用户名: 密码: 验证码:
热浸镀锌层在不同pH值饱和Ca(OH)_2溶液中的腐蚀行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋混凝土结构的过早失效大多是由于其中的钢筋腐蚀所致。混凝土中存在孔隙,孔隙液主要为饱和的Ca(OH)_2溶液,pH值一般在12~13.5之间,钢筋处于钝化状态。当混凝土碳化(空气中的二氧化碳通过混凝土中的毛细孔道,与混凝土孔隙液中的Ca(OH)_2进行中和反应生成CaCO3)时,孔隙液pH值下降,钢筋处于非钝化状态,腐蚀加快。热浸镀锌是保护混凝土钢筋的重要方法之一,在国内外已有较多的应用和研究,但对孔隙液pH值变化后,热镀锌层和植入混凝土时生成保护作用的锌酸钙(CaHZn)膜层的变化及其腐蚀规律的细节尚不太清楚。
     本文以pH值9~13.5的饱和Ca(OH)_2溶液模拟混凝土孔隙液,系统地研究了热浸镀锌层在这些模拟孔隙液中的腐蚀行为,对浸泡后的试样进行塔菲尔线性极化和电化学阻抗谱测试分析,同时对不同状态下的腐蚀产物进行SEM观察微观组织形貌、EDS成分测定及X射线相分析分析,系统地研究了热浸镀锌层和覆盖锌酸钙的热镀锌层在不同pH值模拟混凝土孔隙液中浸泡过程中的腐蚀产物的形成规律、显微结构、溶解转化规律和电化学腐蚀特点。研究表明:
     热镀锌层在pH为12.5的模拟孔隙液中生成致密的锌酸钙保护层,锌酸钙的稳定性与孔隙液的pH值密切相关。当pH值为9~12时,随着pH降低和浸泡时间增加,锌层上CaHZn减少而Zn(OH)_2增加(Zn(OH)_2经干燥脱水可转变为ZnO),当pH值为9时,覆盖层可全部转化为Zn(OH)_2;当pH为12~13时,锌层表面生成少量片状的锌酸钙膜;试样的自腐蚀电流icorr随锌酸钙增多而减小;上述情况下锌层均处于钝化状态, icorr小于或接近0.1μA/cm2;随着CaHZn减少和Zn(OH)_2增加,极化电阻(Rp)、膜层电阻(Rc)、穿透电阻(Rct)和扩散电阻(Ws)均降低;当pH值为12.5~ 13.5时,随pH升高和浸泡时间增加,锌酸钙溶解但不生成Zn(OH)_2覆盖,残留的锌酸钙随pH升高而迅速减少,当pH值为13.5,锌层表面不生成保护膜,icorr显著增到102μA/cm2,腐蚀显著加快。
     对于在上述模拟孔隙液中浸泡的已覆盖锌酸钙的热镀锌层,随pH降低和浸泡时间增加,锌层上锌酸钙减少而Zn(OH)_2增加,当pH值为9时,覆盖层可全部转化为Zn(OH)_2;随着锌酸钙减少和Zn(OH)_2增加,极化电阻(Rp)、膜层电阻(Rc)、穿透电阻(Rct)和扩散阻抗(Ws)均降低,而自腐蚀电流密度icorr增大,但icorr仍接近钢筋钝化临界值0.1μA/cm2。当pH值大于12.5,锌酸钙逐渐溶解,腐蚀加快情况与热镀锌层相似。
     当混凝土发生碳化,混凝土孔隙液pH值降低,只要pH值小于13,热浸镀锌层和覆盖锌酸钙的热镀锌层均具有很高的耐蚀性,能够保护钢筋数十年免遭腐蚀破坏;但在采用高碱度水泥,pH值大于13的混凝土孔隙液中,热浸镀锌层和覆盖锌酸钙的热镀锌层的耐蚀性显著下降,不能对钢筋提供有效地防腐保护。故热浸镀锌钢筋在采用非高碱度水泥的混凝土时具有低成本、高抗蚀防腐保护的特点,值得在实际生产中推广。
Premature failure of reinforced concrete structures are mostly caused by the corrosion of rebars embedded in the concrete. There are some pores exsited in the concrete, with the pore solution mainly composed of saturated Ca(OH)_2, and has the pH value ranges from 12 to 13.5, the rebars is passivation. If the pore solution is carbonized by carbon dioxide via conversing Ca(OH)_2 to CaCO3, the pH value will decrease, the rebars is depassivation, and the corrosion rate is increased. Hot-dip galvanizing is one of the most effective ways to protect rebars from corrosion, and has been gained much application and study home and obroad. However, detailes on the affection caused by diversification of pH value on galvanizing layer and protective calcium hydroxyzincate (CaHZn) which formed during the process of the dipping in the saturated Ca(OH)_2 have not been clearly reported.
     In this paper, the corrosion product forming mechanism, microstructure, and transformation of corrosion product dissolving and corrosion resistance have been detected by the systemic work below: the samples of hot dip galvanizing and covered with protective calcium hydroxyzincate layer have respectively been put into the saturated Ca(OH)_2 solution deploying in different pH value; after dipping, the samples were investigated with the electrochemical test analysis using a three-electrode system; the morphology of corrosion product formed under different pH conditions were observed by SEM, the composite and phase were analysed by EDS and XRD. The results have shown that:
     The surface of galvanizing samples dipped in the saturated Ca(OH)_2 solution with pH value of 12.5 will be covered with stable protective CaHZn layer after a period, the property of which is influenced also by the pH value. As the pH value decreases from 12 to 9 and as the immersion time increases, the CaHZn decreases while Zn(OH)_2 (changes to ZnO when dried and dehydrated) increases on the surface. The cover is totally composed of Zn(OH)_2 when pH=9; When the pH value is in the range of 12~13, there is few chip CaHZn on the zinc layer, and icorr decreases as the amount of CaHZn increases; The zinc layer is passivate under both condition above, and icorr is less than or close to 0.1μA/cm2; As the CaHZn becomes fewer and the Zn(OH)_2 getting more and more, the value of polarization resistance (Rp), film resistance (Rc), penetration resistance (Rct) and the diffusion resistance (Ws) become lower, meanwhile, the corrosion current density increases; From 12.5~13.5, as the increase of pH value and dipping time, the CaHZn gets dissolved quickly without Zn(OH)_2 existed. When pH value is 13.5, no protective corrosion products can be found on the surface, and the self-corrosion current grows ripidly to 100μA/cm~2, the corrosion rate is accelerated remarkably.
     For the above zinc layer coverd by CaHZn immersed in the saturated solution, CaHZn decreases and Zn(OH)_2 increases as the increase of pH value and dipping time. The cover is Zn(OH)_2 when the pH value reachs 9; As the CaHZn becomes fewer and the Zn(OH)_2 getting more and more, the value of polarization resistance (Rp), film resistance (Rc), penetration resistance (Rct) and the diffusion resistance (Ws) become lower, meanwhile, the corrosion current density increases, but is still close to the threshold value of 10-1μA/cm~2. CaHZn is dissoluted gradually, and the corrosion rate is increased when pH>12.5, which is similar to that of hot-dipped steel.
     Carbonization can decrease the pH value, but the galvanizing layer with and without CaHZn still have better corrosion resistance to protect steel from corrosion damage; high alkalinity cement using can increase the pH value of pore solution, and the corrosion resistance of the surface cover on the steel sharply decreases which can not provide effective protection to steel anymore. Therefore, if hot-dip galvanizing steel is not used in high alkalinity cement concrete, it is worth being promoted in practical products with low cost, strong corrosion resistance.
引文
[1]孙成,李洪锡,张淑泉等.钢筋混凝土腐蚀研究综述[J].材料导报, 2000, 14(5): 27-28
    [2] Page C L, Treadaway K W J. Aspects of the electrochemistry of steel in concrete[J]. Nature, 1982,297: 109-114
    [3]陈锦虹,周明君,卢锦堂.热浸镀锌钢筋在混凝土中的应用前景[J].材料保护, 2003, 36(9):12-14
    [4]王兆,杨锐.钢筋混凝土在海洋环境下的耐久性探索混凝土[J].混凝土, 2008, 221(3): 42-44
    [5]卢木.混凝土耐久性研究现状和研究方向[J].工业建筑, 1997, 27(5): 1-6
    [6]贡金鑫,赵国藩.钢筋混凝土结构耐久性研究进展[J].工业建筑, 2000, 30(5): 1-5
    [7] Manna M. Effect of steel substrate for phosphate treatment: An option to simulate TMT rebar surface[J]. Corrosion Science, 2009, 51(3): 451-457
    [8] Al-Mehthela M, Al-Dulaijanb S, et al. Performance of generic and proprietary corrosion inhibitors in chloride contaminated silica fume cement concrete[J]. Construction and Building Materials, 2009, 23(5): 1768-1774
    [9] Ann K Y, Song H W. Chloride threshold level for corrosion of steel in concrete[J]. Corrosion Science, 2007, 49(11): 4113-4133
    [10] Sánchez M, Alonso M C, Cecílio P, et al. Electrochemical and analytical assessment of galvanized steel reinforcement pre-treated with Ce and La salts under alkaline media[J]. Cement and concrete composites, 2006, 28(3): 256-266
    [11]陈树深.钢筋混凝土腐蚀修复技术研究[J].腐蚀与防护, 2005, 26(1): 39-41
    [12]林荣归,胡融刚,冯祖德等.混凝土中钢筋的腐蚀行为[J].电化学, 2000, 6(3): 305-309
    [13]胡融刚,杜荣归,林昌健.氯离子侵蚀下钢筋在混凝土中腐蚀行为的EIS研究[J].电化学, 2003, 9(2): 189-194
    [14] Broomfield J P. Corrosion of Steel inConcrete[C]. London UK, E & FN SPON, 1997:7
    [15]沙吾列提·拜开依,陈嘉.浅论混凝土中钢筋锈蚀和预防措施[J].新疆大学学报(自然科学版), 2008, 25(2): 241-244
    [16] Arya C, Ofori-darko F K. Influence of crack frequency on reinforcement corrosion in concrete[J]. Cement and Concrete Research, 1996, 26(3): 345-353
    [17]陈澜涛,周学杰,韩春鸣等.水环境混凝土中钢筋腐蚀及其研究的现状与趋势[J].全面腐蚀控制, 2006, 20(3): 1-4
    [18]左谔志.锌加(ZINGA)防腐钢筋在杭州湾跨海大桥施工中的应用[J].全面腐蚀控制, 2006, 20(5): 40-43
    [19]赵永生,黄新.钢筋混凝土阴极保护技术应用综述[J].商品混凝土, 2006, 6: 8-11
    [20] Ghosh R, Singh D D N. Mechanism and characterisation of passive film formed on hot dip galvanized coating exposed in simulated concrete pore solution[J]. Surface and Coatings Technology, 2007, 201(16/17): 7346-7359
    [21]龚利华,诸伶俐.不锈钢在模拟混凝土孔隙液中的腐蚀行为研究[J].腐蚀科学与防护技术, 2007, 11(6): 397-400
    [22]刘玉,杜荣归,林昌健.钢筋混凝土结构的电化学处理及其研究进展[J].腐蚀科学与防护技术, 2008, 20(2): 125-129
    [23]陈锦虹,卢锦堂,许乔瑜等.硅镇静钢热浸镀Zn-Ni合金[J].金属热处理, 1996, 11: 12-15
    [24]汤酞则.热浸镀锌及其工艺[J].新技术新工艺, 1994, 4: 35-36
    [25]刘俊亮,钱华,李俊.热镀锌钢板镀层相结构研究[J].表面技术, 2005, 34(1): 41-42
    [26] Mackowiak J, Short N R. Metallurgy of galvanized coating[J]. International Metals Reviews, 1979, 21(1): 1-17
    [27]孔纲,卢锦堂,许乔瑜等.钢中元素对钢结构件热镀锌的影响[J],腐蚀科学与防护技术, 2004, 16(3): 162-165
    [28]孔纲,卢锦堂,陈锦虹.锌浴中元素对钢结构件热镀锌的影响[J].表面技术, 2003, 32(4): 7-10
    [29] Arai Y. Materials Science For Cement[M]. Ainippon Tosho, Tokyo Japan, 1984:161
    [30]魏宝明,储炜,汪鹰等.腐蚀科学与防腐工程技术新进展[M].北京化学工业出版社, 1999:8
    [31]钟亚伟,李固华.沿海混凝土耐久性研究综述[J].四川建筑科学研究, 2007, 33(1) : 90-95
    [32]高明赞,徐天宁,蒋海平等.混凝土结构外露金属耐久性研究进展[J].宁波工程学院学报, 2007, 19(4): 42-43
    [33]佘建初,李卓球,宋显辉.钢筋锈蚀导致混凝土结构失效的机理与检测技术[J].武汉理工大学学报, 2004, 26(3), 41-44
    [34] Wheat H G, Eliezer Z. Some electrochemical aspects of corrosion of steel in concrete[J]. Corrosion, 1985, 41(11): 640-645
    [35] Hansson C M. Comments on electrochemical measurements of the rate of corrosion of steel in concrete[J]. Cement and Conrete Research, 1984, 14(4): 574-584
    [36] Itoh G. Corrosion Science and Corrosion Prevention Technique[M]. Tokyo Japan, Corona, 1969: 62
    [37]刘晓敏,史志明,曹楚南等.钢筋在混凝土模拟孔隙液中腐蚀电化学行[J].腐蚀科学与防护技术, 1997, 9(2): 140-143
    [38] Jemberg P, Sjostrom C. Prediction of service of building materials and components state of the art report[J]. Materials and Structure, 1997, 34(3): 22-25
    [39]李学智.混凝土中氯离子的危害及预防措施[J].混凝土, 2008, 10: 42-44
    [40]吴方国,王纪芳.含氯环境下影响混凝土中钢筋腐蚀因素试验研究[J].中国科技信息, 2008 , 9: 71-72
    [41] Valcarce M B, Vazquez M. Carbon steel passivity examined in alkaline solutions: The effect of chloride and nitrite ions[J]. Electrochimica Acta, 2008, 53(15): 5007–5015
    [42] Ann K Y, Song H W. Chloride threshold level for corrosion of steelinconcrete[J]. Corrosion Science, 2007, 49(11): 4113–4133
    [43]杨建森,何党庆.钢筋混凝土中钢筋腐蚀的化学机理与防腐措施[J].自然科学报, 2001, 22(3): 288-289
    [44]曹楚南.悄悄进行的破坏-金属腐蚀[M].北京:清华大学出版社, 2000: 83-85
    [45] Thangavel K, Rengaswamy N S. Relationship between chloride/ hydroxide ratio and corrosion rate of steel inconcrete[J]. Cement and Concrete Composites, 1998, 20(4): 283-292
    [46]卢木.混凝土中钢筋锈蚀的研究现状[J].混凝土, 2000, 3(2): 37-40
    [47]李志图.试论盐及溶液对混凝土及钢筋混凝土的破坏[J].混凝土, 1995, 2: 10-14
    [48] Knofel D. Corrosion of Building Material[M]. New York, Svan Nostrand Reinhold, 1978: 76
    [49]黄可信,吴兴祖编译.钢筋混凝土结构中钢筋腐蚀与保护[M].北京:中国建筑工业出版社, 1983: 65
    [50]张誉,蒋利学.混凝土碳化和钢筋锈蚀研究动态[J].福州大学学报(自然科学版), 1996, 24: 18-23
    [51] Tuutti K. Corrosion of Steel in Concrete[C]. CBI Forsking: fo 4: 82 Cement ochBetonginstitutet Stookholm, 1982: 61
    [52] Polder R B, Lavbi J A. Sixteen years at sea[J]. Concrete, 1996, 7(8): 8
    [53] Hanson W C. Attack on portland cement concrete by alkali soil and water-a critical review[J]. Highway Research Record, 1966, 113: 1- 32
    [54] BAGHABRA O S, KURTIS K E. Time to failure for concrete exposed to aggressive sulfate attack[J]. Cement and Concrete Composite, 2002, 24:393-402
    [55] SANTHANAM M, COHEN M D, OLEK J. Sulfate attack research whither now[J]. Cement and Concrete Research, 2001, 31 ( 6) : 845- 851
    [56] HOBBS D W, TAYLOR M G. Nature of the thaumasite sulfate attack mechanism in field concrete[J]. Cement and Concrete Research, 2000, 30 (4) : 529- 533
    [57] BROWN P, HOOTON R D. Ettringite and thaumasite formation in laboratory concretes p repared using sulfate- resisting cements[J]. Cement and Concrete Composite, 2002, 24 (3- 4) : 361- 370
    [58] CRAMMOND N.The occurrence of thaumasite in modern construction a review[J]. Cement and Concrete Composite, 2002, 24 (3-4) : 393- 402
    [59] TIAN B, COHEN M D. Does gypsum formation during sulfate attack on concrete lead to expansion[J]. Cement and Concrete Research, 2000, 30(1) : 117-123
    [60] MEHTA P K.混凝土的结构性能与材料[M].上海:同济大学出版社, 1991: 94- 95
    [61] ODLER I, SUBAUSTE J C. Investigations on cement expansion associated with ettringite formation[ J] .Cement and Concrete Research, 1999, 29 (5) :731- 735
    [62] HIME W G. MATHER B.―Sulfate attack‖, or is it[J]. Cement and Concrete Research, 1999, 29 (5) : 789-791
    [63] NEVILLE A. The confused world of sulfate attack on concrete [J]. Cement and Concrete Research, 2004, 34 (8) : 1275- 1296
    [64]黄战,邢锋,邢媛媛,董必钦等.硫酸盐侵蚀对混凝土结构耐久性的损伤研究[J].混凝土, 2008, 226(8):45-49
    [65]朱要民.混凝土碳化与钢筋混凝土的耐久性[J].混凝土, 1992, 6: 18
    [66] Rotheli B E, Cox G L, Littreal W B. Effect of pH on the corrosion products and corrosion rate of zine in oxygenated aqueous solutions[J]. Metals and Alloys, 1932, 3: 73-76
    [67]孔纲,卢锦堂,许乔瑜.热镀锌钢的研究进展[J].电镀与涂饰, 2005, 24(9) : 22-25
    [68] Yeomans S R. Performance of black, galvanized, and epoxy-coated reinforcing steel in chloride-contaminated concrete[J]. Corrosion, 1994, 50(1): 72-81
    [69] Yeomans S R. Corrosion of the zine alloy coating in galvanized reinforced concrete[C]. NACE Corrosion, Paper 98653. National Association of Corrosion Engineers, Houston, TX, USA, 1998, 10
    [70] Hoke J H, Pickering H W, Rosengarth K. Cracking of reinforced concrete[C]. ILZRO Project ZE-27I. International Lead Zinc Research Organization, NC, USA, 1981, 67
    [71] Covino B S. Interfacial chemistry of zinc anodes for reinforced concrete structures[C]. NACE Corrosion 97, Paper No 97233. National Association of Corrosion Engineers, Houston, TX, USA, 1997, 20
    [72] Fratesi R, Moriconi G, Coppola L.The influence of steel galvanization on reber behaviour in concrete. In: C.L. Page, et al. (EDs), Corrosion of reinforcement in concrete construction[M]. Royal Society of Chemistry, Special Publication No 183. London, Royal Society of Chemistry, 1996
    [73] Yeomans S R. A conceptual model for the corrosion of galvanized steel reinforcement in concrete. In: R. N. Swamy(ED.), Corrosion and corrosion protection of steel in concrete[M]. Sheffield Academic Press, UK, 1994, 1299-1309
    [74]李翠玲,路新赢.确定氯离子在水泥基材料扩散系数的快速试验方法[J].工业建筑, 1998, 28(6): 42-43
    [75]汪燃原,孔纲,卢锦堂.混凝土中热镀锌钢筋的研究及应用[J].电镀与涂饰, 2009, 28(10): 22-25
    [76]卢锦堂,许乔瑜,孔纲.热镀锌技术与应用[M].北京:机械工业出版社, 2006: 113
    [77] Yeomans S R. Galvanized Steel reinforcement in concrete[M]. Oxford: Elsevier, 2004 : 113、117、118
    [78] Mehta P K. Concrete durability-fifty years progress[C]. Proceeding of 2nd International Conference on Concrete Durability, 1991, ACI SP126-1: 1-31
    [79]葛燕,李岩.混凝土中钢筋的腐蚀与阴极保护[M].北京:化学工业出版社, 2007: 12
    [80]林碧兰,卢锦堂,孔纲.热镀锌层上磷酸锌转化膜的生长于耐蚀性[J]中国有色金属学报, 2007, 17(5): 800-806
    [81]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社, 2008: 169-180
    [82]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社, 2002: 151-190
    [83]章小鸽著,仲海峰、程东妹等译.锌的腐蚀与电化学[M].北京:冶金工业出版社, 2008: 29-383
    [84] Arenas M A, Casado C, Nobel-Pujol V. Influence of the conversion coating on the corrosion of galvanized reinforcing steel[J]. Cement and Concrete Composites, 2006, 28(3): 267–275
    [85] Li M C, Royer M, Stien D. Inhibitive effect of sodium eperuate on zinc corrosion in alkaline solutions[J]. Corrosion Science, 2008, 50(7): 1975-1981
    [86] Singh D D N, Ghosh R. Molybdenum–phosphorus compounds based passivator to control corrosion of hot dip galvanized coated rebars exposed in simulated concrete pore solution[J]. Surface and Coatings Technology 2008, 202(19): 4687-4701
    [87] LIN Bi-lan, LU Jin-tang, LONG Gang. Synergistic corrosion protection for galvanized steel by phosphating and sodium silicate post-sealing[J]. Surface and Coatings Technology, 2008, 202(9): 1831-1838

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700