bioinformatics, 2004; 20: 3682-3686.
    
    45. Bittner M, Meltzer P, Trent J. Data analysis and integration of steps and arrows. Nature Genet, 1992, 2:173-179.
    
    46. Ermolaeva O, Rastogi M, Pruitt KD, et al. Data management and analysis for gene expression arrays. Nature Genet, 1998, 20:19-23.
    
    47. Zhang MQ. Large-scale gene expression data analysis: a new challenge to computational biologists. Genome Res, 1999, 9:681-688.
    48. Gierke P, Zhao C, Brackmann M. Expression analysis of members of the neuronal calcium sensor protein family: combining bioinformatics and Western blot analysis. Biochemical and Biophysical Research Communications, 2004; 38-43.
    
    49. Kondrashov A. Comparative genomics and evolutionary biology. Curr Opin Genet Dev. 1999, 6: 624-629.
    
    50. Anderson JN, Vecchio RL, Kannan N. Conputational analysis of protein tyrosine phosphates: practical guide to bioinformatics and date resources. Methods, 2005; 1:90-114.
    
    51. Shannching Chen, Tsuhan Chen. Retrieval of 3D Protein Structures, 2002. ICIP2002, Rochester, NY, U.S.A.
    
    52. F Achard, Vaysseix G, Barillot E. XML, bioinformatic and data integration. Bioinformatic; 2001; 17:115-125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700