用户名: 密码: 验证码:
泡沫镁合金的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泡沫金属作为一种新型多功能材料,以其特殊的结构与性能特征,在当前高速发展的科技领域倍受关注。对泡沫金属的制备、性能以及应用方面的研究近年来越来越广泛和深入。而泡沫金属从制备到性能研究再到实际应用,仍然存在很多未得以解决的问题。为此,我们针对制备工艺方法与性能进行研究,以使其更快更广泛的得到应用。
     本文基于以前的研究经验,进一步深入理论分析并经过多次试验,采用盐粒渗流法与石膏型熔模铸造法实现了泡沫镁合金试样的成功制备,并研究分析了泡沫镁合金的压缩性能与散热性能。从而得到如下研究成果:
     (1)得到盐粒渗流铸造法制备泡沫镁合金的各项工艺方法和参数:1)铸型制备:填料盐粒子(NaCl)采用分层紧实。2)浇注:模具、铸型预热温度为590~610℃,镁合金熔炼温度为760~780℃,浇注温度为720~730℃,真空度为-0.03MPa。3)清理:高压清水冲刷试样。4)NaCl溶液对泡沫镁合金的腐蚀机理分析。成功制备出孔隙率范围在40%-75%的试样,最大的试样为直径75mm,高100mm的圆柱形试样。
     (2)得到石膏型熔模铸造法制备泡沫镁合金的各项工艺方法和参数:1)石膏型的灌制:采用聚氨酯海绵作为母体材料进行石膏型的制备;石膏浆料配置:固体粉料(石膏粉与硫酸镁粉混合,比例100∶15)、清水。每100g水配以55g固体粉料,配置完成后灌制石膏型。2)焙烧:得到焙烧工艺温度曲线。3)浇注工艺同盐粒渗流法。4)清理:流水冲刷或附加微震。5)浇注过程中燃烧现象分析。成功制备出孔隙率达95%的试样。
     (3)由静态压缩试验获得泡沫镁合金压缩应力-应变曲线。对材料的压缩变形机制进行分析,判断其为脆性变形。发现孔隙率越高,应力-应变曲线平台越低,及应力越小。压缩变形过程中,应力平台阶段反应出泡沫镁合金材料强大的能力吸收性。
     (4)测定出泡沫镁合金材料的导热系数,其值极低,相当于阻热材料。经过对泡沫镁合金散热作用原理的分析,制作出各样式以泡沫镁合金为散热体的电脑CPU散热器。并测定其散热性能,通过对比分析提出优化方案。
As a new type of functional material, foamed metal is attached importance to the high technology areas improving rapidly due to its special structure and performance characteristics. The research of foamed metal in preparation, property and applications is more widely and deeply. But there are many problems of foamed metal from preparation to application which are not solved. In this condition, we make deeply research of foamed metal in the preparations and properties.
     Based on previous research experiences, further theoretical analysis and many tests, we successfully prepared foamed metal samples in the ways of vacuum infiltration casting with NaCl particulate and plaster mold. We also research the properties of foamed metal in compression performance and heat dispersion. Through the researches and analysis, we get results as follows:
     (1) In vacuum infiltration process, NaCl particles was selected as filling material and was compacted in mold layer by layer. Four pouring parameters , preheating temperature of particle, Melting temperature, pouring temperature and vacuum degree were determined as 590~610℃,760~780℃, 720~730℃and -0.03Mpa, respectively. Particle cleaning process was improved to resisting NaCl corrosion, which included water washing and brushing, soaking self-made solution, high pressure water washing and high pressure air drying. The samples were obtained with 40%-75% porosity. The largest sample is cylindrical with 75mm diameter, 100mm high.
     (2) Sponginess magnesium alloy was prepared by using porous plaster mold. In this process, the adding quantity of MgSO4 was 15 wt% of plaster, the ratio of water and solid material 0.55. The plaster mold was heated and baked step by step. The pouring parameters are similar with vacuum infiltration process. Plaster was cleaned by water washing and vibration. The inertia gas was adopted to prevent explosion and combustion in pouring. The sample structure inherited the sponge structure, which pore diameter was 5mm and porosity 95%.
     (3) The compression deformation characteristic of foamed Mg and the effects of porosity, material and pore size on compression property were investigated, which can provide necessary theory for the application of energy absorption. The material has the most influence on compression property. To the same material, with increasing relative density, the yield stress increased and yield region decreased. Pore size had low effect to yield strength.
     (4)Determined the thermal conductivity of foamed magnesium alloy. By the analysis of its thermophysical properties and structures, we manufacture the radiator on computer CPU and test the effect.
引文
[1] Banhart J. Manufacture, characterisation and application of cellular metals and metal foams[J]. Progress in Materials Science,2001,46: 559-632
    [2] Jin I,Kenny L D,Sang H. Method of producing lightweight foamed metal[P]. US Patent 4973358,1990
    [3] Thomas M,Kenny D,Sang H. Particle-stabilized metal foam and its production[P]. US Patent 5622542, 1997
    [4] Jin I,Kenny L D,Sang H. Light weight metal with isolated pores and its production[P]. US Patent 5221324, 1993
    [5] Ashby M F, Evans AG, Fleck N A, Gibson L J, Hutchinson J W, Wadley HNG.. Metal Foams:A Design Guide[M]. Boston :B-H Press,2000.1-5
    [6]何德坪,何思渊,尚金堂.超轻多孔金属的进展与物理学[J].物理学进展,2006,26(3):46-51
    [7] Brett Levine. A New Era in Porous Metals: Applications in Orthopaedics [J]. Advanced Engineering Materials,2008, (9):788~792.
    [8] Baumister J, Lehmhus D. Commercially available products made of PM aluminum foams- status and products[C].in:Banhart J, Fleck N A, Moretensen A [Eds.].Cellular Metals: Manufacture, Properties and Applications , Bremen:MIT-Verlag.2003,13-18.
    [9] Banhart. Industialisation of Aluminum Foam Technology[C]. in: J.F.Nie, A.J.Morton and B.C.Muddle [Eds.].Processings of the 9th Internationnal Conference on Aluminum Alloys, 2-5 August 2004,Brisbane
    [10]王德庆,石子源.泡沫金属的生产、性能与应用[J].大连铁道学院学报,2001, 22(2): 79-86
    [11]王斌,何德坪,舒光冀.泡沫铝合金压缩机能量吸收性能[J].金属学报, 2000,6(10),1037.
    [12]余兴泉,何德坪.泡沫金属机械阻尼性能研究[J].机械工程材料, 1994, 18(2): 26-28.
    [13]王斌,何德坪,舒光冀.泡沫Al合金的压缩性能及其能量吸收[J ] .金属学报,2000 ,36 (10) :37 - 40.
    [14] Ashby M F, Evans AG, Fleck N A, Gibson L J, Hutchinson J W, Wadley HNG.. Metal Foams:A Design Guide[M]. Boston :B-H Press,2000.1-5.
    [15] L. J. Gibson, M. F. Ashby. Cellular Solids - Structure and Properties[M].Oxford:Pergamon Press,1999:1~10.
    [16]伊藤雅夫,秋山茂.日本金属学会会报[J],1987,vol.26(4),311.
    [17] John Banhart. Manufacture, characterization and application of cellular metals and metal foams [J]. Progress in Materials Science, 2001,46:559~632.
    [18] H.Kanahashi,T.Mukai, Y.Yamada etal.Experiment study for the improvement of crashworthiness in AZ91 magnesium foam controlling its microstructure[J]. Materials Science and Engineering.(2001)283-287 .
    [19]上野英俊,秋山茂.(日)轻金属[J],1987,37(1),42.
    [20] Degischer H P, Kriszt B. Handbook of cellular metals: production, processing, applications [M]. Weinheim:wiley-VCH,2002:112-117.
    [21]陈乐平,周全,庄建平.真空渗流法制备泡沫镁合金的工艺研究[J].铸造,2008,57(4):334-336.
    [22]周全,陈乐平.熔体发泡法制备泡沫镁材料的研究[J].特种铸造及有色合金,2009,29(3):224-226.
    [23] Yamada Y,Shimojima K,Sakaguchi Y,et al,Processing of an open-cellular AZ91 magnesium alloy with a low density of 0.05g/cm3[J]Journal of Materials Science Letters,1999(18):1477-1480.
    [24] MUKAI T,KANAHASHI H,YAMADA Y.Dynamic compressive behavior of an ultra light weight magnesium foam[J].Seripta Mate.al,1999,41(4):365—371.
    [25]刘源,李言祥,张华伟.藕状多孔金属Mg的Gasar工艺制备[J],金属学报,2004,40(11):1121-1126.
    [26] Shapovalov V I.U.S.Patent No.5,181,549(January 26,1993).
    [27] Nakajima H,Hyun S K,Ohashi K.Colloids and Surfaces A:Physieochemical and Engineering Aspects.2001;179:209.
    [28] Shapovalov V I.MRS Bull,1994;19(4):24.
    [29] Sridhar S,Zhang Y,Russell K C.In:Nash P,Sundan Beds,Proceedings of the Symposium Application of Thermodynamics in the Synthesis and Processing of Materials, Warrendale,PA,TMS—AIME,1995:259.
    [30] Wen C E,Yamada Y,Shimojima K,et al. Compressibility of porous magnesium foam:dependency on porosity and pore size[J].Mater Lett,2004,(58):357-360.
    [31]孙红霞.多孔镁的制备及镁合金表面磷酸钙涂层的研究[D].兰州:兰州理工大学,2005.
    [32]沈剑,凤仪,王松林,等.多孔生物镁的制备与力学性能研究[J].金属功能材料,2006,13(3):9.
    [33] Renger K, Kaufmann H.Vacuum foaming of Magnesium slurries [J].Adv Eng Mater,2005,7(3):117.
    [34] Korner C,Hirschrnann M,Brautigam V,et a1.Endogenous particles stabilization during magnesium integral foam production[J].Adv Eng Mater,2004,6(6):385.
    [35]晓敏.减振合金[J].金属功能材料,2003(6):47—48.
    [36] Baumeister J, Banhart J, Weber M. Aluminium foams for transport industry, Materials & design, 1997, (18) : 217-220.
    [37] Miyoshi T, Itoh M. Alporas aluminum foam: production process, properties and applications. Advanced Engineering Materials, 2000, 2(4): 179-183.
    [38]杨思一.泡沫金属材料渗流铸造工艺.机械工程材料, 1997, (4):41-43.
    [39]吴炳尧.泡状铝合金渗流铸造工艺的试验分析.铸造, 1991, (2): 3-18.
    [40] Wu G H. An analysis of forming process for particle reinforced composite material during squeeze-exhaust casting. Light Metals, 1997, 47(1): 20-15.
    [41]《铸造有色合金及其熔炼》联合编写组.铸造有色合金及其熔炼[M].北京:国防工业出版社,1981.
    [42]夏兰廷,黄桂强,张三平.金属材料的海洋腐蚀与保护[M].北京:冶金工业出版社,2003.
    [43]李保山,牛玉舒.电沉积法制备泡沫镍[J].材料工程, 1998, (1): 37-39.
    [44] H.Kanahashi,T.Mukai, Y.Yamada etal.Experiment study for the improvement of crashworthiness in AZ91 magnesium foam controlling its microstructure. Materials Science and Engineering.(2001)283-287.
    [45] C.E.Wen, Y.Yamada, K.Shimojima etal. Compressibility of porous magnesium foam:dependency on porosity and pore size.Materials Letter 58(2004) 357-360.
    [46] ByKarin Renger and Helmut Kaufmann.Vacuum Foaming of Magnesium Slurris.Advanced Engineering Materials.2005,7,No.3.
    [47]李海娟.可溶石膏型泡沫铝制备工艺研究[D].太原科技大学硕士学位论文.
    [48]罗启全.铝合金石膏型精密铸造[M].广东科技出版社,2006.
    [49]陈宗璋,钟发平.泡沫镍的制备工艺及性能参数[J].电池工业,2002,7(6): 315-318.
    [50] By C.Korner, M.Hirschmann,V.Brautigam etal.Endogenous Particle Stabilization During Magnesium Integral Foam Production[J]. Advanced Engineering Materials 2004,6,No.6.
    [51] Ashby M F, Evans AG, Fleck N A, Gibson L J, Hutchinson J W, Wadley HNG..Metal Foams:A Design Guide[M]. Boston :B-H Press,2000.1-5.
    [52] Kim S Y,Pack J W,Kang B H.Flow and heat transfer correlations for porous fm in a plate-fin heat exchanger[J].Journal of Heat Transfer,2000,122:572-578.
    [53] Lee Y C,Zhang W,Xie H,Mahajan R L.Cooling of a chip package with 100W/cm2 chip[C].New York:Proceedings of ASME International.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700