用户名: 密码: 验证码:
氯离子对热镀锌层在饱和Ca(OH)_2溶液中腐蚀行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋混凝土结构作为应用最为广泛的工程建筑材料之一,它的失效受到人们越来越多的关注。而钢筋混凝土的失效主要是由于埋入其中的钢筋骨架受到了环境中的侵蚀。钢筋腐蚀的介质是以饱和Ca(OH)_2为主的混凝土孔隙液。孔隙液中氯离子造成的点蚀破坏是引起钢筋腐蚀的主要原因之一。关于钢筋的保护,投入使用的有很多种措施,热镀锌作为一种良好的防腐蚀的方法,也有一定范围的应用。本文以热镀锌钢筋在混凝土环境中的应用为背景,探究了热镀锌钢在含不同氯离子浓度的饱和Ca(OH)_2溶液中的腐蚀行为。
     在具体实验操作中,主要从热镀锌层对钢基的保护作用和氯离子对热镀锌钢的破坏作用两个方面出发,通过使用高倍率光学显微镜、扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)等仪器对试样表面的腐蚀产物进行各个倍数的形貌观察和结构、成分分析。采用塔菲尔动电位极化曲线(Tafel)和电化学阻抗谱(EIS)等测试了表面腐蚀产物对基体的保护作用,结合形貌图研究了腐蚀产物的结构和生长机理以及遭受到氯离子侵蚀情况下表面状态的变化及作用机制。研究结果表明:
     热镀锌层在pH值=12.5的饱和Ca(OH)_2溶液中,表层首先会发生腐蚀并形成腐蚀小孔,锌的晶界是优先腐蚀部位;随后片状锌酸钙在小孔附近形核并逐渐长大。直至覆盖整个锌层表面。作为隔离锌层与腐蚀介质的物理屏障,锌酸钙与锌基体有着良好的粘附性,其覆盖程度决定了对基体的保护性能;随着锌酸钙的生长,覆盖程度增加,试样的自然腐蚀电位正移,EIS的低频端阻抗模值升高,自腐蚀电流减小;经过100h的浸泡,锌酸钙层接近完全覆盖后,自腐蚀电流降至临界钝化值10~(-1)μA/cm~2附近,锌层处于钝化状态。
     在含氯离子的混凝土腐蚀环境下,Cl~-的存在会使得镀锌层上覆盖的锌酸钙产生破坏。由于锌酸钙片各自生长彼此连接的覆盖方式,在锌酸钙片的间隙中存在微小的区域,微区里存在着处在不同生长阶段的锌酸钙片或者裸露的锌层,这样锌酸钙保护能力较弱的区域为Cl~-的侵蚀创造了条件。电化学测试结果表明:对应于锌酸钙层受到Cl~-侵蚀的Cl~-浓度是有一定范围的,而且这个范围的氯离子浓度[Cl~-]在0.4mol/L~0.5mol/L之间,当[Cl~-]≤临界值时,钝化膜在锌酸钙保护力较弱的区域受到Cl~-的轻微点蚀,在局部微区生成腐蚀产物碱式氯化锌(ZnCl_2·4Zn(OH)_2·H_2O);另外,锌酸钙覆盖致密保护力较强的区域,不会受到Cl~-的点蚀作用,而且处于生长与溶解动态平衡的锌酸钙释放在表面附近的Ca~(2+)会与溶解在溶液中的CO_2气体反应生成CaCO_3沉积在表面。点蚀生成的具有局部连续性的碱式氯化锌、表面沉积的碳酸钙,连同大面积致密的锌酸钙,仍然可以对热镀锌层提供较好的保护。
     当[Cl~-]≥临界值时,自腐蚀电流会超越临界钝化值10~(-1)μA/cm~2,镀锌层的腐蚀程度加剧,Cl~-对钝化膜的破坏由点蚀转变成局部腐蚀破坏:由于Cl~-浓度的增大,在锌酸钙保护力较弱的区域生成的大量的碱式氯化锌,松散堆积的碱式氯化锌与镀层表面结合不紧密,易碎裂脱落,无法体现其微区的保护性能。碱式氯化锌脱落后露出的ZnO基体与周围锌酸钙保护力较强的区域相邻连接但呈现层次, Cl~-通过断层会扩散到锌酸钙底部,并逐渐瓦解锌酸钙致密的结构,从而扩大对镀锌层的侵蚀进而破坏基体金属。
     总体上讲,由于在碱性环境中生成致密的锌酸钙覆盖层能有效的延缓氯离子对热镀锌层的侵蚀,并且热镀锌层在自身遭到腐蚀以后可以提供有效的牺牲阳极保护,因而热镀锌防护是一种优良的钢筋防腐蚀方法。
As the most widely used construction materials, the reinforced concrete structure and its failure has attracted more and more attention. The main reason is the attack from the surroundings suffered by the rebars embedded in. One of the most serious attack is brought by the chloride ion. For the protection of rebars, there are already many ways have been taken into use, the galvanized steel ,as an efficient protective measure, also have a range of applications. In this paper, the corrosion behaviour of the galvanized steel in the saturated Ca(OH)_2 solution with different chloride ion has been investigated under the background of the application in the reinforced concrete structure of the galvanized steel.
     In the experiment, two aspects ,of both the protection about the galvanizing layer for the steel matrix and the attack about the chloride ion for the protective layer which has grown on the surface of the galvanizing layer immersed in the saturated Ca(OH)_2 solution ,have been investigated. During the process of experiments, high magnification optical microscope, scanning electron microscopy(SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD) have been used to observe the micro surface appearance under different magnification, study the corrosion products composites as well as various phases respectively. The electrochemical experiments were also employed to detect the protective behaviour of the surface corrosion product on the galvanizing layer via Tafel polarization curves and electrochemical impedance spectroscopy (EIS).The results of both the observation and electrochemical test data have helped to analyse the corrosion mechanism of the two aspects mentioned in the front parts of this passage. The analysed results have summarized as follows:
     The saturated Ca(OH)_2 solution’s pH value is 12.5, immersed in which ,the galvanizing layer will be corroded that firstly the corrosion pit hole appears on the surface with a priority of the grain boundary ,then the corrosion product calcium hydroxyzincate (CaHZn) grows from the hole as a way of dense ,each sheet calcium hydroxyzincate connects with the adjacent one, and lastly all of the sheets cover the entire surface of the sample. As a physical barriers of chemical bond with matrix, has good adhesion to the zinc layer, and the percent of coverage area decides the protective property; With the growth of calcium hydroxyzincate ,the coverage area enlarges ,and then the self-corrosion potential shifts towards the positive direction , EIS of the low frequency impedance modulus value increases while the corrosion current decrease; After 100h-immersing, the self-corrosion current is reduced to the vicinity of the threshold value 10~(-1)μA/cm~2 ,the galvanizing layer is passivated then.
     If the reinforced concrete structure works in corrosive environment, the existed Cl~- will drive the zinc layer covered with CaHZn to destruction. The way of Independent growing and connected with each other in which CaHZn protect the surface leaves some tiny region on it ,this region facilitated Cl~- to attack the coating. [Cl~-]≤0.5mol/L, the passive film is attacked a little by Cl~- in the weaker protective area with the corrosion product of alkali zinc chloride(ZnCl_2·4Zn(OH)_2·H_2O), while in stronger protective area , the passive film will not be corroded, besides , CaHZn in homeostasis state can release the surrounding Ca~(2+) which will react with the dissolved CO_2 gas to CaCO_3 deposit. The partial continuous ZnCl_2·4Zn(OH)_2·H_2O, surface deposit CaCO_3 ,as well as large area dense CaHZn ,can still provide good protection to the Zinc layer.
     [Cl~-]≥0.5mol/L, the self-corrosion current will exceed the threshold value 10~(-1)μA/cm~2 , the corrosion of the surface become more severe, the pitting damage has converted to localized destruction: plenty of ZnCl_2·4Zn(OH)_2·H_2O has appeared because of much more Cl~-, the loose ZnCl2·4Zn(OH)_2·H2O don’t have close combination to the matrix, and easy to crack off that can not play the protective role as in small region. After the Spalling of ZnCl_2·4Zn(OH)_2·H_2O from the matrix .The ZnO layer has exposed out. ZnO layer is adjacent to the CaHZn nearby, however, the junction is not smooth but have gradation ,which can provide a guiding fast path to Cl~- underneath the CaHZn that is collapsed gradually, so the corrosion area is enlarged, and then the metal matrix has destructed.
     In conclusion, as the dense CaHZn covered on the Zinc coating can efficiently delay the corrosion of Cl~- to the matrix, in addition ,the Zinc coating can still help to protect the steel as sacrificial anode, the galvanized steel deserve to be endowed as an efficient anti-corrosion methods.
引文
[1]陶有生.中国水泥、混凝土及其制品的可持续及环境协调发展[J].混凝土与水泥制品, 1999,17(2): 21-24
    [2]刘晓敏,宋光铃,林海潮,等.混凝土中钢筋腐蚀破坏的研究概况[J].材料保护, 1996, 29(6): 17-20
    [3]舒士霖.钢筋混凝土结构[M].杭州:浙江大学出版社, 1996, 1-3
    [4] Federal Highway Administration. Building More Durable Bridges[Z]. Washington DC: FOCUS Federal Highway Administration, September 1999: 6
    [5] BRE Centre for Concrete Construction. Guide to the maintenance,repair and monitoring of reinforced concrete structures, DME Report No.4[Z]. Watford, UK: Building Research Establishment, 2001
    [6]钟亚伟,李固华.沿海混凝土耐久性研究综述[J].四川建筑科学研究, 2007, 33(1):90
    [7]高明赞,徐天宁,蒋海平,等.混凝土结构外露金属耐久性研究进展[J].宁波工程学院学报, 2007, 19(4): 42-43
    [8]王兆,杨锐.钢筋混凝土在海洋环境下的耐久性探索混凝土[J].混凝土, 2008, 221(3): 42-44
    [9]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社, 2002: 21-24
    [10]陈肇元,徐有邻,钱稼茹.土建结构工程的安全性与耐久性[J].建筑技术, 2002, 33(4): 248-253
    [11]周新刚.混凝土结构的耐久性与损伤防治[M].北京:中国建材工业出版社, 1999: 30-32
    [12]洪乃丰.混凝土中钢筋腐蚀与防护技术(2)?混凝土对钢筋的保护及钢筋腐蚀的电化学性质[J].工业建筑, 1999, 29(9): 58-62
    [13] BAGHABRA O S, KURTIS K E. Time to failure for concrete exposed to aggressive sulfate attack[J]. Cement and Concrete Composite, 2002, 24: 393-402
    [14]黄战,邢锋,邢媛媛,等.硫酸盐侵蚀对混凝土结构耐久性的损伤研究[J].混凝土, 2008, 226(8): 45-49
    [15]姚燕.中国混凝土材料耐久性研究的新进展[J].混凝土与水泥制品, 2002, 12: 39-42
    [16] Nobuaki Otsuki. Influences of Bending Crack and Water Cement Ratio on Chloride Induced Corrosion of Main Reinforcing Bars and Stirups[J]. ACI Materials Journal, 2000, 97(4): 50-51
    [17]刘秉京.混凝土技术[M].北京:人民交通出版社, 1998: 459-450
    [18]刘晓敏,史志明,许刚.硫酸盐和温度对钢筋腐蚀行为的影响[J].中国腐蚀与防护学报, 1999, 19(1):55-59
    [19] Yunfeng Liu, Zonglin Jiang. Reconsideration on the role of the specific heat ratio in Arrhenius law applications[J]. Acta Mechanica Sinica, 2008, 24(3): 261-266
    [20]李崇智,牛全林,王景风,等.海洋混凝土用高性能聚羧酸系减水剂的研制[J].新型建筑材料, 2008(9): 39-42
    [21]徐桂英,金属微生物腐蚀的电化学机理[J].辽宁师范大学学报(自然科学版). 1994, 17(2): 173-176
    [22]惠云玲,郭永重,李小瑞.混凝土结构中钢筋锈蚀机理、特征及检测评定方法[J].工业建筑, 2002, 32(2): 6-9
    [23]洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998:120-123
    [24]杜荣归,刘玉,林昌健.氯离子对模拟混凝土孔隙液中钢筋腐蚀行为的影响[J].电化学, 2005, 11(3): 333-336
    [25]黄晋昌.混凝土及钢筋混凝土的腐蚀与防护[J].铁道工程学报, 2000, 67(3): 102-104
    [26]陈爱英,陈旭庆.钢筋混凝土中钢筋腐蚀原理的研究[J].城市道桥与防洪, 2005, 1(1): 91-92
    [27]杜荣归,黄若双,赵冰,等.钢筋混凝土结构中阴极保护技术的应用现状及研究进展[J].材料保护, 2003, 36(4): 11-14
    [28]李建勇,杨红玲.国外混凝土钢筋锈蚀破坏的修复和保护技术[J].建筑技术, 2002, 7(33): 491-493
    [29] Orellan J C, Escadeillas G, Arliguie G. Electrochemical chloride extraction: effieiency and side effects[J]. Cement and Concrete Research, 2004, 34: 227-234
    [30] G. J. Van den Berg ,梁爱华.不锈钢钢筋用于混凝土的研究[J].建筑技术, 1999, 31(2): 105-107
    [31] Mills D.J, Mabbutt S. Investigation of defects in organic anti-corrosive coatings using electrochemical noise measurement[J]. Progress in Organic Coatings , 2000, 39(1): 41-48
    [32] L.Maldonado, M. A. Pech-Canul, S. Alhassan. Corrosion of zinc-coated reinforcing bars in tropical humid marine environments[J]. Anti-Corrosion Methods and Materials, 2006, 53(6): 357-361
    [33] T. Bellezze, M.Malavolta, A.Quaranta, N.Ruffini, G.Roventi. Corrosion behaviour in concrete of three differently galvanized steel bars[J]. Cement and Concrete Composites, 2006, 28(3): 246-255
    [34]孟凡斌.混凝土中钢筋的锈蚀和预防[J].安徽建筑工业学院学报(自然科学版), 2002. 10(2): 75-76
    [35] Manna . Effect of steel substrate for phosphate treatment: An option to simulate TMT rebar surface[J]. Corrosion Science, 2009, 51(3): 451-457
    [36] Mohamed Al-Mehthela, Salah Al-Dulaijanb, et al.Performance of generic and proprietary corrosion inhibitors in chloride contaminated silica fume cement concrete[J]. Construction and Building Materials, 2009, 23(5): 1768-1774
    [37] Orellan J C, Escadeillas G, Arliguie G. Electrochemical chloride extraction: effieiency and side effects[J]. Cement and Concrete Research, 2004, 34: 227-234
    [38]杨建森.钢筋混凝土中钢筋腐蚀的化学机理与防腐措施[J].自然科学报, 2001, 22(3): 288-289
    [39]曹楚南.悄悄进行的破坏-金属腐蚀[M].北京:清华大学出版社, 2000: 83-85
    [40] M.C. Li, M. Royer, D. Stien, A. Lecante, C. Roos. Inhibitive effect of sodium eperuate on zinc corrosion in alkaline solutions[J]. Corrosion Science, 2008, 50(7): 1975-1981
    [41] D.D.N. Singh, Rita Ghosh. Molybdenum–phosphorus compounds based passivator to control corrosion of hot dip galvanized coated rebars exposed in simulated concrete pore solution[J]. Surface and Coatings Technology, 2008, 202(19):4687-4701.
    [42] DDN Singh, Shyamjeet Yadav. Role of tannic acid based rust converter on formation of passive film on zinc rich coating exposed in simulated concrete pore solution[J]. Surface and Coatings Technology, 2008, 202(8): 1526-1542.
    [43]黄永昌, Ya Li. 55%Al-Zn-1.6% Si合金热浸镀工艺及耐蚀研究[J].腐蚀与防护. 2000, 6, 21(6): 266-268.
    [44]李华飞,郑家燊,俞敦义.添加稀土对55 %Al-Zn镀层的影响[J].华中科技大学学报[J]. 2000, 31(5): 107-109.
    [45] S.M.A. Shibli, A.C. Jayalekshmi, R. Remya. Electrochemical and structural characterization of the mixed oxides-reinforced hot-dip zinc coating[J]. Surface and Coatings Technology, 2007, 16(2):7560-7565
    [46]卢锦堂,许乔瑜,孔纲.热镀锌技术与应用[M].北京:机械工业出版社,2006: 34
    [47] Thomas J.Langill, Barry Dugan. Galvanized Steel reinforcement in concrete[M]. Oxford:Elsevier, 2004 : 4-100
    [48] Garr M. Jones, Robert A. Randy, Nixon et al. Pumping Station Design (Third Edition)[M]. Oxford: Elsevier 2008: 1-52
    [49] Thomas J, Langill, Barry Dugan. Galvanized Steel reinforcement in concrete[M]. Oxford: Elsevier, 2004 : 4.100
    [50] R.Narayan Swamy. Galvanized Steel reinforcement in concrete[M]. Oxford: Elsevier, 2004 : 2-45
    [51] M.M. Jalili, S. Moradian, D. Hosseinpour. The use of inorganic conversion coatings to enhance the corrosion resistance of reinforcement and the bond strength at the rebarconcrete[J]. Construction and Building Materials , 2009, 23(1): 233-238
    [52] Bilal S. Hamad, Ghaida K. Jumaa. Bond strength of hot-dip galvanized hooked bars in high strength concrete structures[J]. Construction and Building Materials, 2008, 22(10): 2042-2052
    [53] Bilal S. Hamad, Ghaida K. Jumaa. Bond strength of hot-dip galvanized hooked bars in normal strength concrete structures[J]. Construction and Building Materials, 2008, 22(6): 1166-1177
    [54] Hausmann D A. Steel corrosion in conerete: how does it occur[J]. Materials Protection, 1967, 6(11): 19-23
    [55]贾红梅,阎贵平,闰光杰.混凝土中钢筋锈蚀的研究明[J].中国安全科学学报, 2005, 15(5): 56-59
    [56] Morris W, Vazquez M. Corrosion of reinforced concrete exposed to marin environment[J]. Corrosion Reviews, 2002, 20(6): 469-508
    [57]贾铮,戴长松,陈玲.电化学测量方法[M].北京:化学工业出版社, 2006: 156-158
    [58]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社, 2004:160-165
    [59] Flis J, Tobiyama Y, Mochizuki K et al. Characterisation of phosphate coatings on zinc, zinc-nickle and mild steel by impedance measurements in dilute sodium phosphate solutions[J]. Corrosion Science, 1997, 39(10-11) :1757-1770.
    [60] Ride D. CRC . Handbook of Chemistry and Physics[M]. Boca Raton : CRC Press, 2002.23-28
    [61] Benedetti A, Sumodjo P, Nobe K, et al. Electrochemical studies of copper, copper–aluminium and copper–aluminium–silver alloys: impedance results in 0.5 M NaCl[J]. Electrochem Acta ,1995, 40 (16): 2657-2668
    [62]桂艳.热浸Zn-Ti合金镀层的耐腐蚀性能[J].表面技术, 2008, 37(5): 33-35
    [63]龚利华,诸伶俐.不锈钢在模拟混凝土孔隙液中的腐蚀行为研究[J].腐蚀科学与防护技术, 2007, 11 (6): 397-400
    [64] SaremiM, Mahallati E. A study on chloride-depassivation of mild steel in simulated concrete pore solution[J] . Cement and concrete Research, 2002, 32(12): 1915-1921
    [65] Oimellese M, Berra M, Bolzoni F. Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures[J] . Cement and concrete Research, 2006, 36(3): 536-547
    [66] Carmen Andrade, Cruz Alonso. Galvanized steel reinforcement in concrete[M]. Oxford: Elsevier, 2004 : 113-119
    [67]刘永辉.电化学测试技术[ M].北京:北京航空学院出版社,1987: 97-137
    [68] Cachet C, Ganne F, Joiret S, et al. EIS investigation of zinc dissolution in aerated sulphate medium. Part II: zinc coatings[J]. Electrochimica Acta, 2002, 47 (21): 3409-3422
    [69] Cachet C, Ganne F, Maurin G, et al. EIS investigation of zinc dissolution in aerated sulfate medium. Part I: bulk zinc[J]. Electrochimica Acta, 2001, 47(3): 509-518
    [70] Lillard R S, Kanner G S, Daemen L L. The influence of a mixed radiation environment on the properties of the passive film on tungsten[J]. Electrochimica Acta, 2002, 47(15): 2473-2482
    [71] Amirudin A, Thierry D. Corrosion mechanisms of phosphated zinc layers on steel as substrates for automotive coatings[J]. Progress in Organic Coatings, 1996, 28(1): 59-76
    [72]曹京宜,熊金平,李冰冰.利用EIS高频区参数评价两种环氧涂层的性能[J].化工学报, 2008, 59(11):2851-2855.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700