用户名: 密码: 验证码:
大鼠脊髓缺血再灌注损伤后自噬表达及作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分大鼠脊髓缺血再灌注损伤动物模型的建立与评价
     目的:建立大鼠脊髓缺血再灌注损伤模型,观察不同缺血时间对脊髓缺血再灌注损伤后病理组织学和神经功能评分的影响。
     方法:构建大鼠胸主动脉球囊阻断复合体循环低血压(MAP=40mmHg)脊髓缺血再灌注模型,按不同的阻断时间随机分为假手术组、缺血8min组、10min组和12min组,评定再灌注24h和48h后神经功能;观察再灌注48h后脊髓形态学变化。
     结果:再灌注48h后,缺血8min、10min和12min组出现截瘫率分别为60%、100%和100%,各组比较差异有统计学意义(P<0.05)。再灌注48h后,脊髓组织出现神经细胞肿胀、坏死等改变,且随阻断时间的延长,损伤程度逐渐加重。
     结论成功建立大鼠胸主动脉球囊阻断复合体循环低血压脊髓缺血再灌注模型。脊髓缺血10min是模型建立的最佳时间。
     第二部分细胞自噬及其相关蛋白Beclin-1,LC3和P62在大鼠脊髓缺血再灌注损伤组织中的表达
     目的:观察大鼠脊髓缺血再灌注损伤后损伤区细胞自噬是否存在,比较不同时间点细胞自噬的表达情况。
     方法:将大鼠随机分为两组,假手术组和缺血组,缺血组再分五个时间点:3H,6H,12H,24H,48H。损伤组按照第一部分的方法制作脊髓缺血再灌注损伤模型,假手术组只置入导管而不打开球囊损伤脊髓,按照上述时间点处死动物后,用透射电镜观察细胞自噬,用荧光双染法检测LC3及Beclin1在各时间点的表达和在各类脊髓组织细胞中的分布,Western blot法检测自噬相关蛋白Beclin1,LC3和P62的表达情况。
     结果:透射电镜发现脊髓损伤后的各个时间点,在损伤的神经元细胞中可以发现自噬囊体和自噬溶酶体明显增加,脊髓损伤后3h开始,细胞自噬相关蛋白Beclin1和LC3表达即较对照组明显上调,并且随着时间持续升高,在伤后24h时达到高峰,伤后48h有回落,但仍高于基础值,而自噬相关蛋白P62表达下调表达,和Beclin1,LC3反相同步。缺血再灌注组Beclin1和LC3阳性细胞数在各时间点明显高于假手术组(p﹤0.05),趋势与蛋白变化相符。脊髓神经元细胞,胶质细胞,小胶质细胞中均有Beclin1和LC3表达。
     结论:1、脊髓缺血再灌注损伤中3H自噬表达明显上调,24H到达高峰,48H下降。神经元细胞、胶质细胞和小胶质细胞均可见自噬表达。自噬参与脊髓缺血再灌注损伤过程。
     第三部分自噬抑制剂3-MA对大鼠脊髓损伤后神经细胞自噬的影响
     目的:通过鞘内注射自噬抑制剂3-MA,观察自噬被抑制后对大鼠脊髓缺血再灌注损伤后神经细胞自噬的影响。
     方法:将大鼠随机分成三组:假手术组,单纯缺血损伤组,3-MA组,每组分为伤后3H,12H,24H,48H各4个时间点,神经功能评分评价24h和48h小时后双下肢神经功能,脊髓前角神经元计数,Western blot法检测自噬相关蛋白Beclin1,LC3和P62检测各组各时间点蛋白表达的变化,组织荧光免疫法检测各组Beclin1和LC3阳性细胞变化。
     结果:24H和48H后3-MA干预组较单纯缺血组神经功能评分显著改善(P<0.05),在观测的的4个时间点上,3-MA治疗组脊髓前角神经元数明显多于单纯缺血组, Beclin1和LC3的蛋白上调表达和P62表达下调较单纯缺血组明显降低,差异有统计学意义(P<0.05)。3-MA组Beclin1和LC3的阳性细胞数明显少于缺血损伤组,组间差异有统计学意义(P<0.05)。
     结论:细胞自噬抑制剂3-MA可以明显改善大鼠脊髓缺血再灌注损伤后神经功能,增加神经元存活数,抑制自噬相关蛋白Beclin1、LC3和P62的表达。减少Beclin1和LC3阳性细胞数,抑制自噬具有神经保护作用。
PartⅠ Establishment and evaluation of spinal ischemia reperfusion injurymodel in adult rats
     Objective: To build an animal model of spinal ischemia reperfusion injury by inadult rats, then to observe the changes and differences in locomotor scores andhistopathological after spinal ischemia reperfusion injury.
     Methods: We built a spinal ischemia reperfusion injury model occlusion of thedescending thoracic aorta combination with systemic hypotension (40mmHg) in adultrats. Rats were assigned randomly to4groups(Sham Group,Ischemia8min Group,Ischemia10min Group,Ischemia12min Group,10rats ineach group). According todifferent occlusion durations, the neurologic function scores system is used to evaluatechangeof the locomotor scores24h and48h afte spinal ischemia reperfusion injury,meantime, the HE(Hematoxylin and Eosin) and the Nissl staining is used to observe thehistopathological change after spinal ischemia reperfusion injury.
     Results: Forty-eight hours after the infusion, the rats developed the paraplegia at60%,100%or100%in Ischemia8min Group,Ischemia10min Group,Ischemia12minGroup respectively.There was significantly haemorrhage, edema, degeneration, vacuoleand so on after spinal ischemia reperfusion injury in rats.
     Conclusion: Establish a spinal ischemia reperfusion injury model in adult ratssuccessfully.The best of time ischemia is10min to establish a spinal ischemiareperfusion injury model.
     Part Ⅱ The Expression of autophagic correlative Protein: Beclin-1, LC3and P62in lesion tissues after spinal ischemia reperfusion injury in rats
     Objective: To investigate whether autophagy occurred in the spinal cord tissueafter spinal ischemia reperfusion injury. We also aimed to compare the expression valueof autophagic correlative Protein: Beclin1, LC3and P62; Beclin1, LC3positive cell indifferent time point after spinal ischemia reperfusion injury.
     Methods: We seperated the rats into two groups randomly:Ischemia group andSham group. Ischemia group had five time point. We built the spinal ischemiareperfusion model using the way mentioned in the Part Ⅰ, while the rats in Sham groupexperience the same operation without thoracic aorta occlusion. At every time point, weused the transmission Electron Microscope to observe the ultrastructure of spinal cordtissue in order to find the autophagosome. The Western-blot were used to measure theprotein expression of Beclin1, LC3and P62in every time point after spinal ischemiareperfusion injury. Immunohistochemical staining of LC3and beclin1, counting andcalculation of LC3and beclin1positive cells.
     Result: We found that the autophagosome could be seen in the neuron cell at everytime point after spinal ischemia reperfusion injury. the expression of Beclin1、LC3protein to have significantly increased on the injured lumbar from3h, peaked at24hafter spinal ischemia reperfusion injury, the expression of P62protein decreasedrespectively. The increase of LC3and Beclin1positive cells at the injured lumbarspinal cord were observed from3h, peaked at24h after spinal ischemia reperfusioninjury. The expression of LC3and Beclin1were observed in neurons, astrocytes andoligodendrocytes.
     Conclusion:1、 Compare to the Sham group, the autophagic correlativeprotein:Beclin1and LC3were found up-regulation from3h to48h after spinal ischemia,while peaked at24h. LC3and Beclin1expressed in neurons, astrocytes andoligodendrocytes cell. LC3and Beclin1positive cells increased at the injury spinalcord. This study suggested autophagy is associated with spinal cord ischemiareperfusion injury.
     PartⅢ:The influence of3-MA in autophagy after Spianl ischemia reperfusioninjury in rats.
     Objective:Aim to evaluate how the3-MA by Intrathecal injection, which is aaccredited autophagic inhibitor, effected on neuron cells.
     Methods: We separated the rats into three groups randomly, there were Shamgroup, Ischemia groups,3-MA groups. Each group had four time period, they are3H,12H,24H and24H after spinal ischemia reperfusion injury. The neurologic functionscores system is used to evaluate change of the locomotor scores after spinal ischemia24H and48H. The normal motor neurons of anterior horn were counted.TheWestern-blot were used to measure the protein expression of Beclin1, LC3and P62inevery time point after spinal ischemia reperfusion injury. Immunohistochemical stainingof LC3and beclin1, counting and calculation of LC3and beclin1positive cells.
     Result:3-MA groups demonstrated a significant decrease in neurologic functionaloutcome on24h and48h than ischemia groups after spinal ischemia reperfusion injury.In the four time periods we observed number of normal motor neuron was more in the3-MA groups than in the ischemia groups; expression of LC3and Beclin1protein werelower in the3-MA groups than in the ischemia groups following spinal ischemiareperfusion, of course they are also higher than in the sham group.P62was higher in3-MA groups than ischemia groups. the differences between each two groups hadsignificant difference(p<0.05). the number of LC3and Beclin1positive cells inischemia groups were significantly higher than those3-MA groups at each time point,and they had significant difference(p<0.05).
     Conclusion: autophagy inhibitor3-methyladenine (3-MA) attenuated the ischemicinsults, improved neurologic function and number of normal neurons; inhibited theinduction of LC3and Beclin1, reversed the reduction of p62simultaneously. inhibitionof the autophagic pathway plays a neuroprotective role against spinal ischemiareperfusion injury.
引文
1. Wilson JR, Cadotte DW, Fehlings MG. Clinical predictors of neurological outcome,functional status, and survival after traumatic spinal cord injury: a systematicreview. J Neurosurg Spine.2012;17(1Suppl):11-26.
    2. Anderberg L,Aldskogius H,Hohz A.Spinal cord injury.Scientific challenges for theunknown future.UpsMa J Med Sci.2007,112(3):259-288.
    3. Dumont RJ, Ckcnkwo DO, Verma S, et al. Acute spinal cord injury, part I: pathcphysic-legitmo: hanisms. Clin Neurcphannacal.200l;24:254-264.
    4. Ray SK, Matzelle DD, Sribnick EA, et al. Calpain inhibitor prevented apoptosisand maintained transcription of proteolipid protein and myelin basic protein genesin rat spinal cord injury. J Chem Neuroanat.2003;26(2):119-124.
    5. Rami A, Langhagen A, Steiger S. Focal cerebral ischemia induces upregulation ofBeclin1and autophagy-like cell death[J]. Neurobiol Dis,2008,29:132-141.
    6. Sadasivan S,Dunn Jr WA,Hayes RL,et a1.Changes in autophagy proteins in a ratmodel of controlled cortical impact induced brain injury.Biochem Biophys ResComm,2008,373(4),478-481.
    7. Alirezaei M, Kemball CC, Lindsay Whitton J: Autophagy, inflammation andneurodegenerative disease. Eur J Neurosci,2011,33,197-204.
    8. Rubinsztein DC, Difiglia M, Heintz N, Nixon RA, Qin ZH, Ravikumar B, StefanisL, Tolkovsky A: Autophagy and its possible roles in nervous system diseases,damage and repair. Autophagy,2005,1,11-22.
    9. Kanno H, Ozawa H, Sekiguchi A, Itoi E. Spinal cord injury induces upregulation ofBeclin1and promotes autophagic cell death. Neurobiol Dis.2009Feb;33(2):143-8.
    10. Kanno H, Ozawa H, Sekiguchi A, Yamaya S, Itoi E. Induction of autophagy andautophagic cell death in damaged neural tissue after acute spinal cord injury in mice.Spine.2011Oct15;36(22):E1427-34.
    11. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y,Tokuhisa T, Mizushima N. The role of autophagy during the early neonatalstarvation period. Nature2004;432:1032-6.
    12. Shintani T, Klionsky DJ. Autophagy in health and disease: A double-edged sword.Science2004;306:990-5.
    13. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N,Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T. Impairment ofstarvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol2005;169:425-34.
    14. Degterev A, et al. Chemical inhibitor of no-apoptotic cell death with therapeuticpotential for ischemic brain injury. Nat Chem Biol.2005;1:112–9.
    15. Moskowitz MA, Lo EH, Iadecola C. The science of stroke: Mechanisms in searchof treatments. Neuron2010;67:181–198.
    16. Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebralischemia. Stroke2009;40: e331–e339.
    17. Matsui Y, Takagi H, Qu X, et al. Distinct roles of autophagy in the heart duringischemia and reperfusion: roles of AMP-activated protein kinase and beclin1inMediating autophagy.[J].Circ Res,2007,100:914-922
    18. Codogno P,Meijer AJ.Autophagy and signaling:their role in cell survival and celldeath.Cell Death Differ,2005,12(Suppl2):1509-1518.
    19. Pattinqre S, Tassa A, Qu X, et al. Bcl-2antiapoptotic proteins inhibit Beclin1-dependent autophagy. Cell,2005,122(6):927-939.
    20. Adhami F, Schloemer A, Kuan CY. The roles of autophagy in cerebral ischemia.Autophagy,2007,3(1):42-44.
    21. Y Tsujimoto, S Shimizu. Another way to die: autophagic programmed cell death.Cell Death and Differentiation (2005)12,1528-1534
    22. Elmore SP, Oian T, Grissom SF, et a1.The mitochondrial permeability transitioninitiates autophagy in rat hepatocytes.FASEB J.2001;15:2286-2287
    23. Zhu JH,Horbinski C,Guo F,et a1.Regulation of autophagy by extracellularsignal-regulated protein kinases during1-methyl-4-pheny lpyri-dinium induced celldeath.Am J Path01.2007;170:75-86
    24. Fumya D,Tsuji N,Yagihashi A,et a1.Beelin l augmented cizdiamminedichloro-platinum induced apoptosis via enhancing caspase-9activity.Exp CellRes.2005;307(1):26-40
    25. Pattingre S,Lcvine B.Bcl-2inhibition of autophagy:a newroute to cancerd.CancerRes.2006;66(6):2285-2288
    26. silvia carloni,1silvia Girelli,1claudia scopa, et al. Activation of autophagy andAkt/CREB signaling play an equivalent role in the neuroprotective effect ofrapamycin in neonatal hypoxia-ischemia. Autophagy.2010;6:3,366-377
    27. Ruoyang Shi,1Jiequn Weng,1Ling Zhao, et al. Excessive Autophagy Contributesto Neuron Death in Cerebral Ischemia. CNS Neurosci Ther.2012;18(3):250-60.
    28. Kai Wei, Pei Wang,Chao-Yu Miao. A Double-Edged Sword with TherapeuticPotential: An Updated Role of Autophagy in Ischemic Cerebral Injury. CNSNeurosci Ther2012:18:879-886
    1. Picone AL, Green RM, Ricotta JR, May AG, DeWeese JA. Spinal cordischemiafollowing operations on the abdominal aorta. J Vasc Surg.1986;3:94-103.
    2. Allen AR. Surgery of experimental lesion of spinal cord of fracture dislocation ofspinal column preliminary report.JAMA,1911,57:878-880.
    3.卢曼鹏,权正学,刘渤.实验动物脊髓的损伤模型.中国骨与关节损伤杂志2008:23(02):174-176.
    4. Zivin JA, DeGirolami U. Spinal cord infarction: a highly reproducible stroke model.Stroke.1980;11(2):200-2.
    5.伍亚民,廖维宏,王正国脊髓损伤实验模型的研究概况与应用.《中国临床康复》2003;7(16):2344-2345.
    6.张俐,刘臻博,李长征.采用血管铸型技术和数字减影造影技术建立及鉴定脊髓缺血再灌注损伤模型.《中国组织工程研究与临床康复》2007;(04):8193-8195.
    7. Taira Y, Marsala M. Effect of proximal arterial perfusion pressure on function,spinal cord blood flow, and histopathologic changes after increasing intervals ofaortic occlusion in the rat. Stroke.1996;27(10):1850-8.
    8. Cameron T, Prado R, Watson BD, et al. Photochemically induced cystic lesion inthe rat spinal cord. Ⅰ. Behavioral and morphological analysis. Exp Neurol,1990,109:214-223.
    9. Watson BD, Prado R, Dietrich WD, et al. Photochemically induced spinal cordinjury in the rat. Brain Res.1986,367:296-300.
    10. Behrns KE, Tsiotos GG, DeSouza NF, et a1.Hepatic steatosis as fl potential riskfactor for major hepatic resection.Gastrointest Surg,1998;2(3):292-298.
    11. Schievink WI, Luyendijk W, Los JA. Does the artery of Adamkiewicz exist in thealbino rat? J Anat.1988;161:95-101.
    12. LeMay DR, Lu AC, Zelenock GB, Dalecy LG. Insulin administration protects fromparaplegia in the rat aortic occlusion model. J Surg Res.1988;44:352-358.
    13. Gray H. Anatomy of the Human Body.29th ed. Philadelphia, Pa: Lea&Febiger;1973:964-971.
    14. Soejima Y, Shimada M, Suehiro T, et a1.Use of steatotic graft in living-donor livertransplantation. Transplantation,2003;76(2):344-348.
    15. Ninomiya M, Shimada M, Terashi T, et a1.Sustained spatial disturbance of bilecanalicular networks during regeneration of the steatotic rat liver.Transplantation.2004;77(3):373-379.
    16. Marcos A, Fisher RA, Ham JM, et a1.Liver regeneration and function in donor andrecipient after right lobe adult to adult living donor liver transpIantation.Transplantation.2000;69(7):1375-1379.
    17. Teramoto K, Bowers JL, Kruskal JB, et a1.Hepatic microcircuIatory changes afterreperfusion in fatty and normal liver transplantation in the rat.Transplantation.1993;56(5):1076-1082.
    18. Farmer DG, Yersiz H. Ghobrial RM. et a1.Early graft function after pediatric livertransplantation: comparison between insitusplit liver grafts and living related livergrafts.Transplantation.2001;72(11):1795-1802.
    1. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y,Tokuhisa T, Mizushima N. The role of autophagy during the early neonatalstarvation period. Nature2004;432:1032-1036.
    2. Shintani T, Klionsky DJ.Autophagy in health and disease: a double-edgedsword.Science.2004;306(5698):990-995.
    3. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N,Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T. Impairment ofstarvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol2005;169:425-434
    4. Moskowitz MA, Lo EH, Iadecola C. The science of stroke: Mechanisms in search oftreatments. Neuron2010;67:181-198.
    5. Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebralischemia. Stroke2009;40: e331-e339.
    6. Adhami F'Schloemer A,Kuan CY.The roles of autophagy in cerebral ischemia.Autophagy2007;3(1):42-44.
    7. Degterev A. Chemical inhibitor of no-apoptotic cell death with therapeutic potentialfor ischemic brain injury. Nat Chem Biol.2005;1:112-119.
    8. Pei W, Yun-Feng G, Hui D, et al. Induction of autophagy contributes to theneuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemicstroke. Autophagy.2012;1(8):1-11.
    9. Uchiyama Y, Shibata M, Koike M, Yoshimura K, Sasaki M. Autophagy physiologyand pathophysiology. Histochem Cell Biol.2008;129(4):407-420.
    10. Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeastAtg8, is localized in autophagosome membranes after processing. EMBO J2000;19:5720-5728.
    11. Tanida I, Ueno T, Kominami E. LC3and autophagy. Methods Mol Biol2008,445:77-88
    12. Komatsu M, Ichimura Y. Physiological significance of selective degradation of P62by autophagy. FEBS Lett.2010;584(7):1374-1378.
    13. Noboru M, Tamotsu Y. How to interpret LC3immunoblotting. Autophagy.2007;3:542-545.
    14. Kabeya Y, Mizushima N, Yamamoto A, et al. LC3, GABARAP and GATE16localize to autophagosomal membrane depending on form-II formation. J Cell Sci2004,117(Pt13):2805-2812
    15. Clark RS, Bayir H, Chu CT, Alber SM, Kochanek PM, Watkins SC. Autophagy isincreased in mice after traumatic brain injury and is detectable in human brain aftertrauma and critical illness. Autophagy.2008,4(1):88–90
    16. Itakura E, Kishi C, Inoue K, Mizushima N. Beclin1forms two distinctphosphatidylinositol3-kinase complexes with mammalian Atg14and UVRAG. MolBiol Cell.2008,19(12):5360-5372
    17. Bj rk y G, Lamark T, Johansen T. P62/SQSTM1: a missing link between proteinaggregates and the autophagy machinery. Autophagy.2006,2:138-139.
    18. Nagaoka U, Kim K, Jana NR, Doi H, Maruyama M, Mitsui K, Oyama F, Nukina N.Increased expression of p62in expanded polyglutamine-expressing cells and itsassociation with polyglutamine inclusions. J Neurochem.2004;91:57-68..
    19. Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T, KominamiE, Yamane T, Tanaka K, Komatsu M. Structural basis for sorting mechanism of P62in selective autophagy. J Biol Chem.2008,283:22847-22857
    20. Wang JY, Xia Q, Chu KT, Pan J, Sun LN, et al. Severe global cerebralischemia-induced programmed necrosis of hippocampal CA1neurons in rat isprevented by3-Methyladenine: a widely used inhibitor of autophagy. J NeuropatholExp Neurol.2011,70:314-322.
    21. Tian F, Deguchi K, Yamashita T, Ohta Y, Morimoto N, et al. In vivo imaging ofautophagy in a mouse stroke model. Autophagy.2010;6:1107-1114.
    22. Nitatori T, Sato N, Waguri S, Karasawa Y, Araki H, Shibanai K, Kominami E,Uchiyama Y. Delayed neuronal death in the CA1pyramidal cell layer of the gerbilhippocampus following transient ischemia is apoptosis. J Neurosci.1995;15:1001-1011.
    23. Zhu C, Wang X, Xu F, Bahr BA, Shibata M, Uchiyama Y, Hagberg H, Blomgren K.The influence of age on apoptotic and other mechanisms of cell death after cerebralhypoxia-ischemia. Cell Death Differ.2005;12:162-176
    24. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, MitchisonTJ, Moskowitz MA, Yuan J. Chemical inhibitor of nonapoptotic cell death withtherapeutic potential for ischemic brain injury. Nat Chem Biol.2005;1:112-119.
    25. Uchiyama Y, Shibata M, Koike M, Yoshimura K, Sasaki M. Autophagy-physiologyand pathophysiology. Histochem Cell Biol.2008;129(4):407-420.
    26. Liu C, Gao Y, Barrett J, Hu B. Autophagy and protein aggregation after brainischemia. J Neurochem.2010;115(1):68-78.
    27. Liu CL, Chen S, Dietrich D, Hu BR. Changes in autophagy after traumatic braininjury. J Cereb Blood Flow Metab.2008;28(4):674-683.
    28. Lee JY, He Y, Sagher O, Keep R, Hua Y, Xi G. Activated autophagy pathway inexperimental subarachnoid hemorrhage. Brain Res.2009;1:126-135.
    29. Rami A, Langhagen A, Steiger S. Focal cerebral ischemia induces upregulation ofBeclin1and autophagy-like cell death. Neurobiol Dis.2008;29(1):132-41.
    30. Baba H, Sakurai M, Abe K, Tominaga R. Autophagy-mediated stress response inmotor neuron after transient ischemia in rabbits. J Vasc Surg.2009;50(2):381-387.
    31. Qin AP, Liu CF, Qin YY, Hong LZ, Xu M, Yang L, Liu J, Qin ZH, Zhang HL.Autophagy was activated in injured astrocytes and mildly decreased cell survivalfollowing glucose and oxygen deprivation and focal cerebral ischemia. Autophagy.2010;6(6):738-53..
    32. Kanno H, Ozawa H, Sekiguchi A, Itoi E. Spinal cord injury induces upregulation ofBeclin1and promotes autophagic cell death. Neurobiol Dis.2009;33(2):143-8.
    33. Kanno H, Ozawa H, Sekiguchi A, Yamaya S, Itoi E. Induction of autophagy andautophagic cell death in damaged neural tissue after acute spinal cord injury in mice.Spine.2011;15;36(22):E1427-1434.
    1. Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the earlyneonatal starvation period. Nature,2004,432(7020):1032-1036.
    2. Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervoussystem causes neurodegeneration in mice. Nature2006;441:880-884.
    3. Adhami F, Liao G, Morozov YM, et al. Cerebral ischemia-hypoxia inducesintravascular coagulation and autophagy. Am J Pathol2006;169:566-583.
    4. Carloni S, Buonocore G, Balduini W. Protective role of autophagy in neonatalhypoxia-ischemia induced brain injury. Neurobiol Dis.2008;32(3):329-339.
    5. Wang P, Guan YF, Du H, Zhai QW, Su DF, Miao CY. Induction of autophagycontributes to the neuroprotection of nicotinamide phosphoribosyltransferase incerebral ischemia. Autophagy.2012;8(1):77-87.
    6. Luo CL, Li BX, Li QQ, Chen XP, Sun YX, Bao HJ, Dai DK, Shen YW, Xu HF, NiH, Wan L, Qin ZH, Tao LY, Zhao ZQ. Autophagy is involved in traumatic braininjury-induced cell death and contributes to functional outcome deficits in mice.Neuroscience.2011;16(184):54-63.
    7. Wen YD, Sheng R, Zhang LS, et al: Neuronal injury in rat model of permanentfocal cerebral ischemia is associated with activation of autophagic and lysosomalpathways. Autophagy.2008;4:762-769.
    8. Uchiyama Y, Koike M, Shibata M: Autophagic neuron death in neonatal brainischemia/hypoxia. Autophagy.2008;4:404-408.
    9. Sadoshima J: The role of autophagy during ischemia/reperfusion. Autophagy.2008;4:402-403.
    10. Balduini W, Carloni S, Buonocore G: Autophagy in hypoxia-ischemia inducedbrain injury: evidence and speculations. Autophagy.2009;5:221-223.
    11. Koike M, Shibata M, Tadakoshi M, et al: Inhibition of autophagy preventshippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol2008;172:454-469.
    12. Carloni S, Girelli S, Scopa C, Buonocore G, Longini M, Balduini W. Activation ofautophagy and Akt/CREB signaling play an equivalent role in the neuroprotectiveeffect of rapamycin in neonatal hypoxia-ischemia. Autophagy.2010;6(3):366-77.
    13. Wang JY, Xia Q, Chu KT, Pan J, Sun LN, Zeng B, Zhu YJ, Wang Q, Wang K, LuoBY. Severe global cerebral ischemia-induced programmed necrosis of hippocampalCA1neurons in rat is prevented by3-methyladenine: a widely used inhibitor ofautophagy. J Neuropathol Exp Neurol.2011;70(4):314-322.
    14. Shi R, Weng J, Zhao L, Li XM, Gao TM, Kong J. Excessive autophagy contributesto neuron death in cerebral ischemia. CNS Neurosci Ther.2012;18(3):250-260.
    15. Chu CT. Autophagic stress in neuronal injury and disease.J Neuropathol ExpNeurol,2006;65:423-432.
    16. Yu L, Alva A, Su H, et al: Regulation of an ATG7-beclin1program of autophagiccell death by caspase-8. Science.2004;304:1500-1502.
    17. Liang XH, Yu J, Brown K, et al: Beclin1contains a leucine-rich nuclear exportsignal that is required for its autophagy and tumor suppressor function. Cancer Res.2001;61:3443-3449.
    18. Pattingre S, Tassa A, Qu X, et al: Bcl-2antiapoptotic proteins inhibit Beclin1-dependent autophagy. Cell.2005;122:927-939.
    19. Kametaka S, Okano T, Ohsumi M, et al: Apg14p and Apg6/Vps30p form a proteincomplex essential for autophagy in the yeast, Saccharomyces cerevisiae. J BiolChem1998;273:284-291.
    20. Kihara A, Noda T, Ishihara N, et al: Two distinct Vps34phosphatidylinositol3-kinase complexes function in autophagy and carboxypeptidase Y sorting inSaccharomyces cerevisiae. J Cell Biol.2001;152:519-530.
    21. Suzuki K, Kirisako T, Kamada Y, et al: The pre-autophagosomal structureorganized by concerted functions of APG genes is essential for autophagosomeformation. Embo J2001;20:5971-5981.
    22. Shimizu S, Kanaseki T, Mizushima N, et al: Role of Bcl-2family proteins in anon-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol2004;6:1221-1228.
    23. Matsui Y, Takagi H, Qu X, et al. Distinct roles of autophagy in the heart duringischemia and reperfusion: roles of AMP-activated protein kinase and Beclin1inmediating autophagy. Circ Res.2007;100(6):914-922.
    24. Qin AP, Liu CF, Qin YY, Hong LZ, Xu M, Yang L, Liu J, Qin ZH, Zhang HL.Autophagy was activated in injured astrocytes and mildly decreased cell survivalfollowing glucose and oxygen deprivation and focal cerebral ischemia. Autophagy.2010;6(6):738-753.
    25. Ginet V, Puyal J, Clarke PG, Truttmann AC. Enhancement of autophagic flux afterneonatal cerebral hypoxia-ischemia and its region-specific relationship to apoptoticmechanisms. Am J Pathol2009;175:1962-1974.
    26. Baehrecke EH: Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol2005;6:505-510.
    27. Lum JJ, Bauer DE, Kong M, et al: Growth factor regulation of autophagy and cellsurvival in the absence of apoptosis. Cell2005;120:237-248.
    28. Kanno H, Ozawa H, Sekiguchi A, Itoi E. Spinal cord injury induces upregulation ofBeclin1and promotes autophagic cell death. Neurobiol Dis.2009;33(2):143-148.
    29. Kanno H, Ozawa H, Sekiguchi A, Yamaya S, Itoi E. Induction of autophagy andautophagic cell death in damaged neural tissue after acute spinal cord injury in mice.Spine.2011;36(22):E1427-1434.
    30. Sekiguchi A, Kanno H, Ozawa H, Yamaya S, Itoi E. Rapamycin promotesautophagy and reduces neural tissue damage and locomotor impairment after spinalcord injury in mice. J Neurotrauma.2012;29(5):946-956.
    31. Baba H, Sakurai M, Abe K, Tominaga R. Autophagy-mediated stress response inmotor neuron after transient ischemia in rabbits. J Vasc Surg.2009;50(2):381-387.
    32. Chen HC, Fong TH, Lee AW, Chiu WT. Autophagy is activated in injured neuronsand inhibited by methylprednisolone after experimental spinal cord injury. Spine.2012;37(6):470-475.
    33. Rubinstein AD, Kimchi A. Life in the balance-a mechanistic view of the crosstalkbetween autophagy and apoptosis. J Cell Sci.2012;125(Pt22):5259-68.
    1. Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet2008;371:1612-1623.
    2. Moskowitz MA, Lo EH, Iadecola C. The science of stroke: Mechanisms in searchof treatments. Neuron2010;67:181-198.
    3. Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebralischemia. Stroke2009;40: e331-e339.
    4. Chu CT, Plowey ED, Dagda RK, et a1.Autophagy in neurite injury andneurodegeneration:in vitro and in vivo models.Methods Enzymol.2009;453:217-249.
    5. Garcia-Escudero V, Gargini R.Autophagy induction as an efficient strategy toeradicate tumors.Autophagy.2008;4:923-925.
    6. Kanno H,Ozawa H,Sekiguchi A,et a1.Spinal cord injury induces upregulation ofBeclin l and promotes autophagic cell death. Neurobiol Dis.2009;33:143-148.
    7. Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the earlyneonatal starvation period. Nature,2004;432(7020):1032-1036.
    8. Reggiori F,Klionsky DJ.Autophagy in the eukaryotic cell.Eukaryot Cell2002;1(1):11-21.
    9. Shintani T.Klionsky DJ.Autophagy in health and disease:a double-edged sword.Science2004;306(5698):990-995.
    10. He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy.Annu Rev Genet2009;43:67-93.
    11. Yang Z, Klionsky DJ. Eaten alive: A history of macroautophagy. Nat Cell Biol2010;12:814-822.
    12. Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth,autophagy and metabolism. Nat Cell Biol2011;13:1016-1023.
    13. Loffler AS, Alers S, Dieterle AM, et al. Ulk1-mediated phosphorylation of AMPKconstitutes a negative regulatory feedback loop. Autophagy2011;7:696-706.
    14. Hardie DG. AMPK and autophagy get connected. EMBO J2011;30:634-635.
    15. Shang L, Wang X. AMPK and mTOR coordinate the regulation of Ulk1andmammalian autophagy initiation. Autophagy2011;7:924-926.
    16. Djavaheri M, Maiuri MC, Kroemer G. Cross talk between apoptosis and autophagyby caspase-mediated cleavage of Beclin1.Oncogene2010;29:1717-1719.
    17. Proikas T, Codogno P. Beclin1or not Beclin1. Autophagy2011;7:671-672.
    18. Tanida I, Ueno T, Kominami E. LC3conjugation system in mammalian autophagy.Int J Biochem Cell Biol2004;36:2503-2518.
    19. Komatsu M, Ichimura Y. Physiological significance of selective degradation of p62by autophagy. FEBS Lett2010;584:1374-1378.
    20. Larsen KB, Lamark T, vervatn A, Harneshaug I, Johansen T, Bj rk y G. Areporter cell system to monitor autophagy based on p62/SQSTM1. Autophagy.2010;6:784-793.
    21. Mijaljica D, Prescott M, Devenish RJ. Microautophagy in mammalian cells:Revisiting a40-year-old conundrum. Autophagy.2011;7:673-682.
    22. Santambrogio L, Cuervo AM. Chasing the elusive mammalian microautophagy.Autophagy2011;7:652-654.
    23. Dice JF. Chaperone-mediated autophagy. Autophagy.2007;3:295-299.
    24. Rosello A, Warnes G, Meier UC. Cell death pathways and autophagy in the centralnervous system and its involvement in neurodegeneration, immunity and centralnervous system infection: To die or not to die that is the question. Clin ExpImmunol2012;168:52-57.
    25. Yan Y, Backer JM.Regulation of class111(Vps34)P13Ks.Biochemical Society.2007;35(2):239-241.
    26. Simon M, Brandon T,Arkadiusz O.et a1.Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. science.2010.327(5973):1638-1642.
    27. Castino R, Bellio N, Folio C.et a1.Inhibition of PI3k class Ⅲ-dependentautophagy prevents apoptosis and necrosis by oxidative stress in dopaminergicneuroblastoma cells.Toxicol sci,2010;117(1):152-162.
    28. Isabelle V, Vojo D.The role of PI3P phosphatases in the regulation ofautophagy.FEBS Letters.2010;584(7):1313-1318.
    29. Carloni S, Buonocore G,Balduini W.Protective role of autophagy in neonatalhypoxia-ischemia induced brain injury. Neurobiol Dis.2008;32(3):329-339.
    30. Kamada Y., Yoshino K, Kondo C, et a1.Tor directly controls the Atgl kinasecomplex to regulate antophagy.Mol Cell Biol.2010;30(4):1049-1058.
    31. Guertin DA, Sabatini DM.An expanding role for mTOR in cencer.Trends MolMed.2005;11(8):353-361.
    32. Chang YY, Juhusz G, Goraksha-Hicks P,et u1.Nutrient-dependent regulation ofautophagy throuSt,the target of rapamycin pethway.Biochem Sec Trans.2009;37(1):232-236.
    33. Kamada Y, Yoshino K, Kondo C,et a1.Tot directly controls the Atgl kinasecomplex to regulate autophagy.Mol Cell Bid.2010;30(4):1049-1058.
    34. Pattingre S, Petiot A,Codoguo P. Analyses of Galpha-interacting protein andactivator of G-protein-signaling-3functions in macroautophagy.Methods Enzymol.2004;390:17-31.
    35. Eskelinen EL, Saftig P.Autophagy:a lysosomal degradation pathway with a centralrole in health and disease.Biochim Biophys Acts.2009;1793(4):664-673.
    36. CoMa A, Klement K, Piekorzr P, et a1.Anobligatory requirement for theheterotrimeric G protein Gi3in the anti-autophagic action of insulin in theliver[J].Proc Nad Acad Sci USA.2007;104(8):3003-3008.
    37. Chu CT.Autophagic stress in neuronal injury and disease.J Neuropathol ExpNeurol.2006;65:423-432.
    38. Codogno P,Meijer AJ.Autophagy and signaling:their role in cell survival and celldeath.Cell Death Differ.2005;12(Suppl2):1509-1518.
    39. Matsui Y, Takagi H, Qu X, et al. Distinct roles of autophagy in the heart duringischemia and reperfusion: roles of AMP-activated protein kinase and Beclin1inmediating autophagy. Circ Res.2007;100(6):914-22.
    40. Park HK, Chu K, Jung KH, et a1.Autoghagy is involved in the ischemicpreconditioning. Neurosci Lett.2009;45l:16-19.
    41. Wen YD,Sheng R, Zhang LS,et a1.Neuronal injury in rat model of permanentfocal cerebral ischemia is associated with activation of autophagic and lysosomalpathways.Autophagy.2008;4:762-769.
    42. Komatsu M, Waguri S, Ueno T, et al. Impairment of starvation-induced andconstitutive autophagy in Atg7-deficient mice. J Cell Biol2005;169:425-434.
    43. Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervoussystem causes neurodegeneration in mice. Nature.2006;441:880-884.
    44. Adhami F, Liao G, Morozov YM, et al. Cerebral ischemia-hypoxia inducesintravascular coagulation and autophagy. Am J Pathol.2006;169:566-583.
    45. Uchiyama Y. Autophagic cell death and its execution by lysosomal cathepsins.Arch Histol Cytol.2001;64:233-246.
    46. Wen YD, Sheng R, Zhang LS, et al. Neuronal injury in rat model of permanentfocal cerebral ischemia is associated with activation of autophagic and lysosomalpathways. Autophagy.2008;4:762-769.
    47. Kubota C, Torii S, Hou N, et al. Constitutive reactive oxygen species generationfrom autophagosome/lysosome in neuronal oxidative toxicity. J Biol Chem.2010;285:667-674.
    48. Puyal J, Vaslin A, Mottier V, Clarke PG. Postischemic treatment of neonatalcerebral ischemia should target autophagy. Ann Neurol2009;66:378-389.
    49. Zheng YQ, Liu JX, Li XZ, Xu L, Xu YG. RNA interference-mediateddownregulation of Beclin1attenuates cerebral ischemic injury in rats. ActaPharmacol Sin2009;30:919-927.
    50. Yu.L,Alva A,Su H,et al:Regulation of an ATG7-Beclin1program of autophagiccell death by caspase-8.Science.2004;304:1500-1502.
    51. Shimizu S,Kanaseki T,Mizushima N,et al:Role of Bcl-2family proteins in anon-apoptotic programmed cell death dependent on autophagy genes.Nat Cell Biol.2004;6:1221-1228.
    52. Rami A, Langhagen A, Steiger S. Focal cerebral ischemia induces upregulation ofBeclin1and autophagy-like cell death. Neurobiol Dis.2008;29:132-141.
    53. Wang JY, Xia Q, Chu KT, et al. Severe global cerebral ischemia-inducedprogrammed necrosis of hippocampal CA1neurons in rat is prevented by3-methyladenine: A widely used inhibitor of autophagy. J Neuropathol Exp Neurol2011;70:314-322.
    54. Carloni S, Girelli S, Scopa C, Buonocore G, Longini M, Balduini W. Activation ofautophagy and Akt/CREB signaling play an equivalent role in the neuroprotectiveeffect of rapamycin in neonatal hypoxia-ischemia. Autophagy2010;6:36-377.
    55. Mehta SL, Lin Y, Chen W, et al. Superoxide dismutase deficiency exacerbatesischemic brain damage under hyperglycemic conditions by altering autophagy.Transl Stroke Res2011;2:42-50.
    56. Carloni S, Buonocore G, Balduini W. Protective role of autophagy in neonatalhypoxia-ischemia induced brain injury. Neurobiol Dis2008;32:329-339.
    57. Sadoshima J.The role of autopsy during isehemia/reperfusion.autophagy,2008,4:402-403.
    58. Adhami F, Schloemer A, Kuan CK.The roles of autophagy in cerebralischemia.Autophagy.2007;3:42-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700