用户名: 密码: 验证码:
膨胀土湿热耦合性状与路堑边坡防护机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以广西南宁膨胀土为研究对象,采用现场试验、室内试验和数值计算模拟的方法,对大气作用下膨胀土的工程性状、膨胀土路堑边坡的灾变机理以及多种防护方法的工作特性进行了分析。
     首先,进行了大型膨胀土堑坡的现场试验,通过气象观测、边坡温湿度和渗透特性的测试以及坡体变形的监测,对大气作用下膨胀土堑坡的灾变机理进行了分析,并对植被和框锚结构防护系统的工作特性进行了探讨。结果表明,膨胀土的工程性质与蒸发和降雨过程息息相关;土体含水量的变化是影响边坡变形的主要因素,而温度变化是促进因素,二者的耦合作用使得边坡趋向不稳定;含水量变化下的大气影响深度随季节性干湿循环而变大,但其变化滞后于温度;植被防护可减小温度、湿度的变动幅度,降低影响深度;降雨持续时间决定坡体变形,一定降雨强度下持续的降雨过程才能使边坡趋于破坏;大气剧烈影响深度范围内土体的胀缩性会对锚杆工作状态产生较大的影响,在边坡上早期施加锚杆和框架梁后,框架梁可通过锚杆对梁的约束力限制土体的膨胀变形,进而保证土体的强度,同时框锚结构系统在实际受荷过程中会释放部分膨胀力,降低梁底土体反力,有利于框锚结构的稳定。
     其次,采用室内试验的方法,考虑脱湿速率、吸湿速率、水化状态和干湿循环作用的影响,模拟自然环境下膨胀土的湿热状态,对其力学性质、持水特征、胀缩性和渗透性进行了深入分析。结果表明,湿热状态会对膨胀土的工程性状产生较大影响:反复的吸湿、脱湿使土体趋于松散,强度降低,渗透性增强;脱湿速率越小,土体的收缩变形越大,进气值越大;吸湿速率越小,土体的膨胀变形越大,膨胀后强度越低;在水化过程中,水化时间越长、温度越高,土体强度越低,强度呈现变动特性。
     第三,基于现场试验和室内试验,结合自编的处理软件对膨胀土的裂隙特性展开分析。结果表明,二值化像素和分形维数统计的方法均是对膨胀土裂隙的平面描述,而渗透试验和变形模量测试的方法可以从空间上反映膨胀土裂隙的发育状态。
     第四,在考虑膨胀土湿热耦合性状和裂隙分布的基础上,采用数值计算模拟的方法,对大气作用下膨胀土边坡的工作特性进行了分析,并结合植被的生理特征和力学特性对植被护坡的机理开展了深入研究。结果表明,膨胀土堑坡的灾变过程与膨胀土的工程性状紧密相关,而气候环境是促进因素,季节性的干湿循环、高湿的持续蒸发、连绵的降雨过程均是最不利于膨胀土堑坡稳定的气象状态;植被护坡在降雨过程中主要是根系的力学效应发挥作用,而后植被的蒸发、蒸腾作用可缩短土体水化的时间,阻止土体强度的进一步衰减,降低坡体的风化程度,有利于边坡长期的稳定。
     最后,采用数值计算模拟的方法,对浆砌片石和框锚结构防护系统的工作特性进行了分析。结果表明,浆砌片石护坡可保持边坡湿度场稳定,减缓温差及温度变化对坡体的影响,降低浅层土体风化程度,阻止大气影响深度向土体深处发展;在框锚结构护坡系统中,锚杆在强风化区内设置自由段,既不会降低边坡的安全系数还有利于锚杆的稳定,框架梁的存在使边坡滑动土体的下滑推力转由深部土体承担,可有效维持浅层土体的稳定性,锚杆轴向力和框架梁弯矩的分布特征可为工程设计提供科学依据和优化措施。
In this thesis, expansive soil moisture-heat coupling behavior, disastrous mechanism and protection mechanism of cut slope is analyzed by the method of field test, lab experimentation and numerical simulation.
     Firstly, a large scale field test of expansive soil cut slope is carried out. Disastrous mechanism of the cut slope is analyzed based on weather observation, slope moisture-heat and permeability test, and deformation monitor. Working characteristic of vegetation and frame-anchor protection is also discussed. The results show that expansive soil engineering behavior is related with rainfall and evaporation closely. The change of water content is key factor to the slope deformation, and the change of temperature may accelerate the process. Therefore, the coupling action makes the slope unstable. Influence depth of water content increases with seasonal drying-wetting circulation, but the change of water content lags the heat. With vegetation covered, the fluctuate scope of moisture and heat is lessened, which prevent the developing of atmosphere influence depth. The deformation of slope is controlled by raining time, and only successive raining in certain intensity can induce large deformation. Swell-shrink behavior of expansive soil in the high weathering zone may make a great influence on the anchor bolt. When frame-anchor structure is built, the beam can confine the swelling of expansive soil, and keep the strength. At the same time, frame-anchor structure may release the swelling force, which contributes to the stability of slope protection system greatly.
     Secondly, by the method of lab experimentation moisture-heat coupling behavior of expansive soil is analyzed from the viewpoints of considering the effects of drying rate, wetting rate, hydration state and drying-wetting cyclic process. The results show that moisture and heat state has a great influence on expansive soil engineering behavior. Drying-wetting cyclic process makes soil more loose, lower strength, and higher permeability. A low drying rate induces a large shrinkage and air-entry value. A low wetting rate contributes a large swell deformation, and weakens the strength. During hydrating, the strength presents dynamic, and the state of long term and high temperature may lead to a low strength parameter.
     Thirdly, fissure feature is analyzed through the way of field test and lab experimentation combined with programmed software. The results show that statistic of two-value pixels and fractal dimension depicts the fissure in view of plane, and test of permeability and deformation modulus describes it from a spatial perspective.
     Then, working trait of expansive soil cut slope is analyzed by the method of numerical simulation considering expansive soil moisture-heat coupling behavior and fissure characteristic. And the vegetation protection mechanism is also studied taking into account of the mechanics characteristic and physiological trait. The results show that cut slope disastrous process correlates with expansive soil engineering behavior, and weather is a driving factor. The condition of seasonal drying-wetting circulation, evaporating process with a high humidity, and successive raining makes against the stability of expansive soil cut slope mostly. During raining root mechanics puts to effect primarily, and afterward, evaporation and transpiration puts into action which shortens the hydration time, prevents the strength decreased, reduces the weathering degree and is propitious to the long-term stability.
     Finally, protection characteristic of grouted rubble and frame-anchor structure is analyzed by means of numerical simulation. The results show that grouted rubble may keep the slope moisture steadily, lessen the influence caused by heat and difference in temperature, and prevent the developing of atmosphere influence depth. To frame-anchor structure that setting anchor bolts a free part in the high weathering zone can not only keep the safety coefficient of slope but also be in favor of the stability of anchor. Frame beam can let the deep soil bear the push force of slide mass, and then, make the surface stable. The distribute format of anchor axial force and frame beam bending moment is useful to design and optimization.
引文
[1]谭罗荣, 孔令伟. 特殊岩土工程土质学[M]. 北京:科学出版社,2006
    [2]FREDLUND D G., RAHARDJO H. Soil Mechanics For Unsaturated Soils[M]. New York: John Wiley & Sons, 1993.
    [3]廖世文. 膨胀土与铁路工程[M]. 中国铁道出版社. 1984
    [4]刘特洪. 工程建设中的膨胀土问题[M]. 北京: 中国建筑工业出版社, 1997.
    [5]曲永新, 杨俊峰, 冯玉勇等. 中国膨胀性岩、土一体化工程地质分类的理论与实践[M]. 中国地质学会工程地质专业委员会: 中国工程地质五十年, 北京:地质出版社, 2000.
    [6]卢再华等. 原状膨胀土的强度变形特征及其本构特征研究[J]. 岩土力学, 2001, 22(3): 339-342.
    [7]王国强. 安徽省江淮地区膨胀土的工程性质研究[J]. 岩土工程学报, 1999, 21(1): 119-121.
    [8]耿建彬. 膨胀土地区地裂的形成发育及其危害防治[J]. 岩土工程技术, 1998(1): 21-23.
    [9]孔令伟, 郭爱国, 赵颖文, 陈善雄. 荆门膨胀土的水稳定性及其力学效应[J]. 岩土工程学报, 2004, 26(6): 727-732.
    [10]沈珠江, 邓刚. 粘土干湿循环中裂缝演变过程的数值模拟[J].岩土力学(增), 2004, 25(S2): 1-7.
    [11]陈建斌. 大气作用下膨胀土边坡的响应试验与灾变机理研究[D 博士学位论文]. 武汉:中国科学院武汉岩土力学研究所, 2006.
    [12]冯光愈. 伊利和蒙脱土及其混合试样的抗剪强度[A]. 土的抗剪强度与本构关系学术讨论会论文汇编[C]. 老河口市, 1985, 5.
    [13]谭罗荣, 孔令伟. 膨胀土的强度特性研究[J]. 岩土力学, 2005, 26(7): 1009-1013.
    [14]罗冲, 殷坤龙, 周春梅, 姚林林. 膨胀土在不同约束状态下的试验研究[J]. 岩土力学, 2007, (3): 635-638.
    [15]徐永福, 龚友平, 殷宗泽. 宁夏膨胀土膨胀变形特征的试验研究[J]. 水利学报, 1997, (9): 27-30.
    [16]索洛昌. 膨胀土上建筑物的设计与施工[M]. 徐祖森等译. 北京: 中国建筑工业出版社, 1982.
    [17]陈孚华. 膨胀土上的基础[M]. 石油化学工业部化工设计院等译. 北京: 中国建筑工业出版社, 1974.
    [18]刘祖德, 王园. 膨胀土浸水三向变形研究[J]. 武汉水利电力大学学报, 1994, 27(6): 617-622.
    [19]黄龄熙, 方向. 膨胀土三向变形的特性[A]. 中国土木工程学会土力学及基础工程学会主编: 非饱和土理论与实践学术研讨会文集[C], 北京, 1992:153-161.
    [20]谢云, 陈正汉, 孙树国, 李刚, 方祥位. 重塑膨胀土的三向膨胀力试验研究[J]. 岩土力学, 2007, (8): 1636-1642.
    [21]刘松玉,季鹏,方磊. 击实膨胀土的循环膨胀特性研究[J]. 岩土工程学报, 1999, 21(1): 9-13.
    [22]王幼麟等. 电子显微镜在岩土结构力学性质研究中的应用[C]. 全国第一界电子显微镜学术会议集, 1980.
    [23]高国瑞. 膨胀土微结构特征的研究[J]. 工程勘察, 1981, (5): 39-42.
    [24]高国瑞. 膨胀土微结构和膨胀势[J]. 岩土工程学报,1984, 6(2): 40-48.
    [25]廖世文. 膨胀土与铁路工程[M]. 北京: 中国铁道出版社, 1984.
    [26]李生林. 中国膨胀土工程地质研究[M]. 南京: 江苏科学技术出版社, 1992.
    [27]施斌. 粘性土微观结构的定量技术与微观力学模型[D 博士学位论文]. 南京大学, 1995.
    [28]Kong L.W, Tan L.R. A Simple Method of Determining the Soil-Water Characteristic Curve Indirectly, Unsaturated Soils For Asia, Singapore, 2000: 341-345.
    [29]Fredlund M.D, Wilson G.W, Fredlund D.G. Use of the grain-size distribution for estimation of the soil-water characteristic curve[J]. Canadian Geotechnical Journal.2002. 39: 1103-1117.
    [30]Simms P.H, Yanful E.K. Predicting soil-water characteristic curve of compacted plastic soils from measured pore-size distributions[J]. Geotechnique, 2002, 4: 269-278.
    [31]Aubertin M,Mbonimpa M,Bussiere B,Chapuis R.P.A model to predict the water retention curve from basic geotechnical properties[J] . Canadian Geotechnical Journal.2003.40:1104-1122.
    [32]龚壁卫, 吴宏伟, 王斌. 应力状态对膨胀土SWCC的影响研究[J]. 岩土力学, 2004, (12).
    [33]Bishop A.W, Donald I.B. The experimental study of partly saturated soils in the triaxial apparatus. Pro.5thICOSMFE, 1961, Vol.1: 13-20.
    [34]Coleman J.D. Stress strain relation for partly saturated soils[J]. Geotechnique, 1961, 12(4): 348-350.
    [35]Fredlund D.G, Morgenstern N.R. Stress state variables for unsaturated soils[J]. Geotech.Eng.Div.Am., Soc. Civ. Engis. 1977, 103, Gt5: 447-446.
    [36]Alonso E E. Modeling the mechanical behaviour of expansive clays[J]. Engineering Geology, 1999, 54: 173-183.
    [37]Yang D.Q, Shen Z.J. On strength and deformation for unsaturated compacted clay[J]. Proc of the 7th, Int conf on Expansive soils Dallas, 3-5 August, 1992, 196-200.
    [38]Chen Z.H, Zhou H.Q, Fredlund D.G. An nonlinear model for unsaturated soils. Proc. 2nd Int. Conf. on Unsaturated soil, 1998, Beijing.
    [39]徐永福. 膨胀土弹塑性本构理论的初步研究[J]. 河海大学学报(自然科学版), 1997, 25(4): 97-99.
    [40]卢再华, 陈正汉等. 原状膨胀土的强度变形特性及其本构模型研究[J]. 岩土力学, 2001, 22(3): 339-342.
    [41]卢再华, 王权民等. 非饱和膨胀土本构模型的试验研究及分析[J]. 地下空间, 2001, 21(5): 379-385.
    [42]Bishop A.W, Alpan I, Blight G.E. Factors Controlling the Shear Strength of Partly Saturated Cohesive Soils. In: ASCE Research Conference on the Shear Strength of Cohesive Soils. pp: 1960, 503-532.
    [43]卢肇钧, 吴肖茗. 膨胀力在非饱和土强度理论中的作用[J]. 岩土工程学报, 1997, 19(5): 20-27.
    [44]卢肇钧. 非饱和土抗剪强度的探索研究[J]. 中国铁道科学, 1999: 20(2): 10-16.
    [45]卢肇钧, 张惠明, 陈建华. 非饱和土的抗剪强度与膨胀压力[J]. 岩土工程学报, 1992, 14(3): 1-8.
    [46]沈珠江. 当前非饱和土力学研究的若干问题[A]. 区域性土的岩土工程问题学术讨论会论文集[C]. 南京: 原子能出版社, 1996.
    [47]Orencio Monje Vilar. A simplified procedure to estimate the shear strength envelope of unsaturated soils[J]. Canadian Geotechnical Journal. 2006, 43: 1088-1095.
    [48]S.K.Vanapalli, D.G.Fredlund, D.E.Pufahl, A.W.Clifton. Model for the prediction of shear strength with respect to soil suction[J]. Canadian Geotechnical Journal. 33: 379-392.
    [49]S.K.Vanapalli, D.G.Fredlund. Empirical procedures to predict the shear strength of unsaturated soils. Proceedings of the 11th Asian Regional Conference, Seoul, Korea. 1999, 93-96.
    [50]徐永福, 龚友平, 殷宗泽. 非饱和膨胀土强度的分形特征[J]. 工程力学, 1998, 15(2), 76-81.
    [51]徐永福. 非饱和膨胀土结构性强度的研究[J]. 河海大学, 1999, 27(2): 86-89.
    [52]徐永福, 傅德明. 非饱和土结构强度的研究[J]. 工程力学, 1999, 16(4): 73-77
    [53]廖世文. 安康膨胀土抗剪强度初步探讨[J]. 铁道部第二勘测设计院科技简讯, 1979, 1.
    [54]杨和平, 肖夺. 干湿循环效应对膨胀土抗剪强度的影响[J]. 长沙理工大学学报(自然科学版), 2005, 2(2): 1-5.
    [55]李妥德. 裂隙软土堑坡的设计方法[J]. 岩土工程学报, 1990, 12(2): 47-56.
    [56]韩华强, 陈生水. 膨胀土的强度和变形特性研究[J]. 岩土工程学报, 2004, 26(3): 422-424.
    [57]缪林昌, 刘松玉. 南阳膨胀土的水分特征和强度特性研究[J]. 水利学报, 2002(7): 87-92.
    [58]龚壁卫, 周小文, 周武华. 干-湿循环过程中吸力与强度关系研究[J]. 岩土工程学报, 2006, 28(2): 207-209.
    [59]卢再华, 陈正汉, 蒲毅彬. 膨胀土干湿循环胀缩裂隙演化的CT试验研究[J]. 岩土力学, 2002, (4).
    [60]Neuman, S.P.: Galerkin Approach to Saturated-Unsaturated Flow in Porous Media. Finite Element in Fluids[M]. Vol. 1. Viscous Flow and Hydrodynamical. London: Wiley, 1974: 201-217.
    [61]姚海林, 郑少河, 陈守义. 考虑裂隙及雨水入渗影响的膨胀土边坡稳定性分析[J]. 岩土工程学报, 2001(5): 606-609.
    [62]姚海林, 郑少河, 李文斌, 陈守义. 降雨入渗对非饱和膨胀土边坡稳定性影响的参数研究[J]. 岩石力学与工程学报, 2002(7): 1034-1039.
    [63]张华. 非饱和渗流研究及其在工程中的应用[D 博士学位论文]. 武汉: 中国科学院武汉岩土力学研究所, 2002.
    [64]袁俊平, 殷宗泽. 考虑裂隙非饱和膨胀土边坡入渗模型与数值模拟[J]. 岩土力学, 2004(10): 1581-1586.
    [65]陈铁林等. 裂隙对非饱和土边坡稳定性的影响[J]. 岩土工程学报, 2006(2): 1-6.
    [66]Blight, G.E., 1997. Interaction between the atmosphere and the earth[J]. Geotechnique, 42(4): 715-766.
    [67]石庆华, 许年金. 膨胀土活动带及其运动规律[A]. 全国首届膨胀土科学研讨会论文集[C], 四川峨嵋山市, 西南交通大学出版社, 1990: 75-81
    [68]陈生水, 郑澄锋, 王国利. 膨胀土边坡长期强度变形特性和稳定性研究[J]. 岩土工程学报, 2007, 29(6): 795-799.
    [69]曹国安, 张鸿儒, 孙明漳. 膨胀土堑坡预压力锚固框架护坡[J]. 特种结构, 1997, 14(3): 57-60.
    [70]张永防, 王秉勇. 用锚杆框架护坡加固南昆线膨胀土边坡的研究[J]. 铁道工程学报. 2000(3): 92-95.
    [71]周德培, 张俊云. 植被护坡工程技术[M]. 北京: 人民交通出版社, 2003.
    [72]谢云. 非饱和土膨胀土的热力学特性、三向胀缩特性及膨胀土边坡在复杂条件下的渗流分析[D 博士学位论文]. 重庆: 后勤工程学院. 2005.
    [73]Diti Hengchaovanich. 15 years of bioengineering in the w et t rop ics from A (A caciaauriculif orm is) to V (Vetiveria Zizanioides)[A]. Proceedings of the firstAsia - Pacific conference on ground and water Bioengineering for erosion control and slope stabilization[C]. Manila, the Philippines, 1999: 54- 63.
    [74]程洪, 颜传盛, 李建庆等. 草本植物根系网的固土机制模式与力学试验研究[J]. 水土保持研究, 2006, 13(1): 62-65.
    [75]交通部第二公路勘察设计院, 公路设计手册《路基》[M]. 北京: 人民交通出版社, 1996.
    [76]Fredlund, D.G., Anqing Xing, and Shangyan Huang.Predicting the permeability function for unsaturated soils using the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31:533-546.
    [77]NING LU, WILLIAM J. LIKOS. Unsaturated Soil Mechanics[M]. New Jersey: John Wiley & Sons, 2004.
    [78]孔令伟, 陈建斌, 郭爱国等. 大气作用下膨胀土边坡的现场响应试验研究[J]. 岩土工程学报. 2007, 29(7): 1065-1073.
    [79]Ling-wei Kong, Ai-guo Guo, Jian-bin Chen, Guan-shi Liu.On strength property of gassy fine sand and model tests of pile foundation[A].The 16th International Conference on Soil Mechanics and Geotechnical Engineering[C].Japan: Osaka, 2005, 2009-2012.
    [80]陈伟. 原状膨胀土非饱和强度特征与动力学性能试验研究[D 硕士学位论文]. 武汉: 中国科学院武汉岩土力学研究所, 2007.
    [81]包承纲.非饱和压实土的气相形态及孔隙压力消散问题[A], 第三届全国土力学和基础工程会议论文集[C], 1979.
    [82]S. K. Vanapalli., D. G. Fredlund, D. E. pufahl and A. W. clifton, Model for the Prediction of Shear Strength with respect to Soil Suction[J], Can. Geotech. vol.33, 1996.
    [83]包承纲. 非饱和土的特性及其抗剪强度问题[A], 中国土木工程学会第八届土力学及岩土工程学术会议文集[C], 1999.
    [84]刘国楠, 吴肖茗. 膨胀土吸力特性研究[A]. 中国土木工程学会第 7 届全国土力学及基础工程学术会议论文集[C]. 北京: 中国建筑工业出版社, 1994: 263-266.
    [85]卢再华. 非饱和膨胀土的弹塑性损伤本构模型及其在土坡多场耦合分析中的应用[D 博士学位论文]. 重庆: 后勤工程学院, 2001.
    [86]缪林昌. 非饱和膨胀土的变形与特性研究[D 博士学位论文]. 南京: 河海大学, 1999.
    [87]Gens A, Alonso E E. A framework for the behavior of unsaturated expensive[J]. Canadian Geotechnical Journal, 1992,29: 1013-1032.
    [88]Thomas, H. R. and Rees, S. W. The numerical simulation of seasonal soil drying in an unsaturated clay soil[J]. Int. J. for Numerical & Analytical Methods Geomechanics, 1993, 17(1): 119-132.
    [89]廖世文.安康膨胀土抗剪强度初步探讨[J]. 铁道部第二勘测设计院科技简讯, 1979, 1.
    [90]韩华强,陈生水. 膨胀土的强度和变形特性研究[J]. 岩土工程学报, 2004, 26(3):422-424.
    [91]Klute. Laboratory Measurements of Hydraulic Conductivity of Unsaturated Soil[C]. Method of Soil Analysis, Part 1. Agronomy 9,C.A. Black Edition, 1965:253-261.
    [92]Green R.E. and Corey J.C. Calculation of Hydraulic Conductivity: A Further Evaluation of Some Predictive Method[J]. Soil Science Society of America Proceedings, 1971, 35: 3-8.
    [93]Van Genuchten, M. Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Sci. Soc. Am. J., 1990, 44: 892-898.
    [94]D.Childs & Collis-George. The permeability of porous materials[C].Proceedings of the Royal Society of London, Series A, 1950, 201: 392-405.
    [95]Marshall. A relation between permeability and size distribution of pore[J]. Journal of Soil Science, 1958, 9: 1-8.
    [96]Kunze et.al. Factors important in the calculation of hydraulic conductivity[C]. Soil Science Society of America, Proceedings, 1968, 32: 760-765.
    [97]TERZAGHI K. Stability of slopes of natural clay[C]. Proc 1st Intl .Conf Soil Mech Found Eng Harvad. 1936, 1: 161-165.
    [98]SKEMPTON A W. Long-term stability of clay slopes[J]. Geotechnique, 1964,14(2): 77-102.
    [99]Lee F.H., Lo K.W., Lee S.L. Tension crack development in soils[J]. Journal of Geotechnical Engineering, ASCE, 1988. 114(8): 915-929.
    [100]Bronswijk JJB. Drying, cracking, and subsidence of a clay soil In a lysimeter[J]. Soil Science. 1991(152): 92-99.
    [101]Morris P.H., J. Graham, D.J. Williams. Cracking in drying soils[J]. Canadian Geotechnical Journal. 1992(29): 263-277.
    [102]Abu-Hejleh, A.N. Znidarcic, D. Desication theory for soft cohesive soil[J]. Journal of Geotechnical Engineering, ASCE, 1995, 121(6): 493-502.
    [103]V.Y. Chertkov. Characteristic Crack Dimension of Saturated Drying Soils: Theory and Applications[J]. Agricultural Engineering International: the CIGR Journal of Scientific Research and Development. 2002(4): 1-9.
    [104]易顺民, 黎志恒, 张延中. 膨胀土裂隙结构的分形特征及其意义[J]. 岩土工程学报, 1999, (3): 294-298.
    [105]胡卸文, 李群丰, 赵泽三, 孔德坊等. 裂隙性粘土的力学特性[J]. 岩土工程学报. 1994, (1): 81-88.
    [106]谭罗荣, 岩土材料孔径分布测试结果的修正[J], 岩土力学, 2002, 3(23): 263-267.
    [107]雷祥义. 中国黄土的孔隙类型与湿陷性[J]. 中国科学(B 辑), 1997, 12: 1309-1316.
    [108]高国瑞. 黄土显微结构分类与湿陷性[J]. 中国科学, 1980, 12: 1203-1208.
    [109]张梅英, 范士荣. 岩土介质微观力学动态观测研究[J]. 科学通报, 1993, 38(10): 920-924.
    [110]赵明阶, 吴德伦. 单轴受荷条件下岩石的声学特性模型与实验研究[J]. 岩土工程学报, Vol. 21, No. 5, 1999: 540-545.
    [111]赵明阶, 徐蓉. 岩石损伤特性与强度的超声波速研究[J]. 岩土工程学报, Vol. 22, No.6, 2000: 720-722.
    [112]赵明阶, 徐蓉. 岩石声学特性研究现状及展望[J]. 重庆交通学院院报. Vo1.19, No.2, 2000: 79-85.
    [113]杨更社. 岩体损伤及检测[M]. 西安: 陕西科学出版社, 1998.
    [114]申 晋, 朱维申, 赵阳升. 三峡永久船闸高边坡岩体裂隙分布的分形研究[J]. 岩土工程学报, 1998, 20(5): 97-100.
    [115]赵 瑜, 李晓红, 卢义玉, 靳晓光. 块裂结构岩质边坡水力学模型及数值模拟[J]. 岩土力学, 2005, 26(6): 995-999.
    [116]Andreini M S, Steenhuis T S. Preferential path of flow under convention tillage, geoderma, 1990(46): 85-120.
    [117]马佳. 裂土优势流与边坡稳定性分析方法[D 硕士学位论文]. 武汉: 中科院武汉岩土力学研究所, 2007.
    [118]Thomas, H. R. and Rees, S. W. The numerical simulation of seasonal soil drying in an unsaturated clay soil[J]. Int. J. for Numerical & Analytical Methods Geomechanics, 1993, 17(1): 119-132.
    [119]Thomas, H. R.and Zhou. Z. A comparison of field measured and numerically simulated seasonal ground movement in unsaturated clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19(4): 249-265.
    [120]Wilson, G.W. Soil evaporation fluxes for geotechnical engineering problems[D]. Ph.D. dissertation, University of Saskatchewan, Saskatoon, 1990.
    [121]雷志栋等. 土壤水动力学[M]. 北京: 清华大学出版社, 1988.
    [122]Edlefson, N.E., Anderson, A.B.C. Thermodynamics of soil moinsture[J]. Hilgardia, 1943, 15(2): 31-298.
    [123]J.T.Ritchie. Model for predicting evaporation from a row crop with incomplete cover[J]. Water Resources Research, 1972, 8(5): 1204-1213.
    [124]Johansen, O. Thermal Conductivity of Soils[D].Trondheim, Norway,1975.
    [125]秦耀东. 土壤物理学[M]. 北京: 高等教育出版社, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700