用户名: 密码: 验证码:
面向武器投放规划的自适应混合响应面优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
武器投放作为战术飞机任务规划系统中的关键环节,其规划问题是一个多变量、高度非线性及不连续的约束优化问题。这类问题的最大特点是基于实际系统的决策指标与约束条件的评估过程需要的代价昂贵。论文以降低规划过程中的评估代价为目标,采用响应面近似模型作为代理模型参与规划的方式,主要从基于响应面的优化框架和混合响应面模型展开了研究,设计响应面优化方法及其在武器投放规划上的应用。论文的主要研究内容如下:
     1.建立了基于响应面模型的优化框架。利用响应面方法可以根据样本快速建立一组独立变量与系统响应之间关系的近似模型这个优点,结合基于代理模型的优化技术,建立了一个基于响应面模型的优化框架,并对试验设计方法、建立优化问题及求解,响应面更新等四方面进行了研究,为设计响应面优化方法提供了可行的基本框架。
     2.建立了混合响应面模型。响应面近似精度是影响优化效率的重要因素之一,将径向基函数和多项式混合作为响应面的近似函数,建立了混合响应面模型,提高了模型的近似精度,加速了整个优化过程。同时,避免了求解系数时可能出现奇异矩阵的情形,保证了模型的惟一性。
     3.提出了自适应混合响应面优化方法。在混合响应面模型的基础上,结合对称拉丁超立方设计方法和周期动态约束策略,提出了自适应混合响应面优化方法,为防止优化过程陷入局部搜索加入重启动模式进行改进,进一步提高方法的优化性能。实验数据表明方法具有良好的的全局优化能力,且是一种稳定的响应面优化方法。
     4.提出了基于响应面优化的武器投放规划问题求解方法。以典型侧跃升-俯冲攻击战术为对象,分析武器投放过程涉及的关键点,将关键点的参数作为决策变量,结合规划过程需要考虑的指标及约束条件,建立了武器投放规划的一般参数优化模型。在优化模型的基础上,提出了一种基于自适应响应面优化的武器投放规划问题求解方法。规划结果表明方法相比原先规划方法能够在较少的评估次数内得到的规划结果具有较优的指标并满足同样的约束条件。
This thesis focuses on weapon delivery planning that is an important aspect in the tactical aircraft mission planning. The weapon delivery planning can be regarded as a constraint optimization problem with multi-variables, highly nonlinear and discontinuous. The decision-goals and constraints based on actual systems are costly to be evaluated in these problems. To reduce mentioned evaluation cost, response surface model is proposed and developed as a surrogate-model for planning. A response surfaces based optimization framework is constructed. Afterwards, hybrid response surface models are designed. Furthermore, a response surface optimization method is proposed and applied into applications in weapon delivery planning. The main achievements and progress are as follows:
     Firstly, an optimization framework based on response surface model is established. Response surface technique can quickly create an approximation between a set of independent variables and the system’s response. Therefore, an optimization framework is constructed by integrating the merits of response surfaces and the surrogate-model optimization. The design of experiments, establishment and solving of optimization problems, and updating of response surface are then discussed, respectively. This provides a feasible fundamental framework for further design of response surface optimization method.
     Secondly, a hybrid response surface (HRS) is presented. The polynomial and radial basis functions are used to estimate the response surface approximation accuracy that may affect the optimization efficiency specifically. And the HRS is modeled to speed up the whole optimization process. It is significant that the HRS model can be free of the coefficient matrix that may appear singular to ensure the uniqueness of the model.
     Thirdly, an adaptive hybrid response surface optimization (AHRSO) method is proposed. The AHRSO method is put forward on the basis of symmetric Latin hypercube design (SyLHD) and circle dynamic constrained (CDC) strategy. A restart mode is added to prevent the optimization process dropping into a local search, which improves the performance of the proposed method. Experimental results indicate that AHRSO is competitive for global optimization, and stable for global optimization.
     Finally, an AHRSO based problem-solving method is presented for the weapon delivery planning. The key points of a typical Pop-up attack in the weapon delivery process are analyzed. Thus, the process parameters are regarded as decision variables. Weapon delivery planning problems are modeled as a standard optimization model with goals and constraints in the planning. A weapon delivery planning problems-solving method is then presented by using the response surface optimization. Compared with the original planning approaches, the presented method can get better planning results with less evaluation cost.
引文
[1] Specification Guideline For The Joint Mission Planning System (JMPS). Draft, 1998.
    [2] A. Boukhtouta, F. Bouak, J. Berger. Description and Analysis of Military Planning Systems[R]. Defense R&D Canada Valcartier, TR 2004-320, 2006.
    [3] A. Boukhtouta, A. Bedrouni, J. Berger, et al. A Survey of Military Planning Systems[J]. Canadian Forces employment doctrine, 2003.
    [4] Flying Operations-F-16 Combat Aircraft Fundamentals. U.S. Air Force Multi-Command Handbook 11-F16, Vol.5, 1996.
    [5] Flying Operations-F-16--Operations Procedures. U.S. Air Force Instruction 11-2F-16, Vol.3, 1999.
    [6] B. Bill. Rotocraft Pilot’s Associate (RPA) Attack Mission Planner[R]. American Helicopter Society Forum, 1999.
    [7] G.R. ROMMEL, A.S. CHRISTINE. Constrained Global Optimization of Expersive Black Box Functions Using Radial Basis Functions[J]. J Glob Optim, (2005)31:153-171.
    [8] D.R. Jones, C.D. Perttunen, B.E. Stuckman. Lipschitzian Optimization Without the Lipschtiz Constant[J]. J Optim Th Appl, 1993,78(1):157-181.
    [9] D.R. Jones. The DIRECT Global Optimization Algorithm[M]. Encyclopedia of Optimization, Kluwer Academic Publishers, Boston, 2001.
    [10] Audet, Charles, Jr. J.E. Dennis. Analysis of Generalized Pattern Searches[J]. SIAM J. Optim. 2003,13(3):889-903.
    [11] H.M. GUTMANN. Radial Basis Function Methods for Global Optimization[D]. University of Cambridge, 2001.
    [12] H.M. GUTMANN. A Radial Basis Function Method for Global Optimization[J]. Journal of Global Optimization, 2001,19(3):201–227.
    [13] D.R. Jones, M. Schonlau, W.J. Welch. Efficient Global Optimization of Expensive Black-Box Functions[J]. J Glob Optim, 1998,13: 455- 492.
    [14] M. Bjorkman, K. Holmstrom. Global Optimization of Costly Nonconvex Functions Using Radial Basis Functions[J]. Optimization engineering, 2000,1(4):373-397.
    [15] B.M. Dale, J.G. Walter, L.T. Wayne, et al. Global and Local Optimization Using Radial Basis Function Response Surface Methods[J]. Applied Mathematical Modelling, 2007,31:2095-2110.
    [16] A.S. Christine, G.R. Rommel. Watershed Calibration Using Multistart Local Optimization and Evolutionary Optimization with Radial Basis Function Approximation[J]. Hydrological Sciences-Journal-des Sciences Hydrologiques, 2007,52(3):450-465.
    [17] M.W. Stefan, G.R. Rommel, A.S. Christine. ORBIT: Optimization by Radial Basis Function Interpolation in Trust-Regions[J]. SIAM J. Scientific Computing, 2008:3197-3219.
    [18] M.W. Stefan. Derivatice-Free Opimization Algorithms for Computationally Expensive Functions[D]. Cornell University, 2009.
    [19] M. Bodhisatta, R. Ankita, S. Saurav, et al. Optimization of Process Parameters for Ethnol Production Form Sugar Cane Molasses by Zymomonas Mobilis Using Response Surface Methodology and Genetic Algorithm[J]. Appl. MicrobiolBiotechnol, 2011,90:385-395.
    [20] A. Masao, N. Hirotaka, S. Rie, et al. Approximation Optimization of Constraint Problem Using Radial Basis Function and Self-Organizing Maps[C]. //8th AIAA/USAF/NASA/ISSMO Symposium on Myltidisciplinary Analysis and Optimization, AIAA-2000-4922.
    [21] H.M. Gutmann. On the Semi-Norm of Radial Basis Function Interpolants[J]. Journal of Approximation Theory, 2001,111:315-328.
    [22] J.M. Ramon, S.D. George. A Hybridized Self-Organizing Response Surface Methodology[C]. //12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA-2008-5891.
    [23] J.F. Rodriguez, V.M. Perez, D. Padmanabhan, et al. Sequential Approximate Optimization Using Variable Fidelity Response Surface Approximations[J]. Struct Multidisc Optim. ,2001,22:24-34.
    [24] F.R. Jose, E.R. John, T.W. Layne. Trust Region Augmented Lagrangian Methods for Sequential Response Surface Approximation and Optimization[C]. //Proceedings of DETS’97, ASME Design Engineering Technical Conferences, 1997.
    [25] M.L. Robert, T. Virginia, W.T. Michael. Direct Search Methods: Then and Now[J]. Journal of Computational and Applied Mathematics, 2000,124:191-207.
    [26] N.M. Alexandov, Jr. J.E. Dennis, R.M. Lewis, et al. A Trust Region Framework for Manging the Use of Approximation Models in Optimization[R]. NASA/CR-201745, ICASE Report No.97-50.
    [27] A.A. Giunta, S.E. Michael. Implementation of a Trust Region Model Management Strategy in the Dakota Optimization Toolkit[J]. AIAA-2000-4935.
    [28] A.J. Booker, Jr. J.E. Dennis, P.D. Frank, et al. A Rigorous Framework for Optimization of Expensive Functions by Surrogates[J]. Structural Optimization, 1999,17:1-13.
    [29] A.J. Booker, Jr. J.E. Dennis, P.D. Frank, et al. Optimization Using Surrogate Obejectives On a Helicopter Test Example[R]. Boeing Shared Services Group, 1997, Technical Report SSGTECH-97-027.
    [30] Jr. J.E. Dennis, M. El-Alem, M.C. Maciel. A Global Convergence Theory for General Trust-Region-Based Algorithms for Equality Constrained Optimization[J]. SIAM J. Optim, 1997,7(1):177-207.
    [31] V.Q. Nestor, T.H. Raphael, S. Wei, et al. Surrogate-Based Analysis and Optimization[J]. Progress in Aerospace Sciences, 2005,41:1-28.
    [32] M.S. Eldred, D.M. Dunlavy. Formulations for Surrogate-Based Optimization with Data Fit, Multifidelity, and Reduced-Order Models[C].// 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA-2006-7117.
    [33] D.R. Jones. A Taxonomy of Global Optimization Methods Based on Response Surfaces[J]. J. Glob. Optim. , 2001,21:345-383.
    [34] G.R. Rommel, A.S. Christine. A Stochastic Radial Basis Function Method for the Global Optimization of Expensive Functions[J]. INFORMS Journal on Computing, 2007,19(4):497-509.
    [35] G.R. Rommel, A.S. Christine. Local Function Approximation in Evolutionary Algorithms for the Optimization of Costly Functions[J]. IEEE Trans. Evolutionary Computation, 2004:490-505.
    [36] G.R. Rommel, A.S. Christine. Parallel Radial Basis Function Methods for the Global Optimization of Expensive Functions[J]. European Journal of OperationalResearch, 2007,182:514-535.
    [37] G.R. Rommel, A.S. Christine. Improved Strategies for Radial Basis Function Methods for Global Optimization[J]. J. Glob. Optim. , 2007,37:113-135.
    [38] G.R. Rommel, A.S. Christine. Parallel Stochastic Global Optimization Using Radial Basis Functions. INFORMS Journal on Computing, 2009:411-426.
    [39] G.R. Rommel. Convergence Guarantees for Generalized Adaptive Search Methods for Continuous Global Optimization[J]. European Journal of Operational Research, 2010:1187-1202.
    [40] G.R. Rommel. Stochastic Radial Basis Function Algorithms for Large-Scale Optimization Involving Expensive Black-Box Objective and Constraint Functions[J]. Computers & OR, 2011,38:837-853.
    [41]王永菲,王成国.响应面法的理论与应用[J].中央民族大学学报(自然科学版),2005,14(3):236-239.
    [42]孟广伟,沙丽荣,李锋等.基于径向基函数神经网络响应面法的装载机动臂疲劳可靠性[J].吉林大学学报(工学版),2009,39(6):1516-1520.
    [43]姜琬,金海波,孙卫平.基于多级响应面法的翼梢小翼气动优化设计[J].航空学报,2010,31(9):1746-1751.
    [44]潘磊,谷良贤,阎代维.改进响应面法及其近似性能[J].宇航学报,2009,30(2):806-810.
    [45]潘磊,谷良贤.分块响应面法研究[J].计算机工程与应用,2009,45(19):37-39.
    [46]马宝胜.响应面方法在多种实际优化问题中的应用[D].北京:北京工业大学,2007.
    [47]张轩.基于响应面方法的二维连续体形状理论及程序开发[D].北京:北京工业大学,2005.
    [48]吴先宇,罗世彬,陈小前等.基于替代模型的高超声速进气道优化[J].弹箭与制导学报,2008,28(1):148-152.
    [49]陈颖,宁佐贵.基于神经网络响应面法的随机结构动力可靠性分析[J].振动与冲击,2007,26(1):65-68.
    [50]赵洁.机械可靠性分析的响应面法研究[D].西安:西北工业大学,2006.
    [51] Military Analysis Network-Air Force Mission Support System (AFMSS)[EB/OL]. http://www.fas.org/man/dod-101/sys/ac/equip/afmss.htm.
    [52] Flying Safety-Portable Flight Planning System in Combat[R]. U.S. Air Force, Safety Agency, 2004.
    [53] A.F. Konar, M.D. Ward. Development of Weapon Delivery Models and Analysis Programs[M]. AFFDL-TR-71-123, Vol.Ⅰ,Ⅱ,Ⅲ, 1972.
    [54] Nowakowski, V. Michael. Autonomous Precision Weapon Delivery Using Synthetic Array Radar[R]. United States Patent 5260709, 07/810630, 1993.
    [55]彭雪锋.近距空地攻击仿真关键问题研究[D].西安:西北工业大学,2003.
    [56]毛燕芬.空对地攻击系统效能分析[D].西安:西北工业大学,2001.
    [57]张翔伦,杨蔷薇.基于机动动作库的实时轨迹生成与仿真研究[J].飞行力学,2008,26(3):364-368.
    [58]薛宏涛,沈林成.作战飞机武器投放技术机动飞行性能分析与计算[J].指挥控制与仿真,2010,32(5):49-53.
    [59]张煜,谷学强,张文斗等.基于战术机动动作的作战飞机武器投放规划研究[J].系统仿真学报,2010,22(增刊1):158-162.
    [60]张文斗.飞行器常规武器投放规划冗余方法研究[D].长沙:国防科学技术大学,2010.
    [61]张超杰.基于微分平坦理论的飞行器轨迹规划方法研究[D].长沙:国防科学技术大学,2010.
    [62]张文斗,陈璟,王楠等.基于有限状态机的武器投放航迹仿真研究[J].微计算机信息,2010,26(10-1):150-153.
    [63]王楠,张煜,陈璟等.战术飞机武器投放规划技术研究[C]. //第三届中国导航、制导与控制学术会议,北京, 2009.
    [64] Nan Wang, Wanpeng Zhang, Chaojie Zhang, et al. Optimization of Tactical Air-craft Weapon Delivery using Tactics Templates[C]. //2nd International Asia Conference on Informatics in Control, Automation and Robotics, 2010.
    [65] Nan Wang, Lin Wang, Yanlong Bu, et al. Tactical Aircraft Pop-up Attack Planning using Collaborative Optimization[C]. //International Conference on Intelligent Computing, 2010.
    [66]张煜,张万鹏,陈璟等.基于Gauss伪谱法的UCAV对地攻击武器投放轨迹规划[J].航空学报,2011,172:1240-1251.
    [67] B. Deniz, H.B. Ismail. Modeling and OptimizationⅡ: Comparison of Estimation Capabilities of Response Surface Methodology with Artificial Neural Networks in A Biochemical Reaction[J]. Journal of Food Engineering, 2007,78:846-854.
    [68] B.M. Dale, J.G. Walter, L.T. Wayne, et al. Response Surface Model Development for Global/Local Optimization Using Radial Basis Functions[C]. //8th AIAA/USAF/ NASA/ISSMO Symposium on Myltidisciplinary Analysis and Optimization, AIAA-2000-4776.
    [69] D. Richard. Assessment of Response Surface Models Using Independent Confirmation Point Analysis[C]. //48th AIAA Aerospace Sciences Meeting, AIAA-2010-741.
    [70] B. Deniz, H.B. Ismail. Modeling and OptimizationⅠ: Usability of Response Surface Methodology[J]. Journal of Food Engineering, 2007,78:836-845.
    [71] S. Andras, J.L. Stephen, J.K. Andy. On the Design of Optimization Based on Global Response Surface Approximation Models[J]. J. Glob. Optim. , 2005,33:31-59.
    [72] W.S. Timothy, M.M. Timothy, J.K. John, et al. Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization[J]. AIAA Journal, 2001,39(12):2233-2241.
    [73] D.M. Jay, W.S. Timothy. On the Use of Kriging Models to Approximate Deterministic Computer Models[C]. //Proceedings of DETC’04, Utah USA,2004.
    [74]高月华.基于Kriging代理模型的优化设计及其在注塑成型中的应用[D].大连:大连理工大学,2009.
    [75]张科施.飞机设计的多学科优化方法研究[D].西安:西北工业大学,2006.
    [76] L.P. Swiler, R. Slepoy, A.A. Giunta. Evaluation of Sampling Methods in Constructing Response Surface Approximations[C]. //47th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA-2006-1827.
    [77] Ruichen Jin, Wei Chen, W.S. Timothy. Comparative Studies of Metamodeling Techniques Under Multiple Modeling Criteria[J]. AIAA Journal, AIAA-2000-4801.
    [78]张健.飞机多学科设计优化中的近似方法研究[D].西安:西北工业大学,2006.
    [79]穆雪峰.多学科设计优化代理模型技术的研究应用[D].南京:南京航空航天大学,2004.
    [80] D. Holger, P. Andrey. Generalized Latin Hypercube Design for Computer Experiments[J]. Technometrics, 2010,52(4):421-429.
    [81] L.P. Swiler, G.D. Wyss. A User’s Guide to Sandia’s Latin Hypercube Sampling Software: LHS UNIX Library/Standalone Version[R]. Sandia National Laboratories, SAND2004-2439,2004.
    [82]谢政,李建平,陈挚.非线性最优化理论与方法[M].北京:高等教育出版社,2010:3-4.
    [83] Thomas Weise. Global Optimization Algorithms: Theory and Application[M/OL]. http://www.it-weise.de/, 2008.
    [84]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999:4-8.
    [85]虞蕾,赵红,赵宗涛.一种基于遗传算法的航迹优化方法[J].西北工业大学(自然科学版),2006,36(2):205-208.
    [86]陈琳,白振兴.应用PSO算法的无人机三维航迹规划[J].电光与控制,2008,15(4):50-53.
    [87]叶文,朱爱红,范洪达.改进粒子群算法在UCAV航路规划中的应用[J].计算机工程,2008,34(7):178-180.
    [88] Yuan REN, Guangchen BAI. New Neural Network Response Surface Methods for Reliability Analysis[J]. Chinese Journal of Aeronautics,2011,24:25-31.
    [89] T. Krishnamurthy. Response Surface Approximation with Augmented and Compactly Supported Radial Basis Functions[C]. //44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA-2003-1748.
    [90] Q.Y. Kenny, L. William, S. Agus. Algorithmic Construction of Optimal Symmetric Latin Hypercube Desgins[J]. Journal of Statistical Planning and Inference, 2000,90:145-159.
    [91] K. Yi-Tung, Z. Erwie. A Hybrid Genetic Algorithm and Particle Swarm Optimization for Multimodal Functions[J]. Applied Soft Computing, 2008,8:849-857.
    [92]王嘉.几种典型机动动作的自动飞行仿真研究[D].西安:西北工业大学,2007.
    [93] M.G. Alexander. Application of Maneuver-Based Control in Variable Autonomy Unmanned Combat Aerial Vehicles[D]. Air University, 2003.
    [94]吴强,曹仪华,金长江.最小安全飞行高度的计算[J].战术导弹技术,2003,2:21-24.
    [95]陈松,祁岭,赵英杰.极坐标算法对飞机CCIP弹道解算的优化[J].海军工程学院学报,2007,22(1):133-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700