用户名: 密码: 验证码:
安宫牛黄鼻用脑靶向制剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
安宫牛黄丸是传统中药中的经典急救方,临床上用来治疗高热、昏迷、中风等中枢性急重症,目前常用剂型有丸剂、散剂和简化方的注射剂等,但这几种给药方式都具有一定的局限性。鼻腔给药途径是近年来研究较多的给药系统之一,其吸收迅速、给药方便,此外还可用作脑内靶向的递药手段。为了改善患者的顺应性,充分发挥急救方的疗效,探索安宫牛黄丸经鼻脑靶向给药系统的可行性,本研究在对9味原药材不同前处理的基础上,确定了安宫牛黄鼻用制剂的处方,重点对安宫牛黄丸中起中枢解热的重要物质基础——黄芩苷的经鼻给药后,鼻.脑通路的存在与否、处方因素、剂型因素以及其吸收机制做了详细探索,在制备出黄芩苷载药脂质微球的基础上,制备一种载有多种成分的安宫牛黄鼻用脑靶向双相载药脂质微球。
     本文首先建立了黄芩苷、栀子苷、姜黄素、盐酸小檗碱、胆酸、冰片、胆红素的体外分析方法,分别对栀子原药材进行了提取,测定了提取物中栀子苷的含量;对人工牛黄进行乙醇提取,测定了醇提物中胆酸的含量,计算了提取物的收率;测定了黄芩苷在水中的溶解度;制备了姜黄素包合物并以DSC法进行验证,测定了包合物的溶解度和姜黄素在包合物中的含量;测定了冰片的含量并制备了麝香酮和冰片混合物的随机甲基化-β-环糊精包合物水溶液;对水牛角和珍珠粉进行了水解,计算了收率。最后根据各种提取物或中间产物中各指标性成分的含量确定了安宫牛黄鼻用制剂的处方。
     采用大鼠在体鼻腔灌流模型(in situ rat nasal perfusion method)初步考察了栀子苷、盐酸小檗碱、姜黄素和黄芩苷的鼻腔吸收情况。除栀子苷外,黄芩苷、姜黄素和盐酸小檗碱吸收均比较明显,此后重点研究了黄芩苷的鼻腔吸收规律和吸收促进剂对其鼻腔吸收的促进作用,结果表明,黄芩苷鼻腔吸收符合一级吸收动力学,不同添加剂对其吸收的促进作用存在以下关系:1%去氧胆酸钠>>0.5%壳聚糖≈0.5%冰片≈5%甲基化-β-环糊精>5%HP-β-CD>5%β-CD>1%Tween 80≈0.1%EDTA-Na_2≈I%磷脂,其中加入最后三者的促吸收效果与不加吸收促进剂时无显著性差异。
     建立了大鼠给药后脑渗析和血液渗析同时采集脑脊液样品和血浆样品的方法,分别以零净流量法和反向渗析法测定了两部位渗析的体内和体外回收率,其中脑部和血浆中探针的体内回收率分别为17.52%和15.O%。此外,建立了UPLC-MS/MS法测定大鼠渗析液中黄芩苷的分析方法。随后对四种黄芩苷鼻用溶液剂,即pH5.4组(INl)、pH4.9组(IN2)、5%随机甲基化-β-环糊精组(IN3)以及1%冰片组(IN4),及一静脉注射给药组(IVl)分别进行了大鼠血浆中和脑脊液中的药物动力学研究,剂量均为12mg·kg~(-1),DAS 2.0药代动力学软件非隔室模型处理体内数据。结果表明,黄芩苷静脉注射后具有微弱的血脑屏障透过能力,经鼻给药后,黄芩苷血浆中游离药物浓度远低于静注后的血药浓度,且达峰时间有明显的滞后,CSF中的浓度水平与静注后相当,提示黄芩苷的实际鼻腔吸收效果并不理想。IN1、IN2、IN3和IN4四种鼻用溶液剂血浆中的生物利用度分别为11.7%、12.5%、21.O%和11.0%,高低顺序依次为IN3>IN2>IN1>IN4,其中由于环糊精的促吸收作用,IN3的生物利用度最高,与其他三者问存在显著性差异;脑内生物利用度分别为69.3%、58.2%、89.0%和72.5%,高低顺序依次为IN3>IN4>IN1>IN2,加入环糊精的制剂虽然在脑脊液中的达峰时间延迟,但入脑量最高,脑靶向性指数(DTI)和脑部药物直接转运百分比(DTP)计算结果表明黄芩苷可经嗅觉通路入脑,存在鼻-脑通路。
     以反应溶剂、药脂比例为考察项,确定黄芩苷磷脂复合物的制备工艺为:黄芩苷:磷脂1:5(w/w),室温下四氢呋喃中反应3小时,蒸发除去溶剂即得。利用DSC和X-射线衍射技术确证分析了黄芩苷磷脂复合物的形成以及药物和磷脂两者间可能存在的相互作用。采用高压均质法制备了黄芩苷脂质微球,以复合物在油中溶解状态、稳定性常数Ke、粒度分布、(?)-电位和包封率确定了黄芩苷脂质微球的最终处方和工艺为:按质量百分比,油相组成为:磷脂复合物以黄芩苷计为1%、中链油(MCT)为20%、外加豆磷脂1%、油酸0.06%,水相组成为:甘油2.5%、F-68 1%、EDTA 0.006%,制备初乳后,高压均质参数为700bar压力下循环7次,均质前调节pH值至5.0。大鼠体内药动学研究表明,黄芩苷鼻用脂质微球(2.4mg·kg~(-1))经鼻吸收后其血浆中生物利用度为55.2%,脑脊液中为227%,分别为溶液剂组(IN1,pH5.4)的5倍和3倍。由AUC_csF/AUCplasma计算结果可知,相比于溶液剂,脂质微球组的脑靶向指数有所降低。
     根据黄芩苷鼻用脂质微球的处方工艺以及安宫牛黄鼻用制剂的处方,制备安宫牛黄鼻用脑靶向脂质微球,测定了其粒度分布和稳定性常数Ke,并以黄芩苷计对包封率和载药量进行了测定。以在体蟾蜍上颚粘膜法评价了安宫牛黄鼻用溶液剂和安宫牛黄鼻用脂质微球的蟾蜍上颚纤毛毒性,与阴性对照相比,两制剂组均有比较明显的纤毛毒性。以生化指标法评价了处方中使用较多的吸收促进剂兼增溶剂——随机甲基化-β-环糊精的鼻粘膜毒性,结果显示,5%的RAMEB无明显黏膜毒性,10%和20%的黏膜毒性较大。
The prescription of Angong Niuhuang(AN) was a classic formulation in Traditional Chinese Medicine(TCM) for emergency medical treatment,such as high fever,coma,stroke, etc.The common used dosage forms are pills and powder of AN for oral administration,and its simplified prescription of Qingkailing for intravenous(i.v.) administration.However,all these preparations have some limitations in clinical use.Intranasal(i.n.) administration is one of the drug delivery system being given more research in recent years.It has the advantage of rapid absorption,administration convenience,and circumvention of blood brain barrier(BBB) for brain-targeting.In order to fully exert the therapeutic effects of AN for the treatment of central nervous system(CNS) disease,and improve the compliance of the patients,a new nasal formulation of AN was established,on the basis of pre-process of every raw material in the traditional AN prescription.Then,the exist of nose-brain route,formulation factors and dosage form factors affecting nasal absorprion,and the absorption mechanism was studied detailedly after i.n.administration of baicalin,which was the most important ingredient in AN on relieving high fever with definite antipyretic mechanism in CNS.And finally,based on the preparation of baicalin lipid microspheres(BLM),a kind of brain-targeted two-phase drug loading lipid microsphere of AN for nasal use was prepared.
     At first,eight analytical method for the quality control of baicalin,jasminoidin, curcumine,berberine,cholalic acid,bilirubin and borneol was established.Then,different kinds of pre-process methods were performed with every raw material:jasminoidin and cholalic acid were extracted from gardenia and artificial calculus bovis,respectively;borneol and muscone was solubilized by randomly methylated -/?-cyclodextrin(RAMEB);the inclusion complex of curcumine with RAMEB was prepared and verified by DSC;powder of pearl and buffalo horn was hydrolyzed together;and the solubility of baicalin and berberine in aqueous solution was determinied.According to the content of index ingrediant in pre-processed product and CHP 2005,the formulation and preparation of nasal AN solution (AN-S) were established. The in situ rat nasal perfusion technique was used in the investigation of nasal absorption of index ingredients in the AN formution.The respective absorption study of the index ingredients showed that baiclain,berberine and curcumine had obvious absorption from the nose of rats,except for jasminoidin.The detailed absorption study of baicalin indicated that the absorption of baicalin followed first-order absorption kinetics,and the order of increasing absorption of baicalin caused by the enhancers was 1%sodium deoxycholate ? 0.5% chitosan≈5%borneol≈5%RAMEB >5%HP-β-CD > 5%β-CD>l%Tw-een-80≈0.1% EDTA-Na2≈1%lecithin.
     A simultaneous blood and brain microdialysis coupled with UPLC-MS/MS method was established for in vivo analysis of baicalin.In vitro recoveries of the probes determined by no net flux method were 19.26%and 18.38%,while in vivo recoveries of the probes determined by retrodialysis were 15.0%and 17.5%for blood and brain,respectively.The pharmacokinetics and brain-targeting study were investigated after i.n.administration (12mg.kg~-1) baicalin solution(BS) of pH5.4(INI),BS of pH 4.8(IN2),BS with 5%RAMEB added(IN3) and BS with 1%borneol added(IN4),and i.v.administration(12mg.kg-~1) of BS (IV1),respectively.Pharmacokinetic calculations were performed on each individual set of animal data using the pharmacokinetic calculation software DAS(drug and statistics) version 2.0 by the statistical moment method.The result showed that baicalin has a slight BBB permeability after i.v administration.The much lower concentration level of baicalin in plasma and delayed Tmax after i.n.administration mean a poor absorption from nasal cavity. The bioavailability of baicalin was 11.7%,12.5%,21.0%and 11.0%in plasma,69.3%,58.2%, 89.0%and 72.5%in CSF,for INI,IN2,IN3 and IN4,repectively.Probably due to the absorption enhancing effect of RAMEB,both bioavailability of IN3 in plasma and CSF were significantly higher than the other three i.n.formulations.Although borneol also has enhancing effect in CSF transport,the effect was not significant.In addition,Drug targeting index(DTI) was 5.86,4.64,4.23,6.55,and direct transport percentage(DTP) to brain was 83.0%,78.6%,76.5%,84.8%,for the four formulations,respectively.And this result supported strongly that there was direct access from nose to brain for baicalin getting into brain through olfactory pathway.
     The reaction solvents,the ratios of phospholipids were investigated,and the baicalin-phospholipid complex(BPC) was finally prepared with baicalin and soybean lecithin at a ratio of 1:5 in tetrahydrofuran at room for 3h,and then the reaction solvent was evaporated to obtain dry residue.DSC and and X-ray diffraction were also employed to identify the formation of the complex and analyze the possible interaction between clarithormyin and phospholipids.
     High pressure homogenization was used to prepare baicalin lipid microspheres(BLM). HPLC,dynamic light scattering,electrophoretic light scattering technology,and ultrafiltration were also employed.Taking physical appearance,pH,particle size distribution(PSD), ^-potential,content,entrapment efficiency as index,the final formulation and preparation process for BLM were as follows:as quality percentage,oil phase was composed of 1% baicalin in the form of the complex,20%MCT,1%soybean lecithin;the water phase was composed of 2.5%glycerol,1%F-68,0.06%oleic acid and 0.006%EDTA-Na2;and the oil phase and water phase were both heated to 70°C;the homogenization pressure and cycles were 700bar and 7 times;the pH was adjusted to 5.0 before homogenization.The pharmacokinetic study of BLM(2.4mg.kg(~-1)) after i.n.administration(BLM-IN) to rats showed that the absolute bioavailabilities in plasma and CSF were 55.2 and 227%,which were 5 and 3 times of INI,respectively.By comparing the ratio of AUCcsf/ AUCpiasma between BLM-IN and INI(0.302 vs 0.434),it can be seen that although the absorption of baicalin was greatly improved after i.n.administration of BLM,its brain targeting efficiency became lower.
     According to the formulation and preparation of BLM,and the AN formulation eatablished in Chapter 1,a kind of AN lipid microsphere(AN-LM) was prepared.The drug loading and entrapment efficiency(EE) were determined based on the content of baicalin.To assess the ciliary toxicity of nasal preparations of AN-S and AN-LM,the hoptoad in situ maxilla mucosa method was used by determining the ciliary movement time.In addition,the method of biochemical index was emploied to evaluate the nasal mucosa toxicity of RAMEB. The result showed that the two dosage forms of AN has obvious ciliary toxicity,and 10%and 20%(w/v) RAMEB has some impact on the physiological change of nasal mucosa of rats.
引文
[1]Frey,W.H.Intranasal delivery:bypassing the blood-brain barrier to deliver therapeutic agents to brain and spinal cord.Drug DeliV.Tech.2002,2:46-49.
    [2]Illum,L.Transport of drugs from nasal cavity to the central nervous system.Eur.J.Pharm.Sci.2000,11:1—18.
    [3]Mathison,S.,Nagilla,R.,Kompella,U.B.Nasal route for direct delivery,of solutes to the central nervous system:fact or fiction?J.Drug Target.1998,5:415-441.
    [4]王启华.应用眼耳鼻咽喉解剖学基础[M].1981,北京:科学出版社.
    [5]黄选兆.耳鼻咽喉科学[M].1994,第1版,北京:人民卫生出版社.
    [6]Ugwoke,M.I.,Agu,R.U.,Verbeke,N.,Kinget,R.Nasal mucoadhesiVe drug delivery:background,applications,trends and future perspectives.Adv.Drug Deliv.Rev.2005,57:1640-65.
    [7]Perlman,S.,Barnett E.M.,et al.Mouse hepatitis Virus and herpes simplex Virus move along different CNS pathways.Adv.Exp.Med.Biol.1993,342:313-318.
    [8]Perl,D.P.,Good,P.F.Uptake of aluminum into central nervous system along nasal-olfactory pathways.Lancet 1987,2:1028.
    [9]Hastings,L.,Evans,J.Olfactory,neuron as a route of entry for toxic agents into the CNS.Neurotoxicol.1991.12:707-714.
    [l0]Henriksson,J.,Tallkvist,J.,et al.Uptake of nickel into the brain via Olfactory neurons in rats.Toxicol.Lett.1997.91:153-162.
    [11]Henriksson,J.,Tallkvist,J.,Tjalve,H.Transport of manganese via the olfactory pathway in rats:dosage dependency of the uptake and subcellular distribution of the metal in the olfactory epithelium and the brain.Toxicol.Appl.Pharnlacol.1999,156:119-125.
    [12]Sakane,T.,Akizuki,M.,et al.Transport of cephalexin to the cerebrospinal fliud directly from the nasal cavity.J.Pharm.Pharmacol.1991,43:449-451.
    [13]Chow,H.S.,Chen,Z.,Matsuura,G.T.Direct transport of Cocaine from the nasal cavity to the brain following intranasal cocaine administration in rats.J.Pharm.Sci.1999,88:754-758.
    [14]Chou,K.J.,Donovan,M.D.The distribution of local anesthetics into the CSF following intranasal administration.Int.J.Pharm.1998.168:137-145.
    [15]Dahlin,M.,Jansson,B.,et al.Level of dopamine in blood and brain foIlowing nasal administration to rats.Eur.J.Pharm.Sci.2001.14:75-80.
    [16]Wang,Y.,Aun,R.,Tse,F.L.,et al.Brain uptake of dihydroergotamine after intravenous and nasal administration in the rat.Biopharm.Drug Dispos.1998,19:571-575.
    [17]Sakane,T.,Yamashita,S.,Yata,H.,et al.Transnasal delivery of 5-fluorouracil to the brain in the rat.J.Drug Target.1999,7:233-239.
    [18]Liu,X.F.,Thorne,R.G.,et al.Intranasal administration of insulin-like growth factor-Ⅰ bypasses the blood-brain barrier and protects against focal cerebral ischemic damage.J.Neurol.Sci.2001,187:91-97.
    [19]Ilium,L.Is nose-to-brain transport of drugs in man a reality? J.Pharm.Pharmacol.2004,56:3-17.
    [20]Bagger,M.A.,Bechgaard,E.The potential of nasal application for delivery to the central brain:a microdialysis study of fluorescein in rats.Eur.J.Pharm.Sci.2004,21:235-242.
    [21]Bagger,M.A.,Bechgaard,E.A microdialysis model to examine nasal drug delivery and olfactory absorption in rats using lidocaine hydrochloride as a model drug.Int.J.Pharm.2004,269:311-322.
    [22]Yang,Z.,Huang,Y.,Gan,G.,Sawchuk,R.J.Microdialysis evaluation of the brain distribution of stavudine following intranasal and intravenous administration to rats.J.Pharm.Sci.2005,94:1577-1588.
    [23]Dahlin,M.,Bjork,E.Nasal administration of a physostigmine analogue (NⅩⅩ-066) for Alzheimer's disease to rats.Int.J..Pharm.2001,212:267-274.
    [24]Shi,Z.,Zhang,Q.,Jiang,X.Pharmacokinetic behavior in plasma,cerebrospinal fluid and cerebral cortex after intranasal administration of hydrochloride meptazinol.Life Sci.2005,77:2574-2583
    [25]in 't Veen,J.P.,van den Berg,M.P.,Uptake of fluorescein isothiocyanate-labelled dextran into the CSF after intranasal and intravenous administration to rats.Eur.J.Pharm.Biopharm.2005,61:27-31.
    [26]Vyas,T.K.,Shahiwala,A.,et al.Intranasal drug delivery for brain targeting.Cur.Drug Deliv.2005,2:165-175.
    [27]Kazuhiro,M.,Hiroshi,Y.,Yasushi,I.,et al.Effects of proteolytic enzyme inhibitors on the nasal absorption of vasopressin and an analogue.Pharm.Res.1991,8:1175-1179.
    [28]Lim,S.T.,Martin,G.P.,Berry,D.J.,et al.Preparation and evaluation of the in vitro drug release properties and mucoadhesion of novel microspheres of hyaluronic acid and chitosan.J.Control.Release 2000,66:281-292.
    [29]Law,S.L.,Huang,K.J.,Chou,H.Y.Preparation of desmopressin-containing liposomes for intranasal delivery.J.Control.Release.2001,70:375-382.
    [30]Ko,K.T.,Needham,T.E.,Zia,H.Emulsion formulations of testosterone for nasal administration.J.Microencapsul.1998,15:197-205.
    [31]Aikawa,K.,Matsumoto,K.,Uda,H.,et al.Prolonged release of drug from o/w emulsion and residence in rat nasal cavity.Pharm.Dev.Technol.1998,3:461-469.
    [32]Li,L.,Nandi,I.,Kim,K.H.Development of an ethyl laurate-based microemulsion for rapid-onset intranasal delivery of diazepam.Int.J.Pharm.2002,237:77-85.
    [33]Chen,X.Q.,Fawcett,J.R.,Rahman,Y.E.,Ala,TA.,Frey Ⅱ,W.H.Delivery of nerve growth factor to the brain via the olfactory pathway.J.Alzheimers Dis.1998,1:35-44.
    [34]Chou,K.J.,Donovan,M.D.The distribution of local anesthetics into the CSF following intranasal administration.Int.J.Pharm.1998,168:137-145.
    [35]Chou,K.J.,Donovan,M.D.Lidocaine distribution into the CNS following nasal and arterial delivery:a comparison of local sampling and microdialysis techniques.Int.J.Pharm.1998,171:53-61.
    [36]Wang,X.,Chi,N.,Tang,X.Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting.Eur.J.Pharm.Biopharm.2008,70:735-740.
    [37]Zhang,Q.,Jiang,X.,et al.Preparation of nimodipine-loaded microemulsion for intranasal delivery and evaluation on the targeting efficiency to the brain.Int.J.Pharm.2004,275:85-96.
    [38]程巧鸳,李范珠.神经毒素纳米粒大鼠鼻腔给药的脑药物动力学研究[J].中国药科大学学报,2007.38:77-79.
    [39]Dufes,C,Olivier,J.C.,Gaillard,F.,et al.Brain delivery of vasoactive intestinal peptide (VIP) following nasal administration to rats.Int J Pharm.2003,255:87-97.
    [40]Banks,W.A.,During,M.J.,Niehoff,M.L.Brain uptake of the glucagon-Like peptide-1 antagonist exendin (9-39) after intranasal administration.J.Pharmacol.Exp.Ther.2004,309:469-475.
    [41]Barakat,N.S.,Omar,S.A.,Ahmed,A.A.E.Carbamazepine uptake into rat brain following intra-olfactory transport.J.Pharm.Pharmacol.2006,58:63-72.
    [42]Li,F.,Feng,J.,et al.Delivery of 1251-cobrotoxin after intranasal administration to the brain:A microdialysis study in freely moving rats.Int J Pharm.2007,328:161-167.
    [43]Chow,H.H.,Anavy,N.,Villalobos,A.Direct nose-brain transport of benzoylecgonine following intranasal administration in rats.J.Pharm.Sci.2001,90:1729-1735.
    [44]Zhao,Y.,Yue,P.,Tao,T.,et al.Drug brain distribution following intranasal administration of Huperzine:A in situ gel in rats.Acta Pharmacol.Sin.2007,28:273-278.
    [45]Derad,I.,Willeke,K.,Pietrowsky,R.,et al.Intranasal angiotensin Ⅱ directly influences central nervous regulation of blood pressure.Am.J.Hypertens.1998,11:971-977.
    [46]Vyas,T.K.,Babbar,A.K.,et al.Intranasal mucoadhesive microemulsions of clonazepam:preliminary studies on brain targeting. J.Pharm.Sci.2006,95:570-580.
    [47]Vyas,T.K.,Babbar,A.K.,et al.Intranasal mucoadhesive microemulsions of zolmitriptan:preliminary studies on brain-targeting. J.Drug Target.2005,13:317-324.
    [48]Gao,X.,Tao,W.,et al.Lectin-conjugated PEG-PLA nanoparticles:preparation and brain delivery after intranasal administration.Biomaterials.2006,27:3482-3490.
    [49]Wang Q,Chen G,Zeng S.Pharmacokinetics of Gastrodin in rat plasma and CSF after i.n.and i.v.Int.J.Pharm.2007,341:20-25.
    [50]Dahlin,M.,Bjork,E.Nasal absorption of (S)-UH-301 and its transport into the cerebrospinal fluid of rats.Int J Pharm.2000,195:197-205.
    [51]Vyas,T.K.,Babbar,A.K.,et al.Preliminary brain-targeting studies on intranasal mucoadhesive microemulsions of sumatriptan.AAPS Pharm.Sci.Tech.2006,7:E1-8.
    [52]Wang,F.,Jiang,X.,Lu,W.Profiles of methotrexate in blood and CSF following intranasal and intravenous administration to rats.Int.J.Pharm.2003,263:1-7.
    [53]Wang,D.,Gao,Y,Yun,L.Study on brain targeting of raltitrexed following intranasal administration in rats.Cancer Chemother.Pharmacol.2006,57:97-104.
    [54]Westin,U.,Piras,E.,Jansson,B.,et al.Transfer ofmorphine along the olfactory pathway to the central nervous system after nasal administration to rodents.Eur.J.Pharm.Sci.2005.24:565-573.
    [55]Persson,E.,Henriksson,J.,Tj(?)lve,H.Uptake of cobalt from the nasal mucosa into the brain via olfactory pathways in rats.Toxicol.Lett.2003.145:19-27.
    [56]Kumar,M.,Misra,A.,Mishra,A.K.,Mishra,P,Pathak,K.Mucoadhesive nanoemulsion-based intranasal drug delivery system of olanzapine for brain targeting.J.Drug Target.2008,16:806-814.
    [57]Kumar,M.,Misra,A.,et al.Intranasal nanoemulsion based brain targeting drug delivery system of rispefidone.Int.J.Pharm.2008.358:285-291.
    [58]Thorne,R.G,Hanson,L.R.,et al.Delivery of interferon-beta to the monkey nervous system following intranasal administration.Neuroscience 2008,1 52:785-197.
    [59]Thorne,R.G,Pronk.G.J.,et a1.Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration。Neuroscience 2004,127:48 1-496.
    [60]Rege.M.A.,Watson,GS.,et al.Intranasal insulin improves cognition and modulates beta-amyloid in early AD.Neurology 2008,70:440-448.
    [61]蒋新国.药物的鼻腔黏膜吸收[J].中国新药杂志,2003,12:902-905.
    [62]叶祖光,王金华等.安宫牛黄丸及其简化方的药效学比较研究[J].中国中药杂志,2003,28:636-639.
    [63]赵雍,曹春雨,王秀荣等.含与不含朱砂和雄黄的安宫牛黄丸对大鼠局灶性脑缺血的影响[J].中国中西医结合杂志,2002,22:684-685.
    [64]威仁锋.诊断学[M].第4版.北京:人民卫生出版社,1996.8.
    [65]李倩楠,葛晓群.黄芩苷及黄芩复方制剂解热机制研究进展[J].国际药学研究杂志,2008,35:342-345.
    [66]阴赪宏,李兰芳,姜延良.中药含药血清药理研究现状[J]_中国中医药信息杂志,1999,6:30-32.
    [67]窦永青,杜文力,薛毅等.黄芩苷降解细菌内毒素的考察[J].中国医院药学杂志,2005,25:683-684.
    [68]Tsai,C.C.,Lin,M.T.,Wang,J.J.,et al.The antipyretic effects of baicalin in lipopolysaccharide-evoked fever in rabbits.Neuropharmacology 2006.5 1:709-717.
    [69]赵红艳,范书铎.黄芩苷对发热大鼠下丘脑PGEz和cAMP含量的影响[J].中国应用生理学杂志,2002.18:139-141.
    [70]徐刚,张冰,清热中药解热作用机理探讨一对大鼠下丘脑组织中cAMP含量的影响[J].中药药理与临床,1997,13:26-27.
    [71]徐刚,曹雅槐.清热中药对大鼠体温调节中枢Na~+/ca~(2+)的影响[J].中药药理与临床,1998,14:25-26.
    [72]徐刚.清热中药对大鼠下丘脑组织中NA,5-HT含量的影响[J].解放军广州医高专学报,1996,19:103-105.
    [73]刘智勤,蒋玉风,岳晓莉等.脑热清对EP性发热家兔下丘脑、脑脊液cAMP及腹中隔区AVP 含量的影响[J].北京中医药大 学学报,2004,27:30-32.
    [74]徐刚,张冰,叶武。清热中药对大鼠下丘脑组织 AVP 含量的影响[J].中国现代应用药学杂志,1999,16:21-23.
    [75]徐刚,张冰.清热中药对大鼠下丘脑祖织中神经降压素含量的影响[J].中国中医药科技,1999,6:254-255。
    [76]高大硕,刘木春.安宫牛黄丸治疗颅脑损伤术后高热昏迷 20 例[J].中西医结合实用临床急救,1997.4:498.
    [77]张爱生.安宫牛黄丸对昏迷患者醒脑作用的观察[J].井冈山医专学报,1998,5:77.
    [78]Mizushima,Y.Lipid microspheres(lipid emulsions)as a drug carrier—An overview.Adv.Drug Deliv.Rev.1996.20:113-115.
    [1]2005版中国药典一部.
    [2]王弘,陈济民,张清民.黄芩苷的物化常数测定[J].沈阳药科大学学报,2000,17:105-106.
    [3]于波涛,张志荣等.黄芩苷稳定性研究[J].中草药,2002,33:218-220.
    [4]Qiu,F.,Tang,X.,He,Z.G,et al.Stability of baicalin aqueous solution by validated RP-HPLC.J.Chin.Pharm.Sci.2004.13:134-137.
    [1]Hirai,S.,Yashiki,T,Matsuzawa,H.Absorption of drugs from the nasal mucosa of rats.Int.J.Pharm.1981.7:317-327.
    [2]Heng,R.C.,Kimura,R.,Nassar,R.B.,et.al.Mechanism of nasal absorption of drugs I:physicochemi-cal parameters influencing the rate of in situ nasal absorption.J.Pharm.Sci.1985,74:608-611.
    [3]崔景斌,奚念朱,蒋新国.鼻腔作为全身给药途径的研究[J].中国药学杂志,1998,18:493-496.
    [4]Hirai,S.,Yashiki,T,Matsuzawa,T.,et al.Absorption of drugs from the nasal mucosa of rat.Int.J.Pharm.1982,7:317-325.
    [5]于波涛,张志荣,刘文胜,等.黄芩苷稳定性研究[J].中草药,2002,33:218-220.
    [6]刘广利,唐星.甲磺酸二氢麦角毒碱溶液鼻黏膜吸收的研究[J].中国新药杂志,2005,15:612-616.
    [7]赵莹,张大卫.7种吸收促进剂的鼻黏膜毒性及评价方法[J].北京大学学报医学版,36:4l7-420.
    [8]Mahesh,D.C.,Pradeep R.V.The influence of absorption enhancers on nasal absorption of acyclovir.Eur.J.Pharm.Biopharm.2004.57:483-487.
    [9]周园,刘玉玲.环糊精在鼻腔给药系统中的应用[J].中国医药工业杂志,2005,36:501-504.
    [10]Lim,S.T.,Mrtin,G.P,Beny,D.J.,et al.Preparation and evaluation of the in vitro drug release properties and mucoadhesion of novel microspheres Of hyaluronic acid and chitosan.J.Control.Release.2000.66:281-292。
    [11]Nicolaas,M.S.,Kjell,M.V.Chitosans as absorption enhancers of poorly absorbable drugs:Influence Of mucus on absorption enhancement.Eur.J.Pharm.Sci.1999.8:335-343.
    [12]陈新梅,朱家壁,孙卫东,等.吸收促进剂对人参皂苷Rgl鼻腔吸收的促进作用及鼻腔毒性[J].药学学报,2006,41:149.155.
    [1]Umberkoman,w.B.,Anand,K.T.C.Association of tritjum-labelled estradjol,progesterone and 17alpha-hydroxyprogesterone with the proteins of the serum and cerebrospinal fluid in the rhesus monkey.Neuroendocrinology l979,28:103-113.
    [2]Anand,K.T.C.,David,GF.,Sankaranarayanan,A.,et al.Pharmacokinetics of progesterone after its administration to ovariectomized rhesus monkeys by injection,infusion,or nasal spraying.Pro Natl Acad.Sci.1982.79:4185-4196.
    [3]Dahlin,M.,Bergman,U.,Jansson,B.,et al.Transfer of dopamine in the olfactory,pathway following nasal administratiOn in mice.Pharm.Res.2000.17:737-742.
    [4]Frey,W.H.,Liu,J.,Chen,X.,et al.Delivey,of~(125)l-NGF to the brain via the olfactoy route.Drug Deli V.1 997.4:87-92.
    [5]ChOU,K-J.,Donovan,M.D.Lidocaine distribution into the CNS follOWing nasal and arterial delivery:a comparison Of local sampling and micrOdialysis techniques.Int.J.Pharm.1998,171:53-61.
    [6]Chow,H.H.S.,Chen,Z.,Matsuura,G.T.Direct transport of cocaine from the naSal cavity to the brain follOWing intranasal cocaine administratiOn in rats.J.Pharm.Sci.1998,88:754-758.
    [7]Ungerstedt,U.Microdialysis-principles and applications for studies in animals and man.J.Int.Med.1991.230:365-373.
    [8]Verbeek,R.K.Blood microdialysis in pharmacokinetic and dmg metabolism studies.Adv Drug DeliV.Rev.2000.45:217-228.
    [9]Hamberger,A.,Jacobson,I.,et al,Microdialysis sampling of the neuronal environment in basic and clinical research.J.Int.Med.1991.230:375-377.
    [10]Bungay,PM.,Morrison,P F.,Dedrick,R.L.Steady state theory for quantitative microdialysis of sOlutes and water in vivo and in vitro.Life Sci.1990.46:105-119.
    [11]Stable,L.,Segersvard,S.,Ungerstedt,U.Drug distribution studies with microdialysis:II cafieine and theophylline in bold,brain and other tissues in rats.Life Sci.199l,49:l843·1852.
    [12]pounds by microdialysis.J.Pharm.Meth.199l,25:41-52.
    [l3]Evrard,P.A.,Deridder,G.,Verbeeck,R.K.Intravenous microdialysis in the mouse and the rat:develOpment and pharlTlacokinetic applicatiOn Of a new probe.Pharm.Res.1996,13:12-17.
    [14]Chaurasia,C.S.In vivo microdialysis sampling:theory and applications.Biomed.Chromatogr.1999,13:317-332.
    [15]丁平田,徐辉,郑俊民.微渗析技术在药代动力学和药物代谢研究中的应用.药学学报,2002,37:316-320.
    [16]Stahle,L.Drug distribution studies with microdialysis:I.Tissue dependent difiefence in recovery between cafieine and theophylline.Life Sci.1991,49:1835-1842.
    [17]Groth,L.Cutaneous microdialysis methodology and Validation.Acta Derm.Venereol.1996,76:1-61.
    [l8]Qiao,J.P.,Abliz,Z.,et al.Microdialysis combined with liquid chromatography-tandem mass spectrometry for the determination of 6-aminobutylphthalide and its main metabolite in the brains of awake freely-moving rats.J.Chromatogr.B 2004,805:93-9.
    [19]Xing,J.,Chen,X.Y.,Zhong,D.F.Stability of baicalin in biological fluids in vitro.J.Pharm.Biomed.Anal.2005,39:593-600.
    [20]Asai,K.,Morishita,M.,Katsuta,H.,et al.The effects of watersoluble cyclodextrins on the histological integrity of the rat nasal mucosa.Int.J.Pharm.2002,246:25-35.
    [21]周园,刘玉玲.环糊精在鼻腔给药系统中的应用[J].中国医药工业杂志,2005,36:50l-504.
    [22]陈新梅,朱家壁,孙卫东,等.吸收促进剂对人参皂苷Rgl鼻腔吸收的促进作用及鼻腔毒性[J].药学学报,2006,41:149-155.
    [23]Hirai,S.,Yashiki,T.,Mima,H.Effect of surfactants on the nasal absorption of jnsulin in rats.Int.J.Pharm.1981,9:165-172.
    [24]Chow,H.H.,Anavy,N.,Villalobos,A.Direct nose-brain transport of benzoylecgonine following intranasal administration in rats.J.Pharm.Sci.2001.90:1729-1735.
    [25]Rogers,R.C.,Butcher,L.L.,Novin,D.Effects of urethane and Phenobarbital anesthesia on the demonstration of retrograde and anterograde transport of horseradish peroxidase.Brain Res.1980,87:197-200.
    [26]Sakane,T.,Yamashita,S.,Yata,N.,et al.Transnasal delivery of 5-fluorouracil to the brain in the rat.J.Drug Target.1999,7:233-240.
    [27]Wang,F.,Jiang,x.,Lu,W.Profiles of methotrexate in blood and CSF following intranasal and intravenous administration to rats.Int.J.Pharm.2003,263:l-7.
    [28]Illum,L.Transport of drugs from the nasal cavity to the central nervous system.Eur.J.Pharm.Sci.2000,11:1-18.
    [29]Comford,E.M.New systems for delivery of drugs to the brain in neurological disease.Lancet Neurol.2002,1:306-315.
    [30]Mathison,S.,Nagilla,R.,Kompella,U.B.Nasal route for direct delivery of solutes to the central nervous system:fact or fiction? J.Drug Target.1998,5:415-441.
    [31]Kem,w.,Bom,J.,Schreiber' H.,et al.Central nervous system efiects of intranasally administered insulin during euglycemia in men.Diabetes l999,48:557-563.
    [32]Fehm,H.L.,Perras,B.,Smolnik,R.,et al.Manipulating neuropeptideric pathways in humans:a novel approach tO neurophannacology? Eur.J.Pharmacol.2000,405:43-54.
    [33]Duffes,C.,OlivieL J.C.,Gaillard,F.,et al.Brain delivery of Vasoactive intestinal peptide(VIP)follOwing nalsal administration to rats.Int.J.Pham.2003,255:87-97.
    [34]Thome,R.G.,Pfonk,GJ.,Padmanabhan,v.,et al.Delivery of insulin-like growth factor I to the rat brain and spinal cord along Olfactory and trigeminal pathways following intranasal administration.Neuroscience 2004.127:481-496.
    [35]平其能等.现代药剂学.中国医药科技出版社,1998.
    [36]李倩楠,葛晓群.黄芩苷及黄芩复方制剂解热机制研究进展[J].国际药学研究杂志,2008,35:342-345.
    [37]Narita,M.,Uchimura,A.,Kawanabe,M.,et al.Invasion and spread of equine herpresvirus in the olfactory pathway Of pigs after intranasal inoculation.J.Comp.Pathol.2001,124:265-272.
    [38]Brenneman,K.A.,Wong,B.A.,Buccellato,M.A.,et a1.Direct olfactoy transport of inhaled manganese(~(54)MnCl_2) to the rat brain:toxicokinetic investigations in a unilateral nasal occuIusion model.Toxico.Appl.Pharmacol.2000,169:238-248.
    [39]Wang,Y.,Aun,R.,Tse,F.L.Brain uptake of dihydroergotamine after intravenous and nasal administration in the rat.Biopharm.Drug Dispos.1998,19:571-575.
    [40]Jansson,B.,Bjork,E.Visualization of in Vivo olfactory uptake and transfer using fluorescein dexrean.J.Drug Target.2002,l0:379-386.
    [41]Dahlin,M.,Bjork,E.Nasal absorption of(S)-UH-301 and its transport into the cerebrospinal fluid of rats.Int.J.Pharm.2000.195:197-205.
    [42]Hussain,M.,Rakestraw,D.,Rowe,S.,et a1.Nasal administration of a cognition enhancer provides improved bioavailability but not enhanced brain delivery.J.Pharm.Sci.1990,79:771-772.
    [43]Tsai,P.L.,Tsai,T.H.Pharmacokinetics of baicalin in rats and its interactions with cyclosporin A,quinidine and SKF-525A:a microdialysis study.Planta Med.2004,70:1069-1074.
    [44]Zhang,L.J.,Xing,D.M.,Wang,W.,Wang,R.F.,Du,L.J.Kinetic difference of baicalin in rat blood and cerebral nuclei after intravenous administration Of Scutellariae Radix extract.J.Ethnopharmacol.2006.103:120-125.
    [45]Rossa,T.M.,Manineza,P.M.,Thorne,R.G.,Frey W.H.Intranasal administration of interron beta bvpasses the blood-brain barrier to target the central nervous system and cervical lymph nodes:a non-invasive treatment strategy for multiple sclerosis.J.Neuroimmuno1.2004.15l:66-77.
    [46]Reger,M.A.,Watson,G.S.,Craft,S.Intranasal insulin improves cognition and modulates β-amyloid in early AD.Neurology.2008.70:440-448.
    [47]王宁生,谢独,梁美蓉等.冰片“佐使则有功”之实验研究[J].中医杂志,1994,35:46.
    [48]赵保胜,刘启德.冰片促血脑屏障开放与病理性开放的比较[J].中药新药与临床药理,2002,13:287-288.
    [49]许碧莲,王晖,许卫铭,冰片对盐酸川芎嗪促透作用的研究[J].中成药,2001,23:864-866.
    [50]陈新梅,朱家壁,孙卫东,张立建.冰片对人参皂苷Rg1鼻腔吸收的促进作用及鼻腔纤毛毒性研究[J].中国药学杂志,2006,4l:261-264.
    [1]Gabetta,B.,Bombardelli,E.,Pifferi,G Complexes of flavanolignans with phospholipids,preparation thereof and associated pharmaceutical compositions.Europe Patent.209038,l987-01-21.
    [2]吴建梅,陈大为,刘艳丽.黄芩苷磷脂复合物制备工艺的研究[J].中国中药杂志,2001,26:166-169.
    [3]凌沛学,汤漩,王凤山,祝美华,张天民.药物与磷脂复合物研究近况[J].中国药学杂志,2005,40:401-402.
    [4]Frankenburg,S.,Glick,D.,Klaus,S.,Barenholz,Y.Efficacious Topical Treatment for Murine Cutaneous Leishmaniasis with Ethallolic Formulations Of Amphotericin B.Antimicropb.Agents Chemother.1998.42:3092-3096.
    [5]Maiti,K.,Mukhefjee,K.,Gantait,A.,Saha,B.P,Mukhefjee,PK.Curcumin-phospholipid complex:reparation,therapeutic evaluation and pharmacokinetic study in rats.Int.J.Pharm.2007,330:155-163.
    [6]Xiao,Y.,Song,Y.,Chen,Z.,Ping,Q.The preparation of silybin-phospholipid complex and the study On its pharmacokinetics in rats.Int.J.Pharm.,2006,307:77-82.
    [7]Peng,Q.,Gong,T.,Zuo,J.,Liu,J.,Zhao,D.,Zhang,Z.Enhanced oral bioavailability of salvianolic acid B by phospholipid complex loaded nanoparticles.Pharmazie 2008,63:661-666.
    [8]Maiti,K.,Mukherjee,K.,Gantait,A.,Saha,B.P.,Mukherjee,P.K.Curcumin phospholipid complex:Preparation,therapeutic evaluation and pharmacokinetic study in rats.Int.J.Pharm.2007,330:155-163.
    [9]Song,Y.,Zhuang,J.,Guo,J.,Xiao,Y.,Ping,Q.Preparation and properties of a silybin phospholipid complex.Pharmazie 2008,63:35-42
    [10]Bormbardelli,E.,Patri,G.Complexes of glycyrrhetinic acid with phospholipids and pharmaceutical and cosmetic compositions containing them.US patent,5l47859.1991.
    [11]Bhattachar,S.,Rytting,J.,Itoh,T.,Nishihata,T.The effects of complexation with hydrogenated phospholipid on the transport Of saljcylic acid,diclofenac and indomethacin across snake stratum comeum.Int.J.Pharm.1992.79:263-271
    [12]Yuan,H.,Xie,H.,Xia0,X.,Yang,M.,Liao,M.Zhu,W.,Cai,P.Preparation,Characterization,and Bioavailability Of Ursodeoxycholic Acid-Phospholipid Complex In Vivo.Drug Dev.Ind.Pharm.2008,34:708-718.
    [13]沈建民,武振卿.药物结构与制剂[M].北京:中国医药科技出版社.1989,61.
    [14]天津大学物理化学教研室.物理化学[M].第三版.下册.北京:高等教育出版社.1993,340.
    [15]许润春,林彦君,吴品江,杨明.黄芩苷磷脂复合物理化性质研究[J].中草药,2008,30:932-934.
    [16]Zhang,Z.,Diener,R.M.,Lipman,J.M.Safety evaluation of abelcet,an amphotericin B lipid complex (ABLC):toxicity studies in rats.Int.J.Toxicol.2006,25:285-94.
    [17]Bombardeilli,E.,Cristoni,A.,Morazzoni,P.Phytosomes in functional cosmetics.Fitoteapia 1994,65:87.
    [l8]xiong,J.,Guo,J.,Huang,L.,Meng,B.,Ping,Q.The Use of Lipid-Based Formulations to Increase the Oral Bioavailabilitv of Panax Notoginseng Saponins Following a Single Oral Gavage to Rats.Drug Dev.Ind.Pharm.2008.34:65-72.
    [19]Driscoll,D.F,Etzer,F.,Barber,T.A.,Nehne.,Niemann,W.,Bistrian,B.R.Physicochemical assessments of parenteral lipid emulsion:light Obscuration versus laser diffaction.Int.J.Pharm.2001,219:21-37.
    [20]Nicoli,D.F.,Mckenzie,D.C.,Wu,J.S.Application of dynamic light scattering to particle size analysis Of macromolecules.Amer.Lab.1991.23:32-40.
    [21]王思玲,孙长山,于建军,陈闯,苏德森,顾学裘.比较Gaussian曲线分布与Nicomp多波型分布分析在纳米分散系粒径测定中的应用[J].沈阳药科大学学报,2003,20:321-324.
    [22]Nicoli,D.F.,Wu,J.S.,Chang,Y.J.,Ovod,v.,Hasapidis,K.Zeta potential and particle size analysis of colloids using ELS and DLS.Amer.Lab.1997,29:12-15.
    [23]周祖康.动态光散射[J].化学通报,1986,10:34-39.
    [24]韩继洪,苏德森.抗癌药物FT-207脂肪乳剂物理稳定性质的研究[J].沈阳药学院学报,1991,814-17.
    [25]马萍,辛艳茹,杨京燕等.离心分光光度法测定乳剂的稳定性[J].药学实践杂志,200l,19:23-27.
    [26]Unowsky,J.,Behl,C.R.,Beskid,G.,Sattler,J.,Halpern,J.,& Cleeland,R.Effect of medium chain glycerides on enteral and rectal absorlption Of beta-lactam and aminoglycoside antibitucs.Chemotherapy 1988,34:272-276.
    [27]Beskid,G.,Unowsky,J.,Behl,C.R.,Siebelist,J.,Tossounian,J.L.,McGarry,C.M.Enteral,oral,and rectal absorlption of ceftriaxone using glyceride enhancers.Chemotherapy 1988,34:77-84.
    [28]Chansiri,G,Lyons,R.T.,Patel,M.V.,Hem,S.L.Effect of surface charge on the stability of oil/water emulsions during steam sterilization.J.Pharm.Sci.1999,88:454-458.
    [29]Joseph,T.R.The influence of chared lipids on the flocculation and coalescence of oil-in-water emulsions.I:Kjnetic assessment of emulsion Stability.J.Parenter.Sci.Techno1.1990,44:210-215.
    [30]Herman,C.J.,Groves,M.J.The influence of free fatty acid formation on the pH of phospholipid-stabilized triglyceride emulsions.Pharm.Res.1993,lO:774-776.
    [31]Eccleston GM.Emulsions.In:Swarbrick,J.,Boylan,J.C.(Eds),Encyclopedia of Pharmaceutical Technology,vol.5.Marcel Dekker Inc.,New York,pp.1992,137-188
    [32]Zhang,H.,Tang,X.,et al.A lipid microsphere vehicle for VinoteIbine:Stability,safety and pharmacokinetics.Int.J.Pharm.2008,348:70-79.
    [33]Lu,Y.,Wang,Y.J.,Tang,X.Formulation and thermal sterile stabiilty of a less painful intravenous clarthromvcin emulsion containing vitamin E.Int.J.Pharrm.2008,346:47-56.
    [34]lshii,F.,Sasaki,I.,Ogata,H.Effect of phospholipid emulsifers on physicochemical properties of intravenous fat emulsions and/or drug carrier emillsions.J.Pharm.Pharmacol.1990,42:5l3-5l5.
    [35]Lidgate,D.M.,Fu,R.C.,Fleitman,J.S.Using a microfluidizer to manufacture parenteral emulsions.Biopharm.1989,45:28-33.
    [36]Washington,C.,Davis,S.S.Ageing effects in parenteral fat emulsions:the role of fatty acids.Int.J.Pharm.1987.39:33-37.
    [37]Illum,L.,Transport of drugs from the nasal cavity to the central nervous system.Eur.J.Pharm.Sci.2000.11:1-18.
    [38]Tobio,M.,Gref.R.,Sanchez,A.,et al.Stealth PLA-PEG nanoparticles as protein carriers for nasal administration.Pharm.Res.1998.15:270-275.
    [39]丁平田,赵红.透皮吸收药物载体一传递体[J].国外医药一合成药、生化药、制剂分册,1997,18:48-51.
    [1]蒋新国,崔景斌,方晓玲等.药物的鼻粘膜纤毛毒性及评价方法[J].药学学报.1995,30:848-853.
    [2]Kanthakumar,K.,Cundell,D.R.,Johnson,M.,et al.Effect of salmeterol on human nasal epithelial cell ciliary beating:inhibition of the ciliotoxin.Br.J.Pharmacol.1994,ll2:l93-l98.
    [3]Romeijn,S.G.,Verhoef,J.c.,Marttin,E.,Merkus F.W.H.M.The effect of nasal drug formulations on ciliar beating in Vitro.Int.J.Pharm.1996,135:137-145.
    [4]Donovan,MD.,Zhou,M.Drug effects on in vivo nasal clearance in rats.Int.J.Pharm.1995,116:77-86.
    [5]张奕,蒋新国,张奇志.胰岛素鼻腔喷雾剂的大鼠鼻纤毛毒性考察[J].中国临床药学杂志,1999,8:230-232.
    [6]Pujara,C.P.,Shao,Z.Z.Effects of formulation variables on nasal epithelial cell integrity:Biochemical evaluation.Int.J.Pharm.1995,114:l97-203.
    [7]Marttin,E.,Verhoef,J.C.,Romeijn,S.G.,et al.Effects of absorpt ion enhancers on rat nasal epithelium in vivo:release of marker compounds in the nasal cavity.Pharm.Res.1995,l2:1151-1157.
    [8]Deponti,R.,Matini,A.,Crivellente M.,et al.Lower-ing of toxicity using cyclodextrin in combination with nasal enhancersin vitroandin vivostudies.Minutes Int Symp Cyclodextrins 6~t(h+),Paris France:Sante,1992,514-521.
    [9]Gill,I.J.,Illum,L.,Farraj,N.,et al.Cyclodextrins as protection agents against enhancer damage in nasal delivery system.Eur.J.Pharm.Sci.1994,l:229-334.
    [l0]Tengamnuay,P.,Mitra,A.K.Bile salt-fatty acid mixed micelles as nasal absorption promoters of peptides.I.Effects of ionic strength,adjuvant composition,and lipid structure on the nasal absorption of[D- Arg2]kyotophin.Pharm.Res.1990,7:127-133.
    [11]Mamin,E.,Verhoef J.C.,Romeijn,S.G.,et al Acute histopathological effects of benzalkonium chloride and absorption enhancers on rat nasal epithelium in vivo.Int.J.Pharm.1996,14l:l5l-l60.
    [l2]Hussain,A.A.,Bawarshi,R.Nasal absorption of propranolol in rats.J.Pharm.Sci.1979,68:1196-1121.
    [13]Donk,J.M.,Merkus,H.M.Decreases in ciliary beat frequency due to intranasal administration of propranolol.J.Pharm.Sci.1982,7l:595.
    [14]蒋新国,张奇志,张奕,奚念朱.普萘洛尔鼻用制剂的纤毛毒性[J].药学学报,1999,34:471-474.
    [15]杨建红,张钧寿,刘铁钢.维生素B_12滴鼻剂的鼻粘膜纤毛毒性评价研究[J].中国药科大学学报,2002,33:107-109

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700