用户名: 密码: 验证码:
G蛋白偶联受体激酶5在帕金森病模型中的表达及其在帕金森病中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
G蛋白偶联受体激酶5在帕金森病模型中的表达及作用
     帕金森病是一种神经退行性疾病,其发病率仅次于阿尔茨海默病。以震颤、僵直、姿势平衡障碍和运动功能障碍为临床特点,并且以黑质纹状体多巴胺神经元消失以及残存的黑质多巴胺细胞胞浆中出现路易小体(Lewy bodies, LBs)小体为病理特点。GRKs(G protein-coupled receptor kinases)是G蛋白偶联受体激酶,主要的功能是对G蛋白偶联受体(G protein-coupled receptor, GPCRs)进行磷酸化,从而介导GPCR的脱敏反应。GPCR被磷酸化后,抑制样蛋白(Beta arrestins)与其结合,使其与G蛋白脱偶联并发生内吞,进而调控细胞内信号传递的级联反应。而GRKs除了具有通过GPCR发挥G蛋白偶联受体激酶的作用外,最近发现GRKs同时存在有一些非受体底物,如tubulin, synucleins和核蛋白体P2蛋白等。最近Shigeki Arawaka等人发现在路易小体中存在有GRKs家族的GRK5蛋白。而且通过实验证实了GRK5与a-Synuclein存在共定位,并有力地证明了GRK5可以对a-Synuclein的第129位丝氨酸进行磷酸化。我们通过建立过表达a-Synuclein的帕金森病细胞模型和动物模型,研究GRK5在帕金森病中的表达变化以及GRK5在帕金森病中的可能作用,为发现帕金森病的发病机制和探索更好的治疗方法提供新的方向。
     本研究主要包括以下两个部分的实验内容:
     1帕金森病a-Synuclein转基因小鼠和细胞模型中G蛋白偶联受体激酶5的表达以及亚细胞水平的GRK5蛋白表达变化:采用免疫印迹和实时荧光定量PCR技术对具有不同的人a-Synuclein (ha-syn)表达水平的帕金森病a-Synuclein转基因模型小鼠以及3月龄、6月龄和9月龄人a-Synuclein野生型高表达组转基因小鼠脑组织进行GRK5的RNA和蛋白水平检测,与同窝阴性对照小鼠进行比较。同时在建立的a-Synuclein稳定转染细胞系中进行GRK5的表达水平检测并采用免疫荧光技术观察GRK5蛋白的亚细胞水平表达变化。研究结果显示,GRK5蛋白的表达水平随着a-Synuclein的表达升高而升高,并且发现GRK5蛋白在过表达a-Synuclein的细胞以及转基因小鼠的脑组织中的细胞核以及细胞浆内均表达增加。
     2 G蛋白偶联受体激酶5的胞浆内以及胞核内功能研究:应用免疫印迹技术、免疫组织化学技术、HDAC活性检测技术、染色体免疫共沉淀技术以及shRNA干扰技术对a-Synuclein稳定转染细胞系和人a-Synuclein野生型高表达组转基因小鼠脑组织增高的胞浆以及胞核内GRK5蛋白的功能进行研究。研究结果显示,胞浆中的GRK5蛋白具有除磷酸化α-Synuclein 129位丝氨酸以外的其他作用,胞核中的GRK5蛋白通过影响组蛋白去乙酰化酶的活性对bcl2基因的转录和表达进行调控。
     综上所述,帕金森病中GRK5的表达增加可能通过增加组蛋白去乙酰化酶活性抑制凋亡相关基因bcl2的转录和表达发挥作用。这一发现对于充分理解GRK5的功能作用以及更好的理解帕金森病的发病机制具有重要意义。
Up-regulation of G-protein-coupled receptor kinase 5 in the a-Synuclein over-expression mouse model and cell model of Parkinson's disease Regulates Gene Transcription in Nucleus
     Parkinson's disease is a neurodegenerative disorder characterized by degeneration of dopaminergic neurons in the substantia nigra and the formation of Lewy bodies (LBs). a-Synuclein as the major component of LBs was identified to be phosphorylated at Ser-129 (pS129-a-synuclein) in LBs. GRKs as members of serine/threonine protein kinases family phosphorylate activated GPCRs and thereby result in these receptors' desensitization. They play the critical role in cellular signaling. But the function of GRKs is not limited to the mediation of GPCR desensitization. Recently, some nonreceptor substrates of GRKs were found, including tubulin, synucleins and the ribosomal protein P2. Recently GRK5 has been correlated to the pathogenesis of Parkinson's disease, a neurodegenerative disorder characterized by degeneration of dopaminergic neurons in the substantia nigra and the formation of Lewy bodies (LBs).α-Synuclein as the major component of LBs was identified to be phosphorylated at Ser-129 (pS129-a-synuclein) in LBs. Recent event showed that phosphorylation at Ser-129 ofα-synuclein is essential for its toxicity to dopaminergic neurons.GRK5 was reported to phosphorylate a-synuclein at Ser-129 and in the following study GRK5 was detected to accumulate in Lewy bodies and colocalize withα-synuclein in the pathological structures of the brains of sPD patients. These evidents proved that GRK5 was involved in the pathogenesis of Parkinson's disease for the modification ofα-synuclein in LBs. In addition to the function of phosphorylation at Ser-129 ofα-synuclein, GRK5 has been found as a histone deacetylase kinase in the nucleus of cardiomyocytes. The DNA-binding nuclear localization sequence(NLS) contained in GRK5 and the activity of HDAC kinase detected in GRK5 make us explore the more potential function of GRK5 in parkinson's disease.
     We developed the human a-synuclein transgenic mice and the stable transfected humana-synuclein SHSY5Y cell lines to investigate the alters of GRK5 expression level and then determined whether it effects the activity of HDAC in Parkinson's disease. If it does, we want to quest the goal genes regulated by GRK5. Two parts were included in the research:
     1 The expression level of GRK5 protein in the alpha-synuclein over-expression mouse model and cell model of Parkinson's disease and the distribution of the increased GRK5 protein:The mRNA and protein expression levels of GRK5 in various Parkinson's disease a-synuclein transgenic mice groups and 3m,6m and 9m hα-synuclein transgenic mice were measured by western blotting and real time PCR. At the same time, we used western blotting and Immunocytofluorescence to observe the distribution of the increased GRK5 protein. The results show to us, the expression level of GRK5 was elevated in Parkinson's diseaseα-synuclein transgenic mice and in the stable transfectedα-synuclein cell lines. And GRK5 protein accumulates not only in the cytosol but also in the nucleus.
     2 The function of GRK5 in cytosol and in nucleus:Western blotting, Immunohistoche-mistry, HDAC assay, ChIP and RNAi technique were used to detect the function of GRK5 in cytosol and in nucleus. The results suggest potential cytosolic GRK5 function, rather than alpha synuclein phosphorylative events, appears as the underlying mechanism of Parkinson's disease. Nuclear accumulation of GRK5 inhibits blc2 transcription and expression by enhancing the activity of HDAC and the opposite results are obtained by GRK5 repressed through shRNA.
     To sum up, we report in this study that overexpression of alpha synuclein in vivo or in vitro induces increase of cytosolic and nuclear GRK5 and we reveal an unexpected role for GRK5 in the regulation of apoptosis-or cell cycle-related genes at the first time. These results suggest that GRK5 has more extensive effects in the Parkinson's disease.
引文
1. Maroteaux L, Campanelli JT, Scheller RH. Synuclein:a neuron-specific protein localized to the nucleus and presynaptic nerve terminal [J]. J Neurosci.1988,8(8):2804-2815.
    2. Chen X, de Silva HAR, Pettenati MJ. The human NACP/α-synuclein gene: chromosome assignment to 4q21.3-q22 andTaqI RELP analysis[J]. Genomics.1995, 26:425-427.
    3. Sharon R, Goldberg MS, Bar-Josef I, Betensky RA, Shen J, Selkoe DJ. alpha-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins[J]. Proc Natl Acad Sci USA.2001,31:98(16):9110-9115.
    4. Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr. NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded [J] Biochemistry.1996.35(43):13709-15.
    5. Jensen PH, Nielsen MS, Jakes R, Dotti CG, Goedert M. Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson's disease mutation [J]. J Biol Chem.1998,273(41):26292-4.
    6. Jo E, McLaurin J, Yip CM, St George-Hyslop P, Fraser PE. alpha-Synuclein membrane interactions and lipid specificity [J]. J Biol Chem.2000, 275(44):34328-34.
    7. Van der Putten H, Wiederhold KH, Probst A, et al. Neuropathology in mice expressing human alpha-synuclein [J]. J. Neurosci,2000,20 (16):6021-6029.
    8. Maroteaux L, Scheller RH. The rat brain synucleins, family of proteins transiently associated with neuronal membrane [J]. Brain Res Mol Brain Res,1991, 11:335-343.
    9. Sharon R,Bar-Joseph I.Frosch MP,et al.The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson's disease [J]. Neuron.2003,37:583-595.
    10. Seo JH,Rah JC,Choi SH,et al.Alpha synuclein regulates neuronal survival via Bcl-2 family expression and PI3/Akt kinase pathway [J].FASEB J.2002,16:1826-1828.
    11. Hashimoto M, Takenouchi T, Rockenstein E ext al. Alpha-synuclein up-regulates expression of caveolin-1 and down-regulates extracellular signal-regulated kinase
    activity in B103 neuroblastoma cells:role in the pathogenesis of Parkinson's disease [J] JNeurochem.2003,85:1468-1479
    12. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease [J]. Science.1997, 276:2045-2047.
    13. Gasser T, Muller-Myhsok B, Wszolek ZK, et al. A susceptibility locus for Parkinson's disease maps to chromosome 2p 13 [J].Nat Genet.1998,18:262-265.
    14. Kruger RW, Kuhn W, Muller T, et al. Ala30Pro mutation in the gene encoding a-synuclein in Parkinson's disease [J]. Nature Genet.1998,18:106-108.
    15. Zarmz J.J,Alergre J.,Gomez-Esteban,J.C.,et al.New mutation E46K ofa-synuclein causes Parkinson and Lewy body dementia [J].Aan Neurol.2004,55:164-173.
    16. Ibanes P, Bonnet AM, Debarges B, et al. Causal relation between alpha-synuclein gene duplication and familial Parkinson's disease [J]. Lancet,2004,25:1169-1171.
    17. Chattier-HarlinMC, Kachergus J, Roumier c, et al. α-synuclein locus duplication as a cause of familial Parkinson's disease [J].Lancet.2004,364:1167-1169.
    18. Spillantini MG, Schmidt ML, Lee VM, et al. Alpha-synucein in Lewy bodies [J] Nature.1997,388:839-840.
    19. Takeda A, Mallory M, Sundsmo M, et al. Abnormal accumulation of NACP/alpha-synuclein in neurodegenerative disorders [J]. AmJPathol.1998,152: 367-372.
    20. Pitcher JA, Freedman NJ, Lefkowitz RJ.G protein-coupled receptor kinases [J] Annu Rev Biochem.1998,67:653-92.
    21. Carman CV, Som T, Kim CM, et al. Binding and phosphorylation of tubulin by G protein-coupled receptor kinases [J]. JBiolChem.1998,273(32):20308-16.
    22. Pronin AN, Morris AJ, Surguchov A, et al. Synucleins are a novel class of substrates for G protein-coupled receptor kinases [J]. J Biol Chem.2000,275(34):26515-22.
    23. Freeman JL, Gonzalo P, Pitcher JA, et al. Beta 2-adrenergic receptor stimulated, G protein-coupled receptor kinase 2 mediated phosphorylation of ribosomal protein P2 [J]. Biochemistry.2002,41(42):12850-7.
    24. Pitcher JA, Freedman NJ, Lefkowitz RJ. G protein-coupled receptor kinases [J] Annu Rev Biochem.1998,67:653-92.
    25. Bownds D, Dawes J, Miller J, Stahlman M. Phosphorylation of frog photoreceptor membranes induced by light [J].Nature,1972,237:125-7.
    26. Inglese J, Glickman JF, Lorenz W et al. Isoprenylation of a protein kinase: requirement of farnesylation/a-carboxyl methylation for full enzymatic activity of rhodopsin kinase [J]. JBiol Chem,1992,267:1422-5.
    27. Palczewski K, Buczylko J, Kaplan MW et al. Mechanism of rhodopsin kinase activation [J].JBiol Chem,1991,266:12949-55.
    28. Benovic JL, Strasser RH, Caron MG et al. (3-Aadrenergic receptor kinase: identification of a novel protein kinase that phosphorylates the agonis t-occupied form of the receptor [J]. Proc Natl Acad Sci USA.1986,83:2797-801
    29. Lorenz W, Inglese J, Palczewski K et al. The receptor kinase family:primary structure of rhodopsin kinase reveals similarities to the β adrenergic receptor kinase [J]. Proc Natl Acad Sci USA.1991,88:8715-9.
    30. Johnson LR, Scott MG, Pitcher JA.2004. G protein-coupled receptor kinase 5 contains a DNA-binding nuclear localization sequence [J]. Mol Cell Biol 24:10169-79.
    31. Pitcher JA, Fredericks ZL, Stone WC, Premont RT, Stoffel RH, Koch WJ, Lefkowitz RJ. Phosphatidylinositol 4,5-bisphosphate (PIP2)-enhanced G protein-coupled receptor kinase (GRK) activity,Location, structure, and regulation of the PIP2 binding site distinguishes the GRK subfamilies [J]. J Biol Chem.1996.271: 24907-13
    32. Pronin AN, Carman CV, Benovic JL. Structure-function analysis of G protein-coupled receptor kinase-5 [J].JBiol Chem.1998,273:31510-8.
    33. Levay K, Satpaev DK, Pronin AN, Benovic J L, Slepak VZ. Localization of the sites for Ca2+-binding proteins on G protein-coupled receptor kinases [J]. Biochemistry. 1998,37:13650-13659.
    34. Johnson LR, Scott MG, Pitcher JA. G protein-coupled receptor kinase 5 contains a DNA-binding nuclear localization sequence [J]. Mol Cell Biol.2004,24:10169-79.
    35. Arawaka S, Wada M, Goto S, et al. The role of G-protein-coupled receptor kinase 5 in pathogenesis of sporadic Parkinson's disease [J]. J Neurosci.2006, 26(36):9227-38.
    36. Bychkov ER, Gurevich VV, Joyce JN, Benovic JL, Gurevich EV. Arrestins and two receptor kinases are upregulated in Parkinson's disease with dementia [J]. Neurobiol Aging.2008,29(3):379-96.
    37.高宁,刘鹏,冯娟等.帕金森病a-Synuclein转基因小鼠模型的建立[J].中国比较医学杂志.2008,(05):28-31,36,83.
    38. Spillantini MG, Divane A, Goedert M. Assignment of human alpha-synuclein (SNCA) and beta-synuclein (SNCB) genes to chromosomes 4q21 and 5q35 [J] Genomics.1995,27(2):379-381.
    39. Ungerstedt U.6-Hydroxydopamine induced degeneration of tentral monomine neurons [J].EurJ Pharmacol.1968,5(1):107-110.
    40. Brundin P.Jsacson 0, Gage FH, et al. The rotating 6-OHDA-Lesioned mouse as a model for assessing functional effects of neuronal grafting [J].Brain Res.1986, 366(1):346-349.
    41.周厚广,杨文明,鲍远程等.选择性毁损帕金森病大鼠模型的建立[J].中国现代康复.2002,(3):15-17.
    42.周厚广,陆建民,鲍远程等.6—羟基多巴胺帕金森病大鼠模型的建立与评价[J].中国行为医学科学.2002,11(1):4-7.
    43. Bychkov ER, Gurevich VV, Joyce JN, Benovic JL, Gurevich EV. Arrestins and two receptor kinases are upregulated in Parkinson's disease with dementia[J]. Neurobiol. 2008,29:379-96.
    44. Gurevich VV, Gurevich EV. Structural basis of arrestin regulation of G protein-coupled receptors [J]. Pharmacol Then 2006,110(3):465-502.
    45. Kim KM, Valenzano KJ, Robinson SR, et al. Differential regulation of the dopamine D2 and D3 receptors by G protein-coupled receptor kinases and beta-arrestins [J]. J Biol Chem.2001 Oct 5;276(40):37409-14.
    46. Pan L, Gurevich EV, Gurevich VV. The nature of the arrestin x receptor complex determines the ultimate fate of the internalized receptor [J]. J Biol Chem.2003, 278(13):11623-32.
    47. Iaccarino G, Lefkowitz RJ, Koch WJ. Myocardial G protein coupled receptor kinases: implications for heart failure therapy [J]. Proc Assoc Am Physicians.1999, 111(5):399-405.
    48. Muriel MP, Bernard V, Levey Al, et al. Levodopa induces a cytoplasmic localization of D1 dopamine receptors in striatal neurons in Parkinson's disease [J]. Ann Neurol. 1999,46(1):103-11.
    49. Guigoni C, Aubert I, Li Q, et al. Pathogenesis of levodopa-induced dyskinesia:focus on D1 and D3 dopamine receptors [J]. Parkinsonism Relat Disord.2005, 11:S25-9.
    50. Carman CV, Som T, Kim CM, et al. Binding and phosphorylation of tubulin by G protein-coupled receptor kinases [J] J Biol Chem.1998,273(32):20308-16
    51. Fujiwara H, Hasegawa M, Dohmae N, et al. Alpha-synuclein is phosphorylated in synucleinopathy lesions [J].Nat Cell Biol.2002,4(2):160-4.
    52. Chen L, Feany MB. Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease [J]. Nat Neurosci. 2005,8(5):657-63.
    53. Penn RB, Pronin AN, Benovic JL. Regulation of G protein-coupled receptor kinases [J]. Trends Cardiovasc Med.2000,10:81-89.
    54. Penela P, Ruiz-Gomez A, Castano JG, Mayor F Jr. Degradation of the G protein-coupled receptor kinase 2 by the proteasome pathway[J]. J Biol Chem 1998, 273:35238-35244.
    55. Koch WJ, Rockman HA, Samama P, Hamilton RA, Bond RA, Milano CA, Lefkowitz RJ. Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor [J]. Science.1995,268:1350-1353.
    56. Chen EP, Bittner HB, Akhter SA, Koch WJ, Davis RD. Myocardial function in hearts with transgenic overexpression of the G protein-coupled receptor kinase 5 [J]. Ann Thorac Surg.71:1320-1324.
    57. Liggett SB, Cresci S, Kelly RJ, Syed FM, Matkovich SJ, Hahn HS, Diwan A, Martini JS, Sparks L, Parekh RR, Spertus JA, Koch WJ, Kardia SL, Dorn GW 2nd. A GRK5 polymorphism that inhibits beta-adrenergic receptor signaling is protective in heart failure [J]. Nat Med.2008,14(5):510-7.
    58. Martini JS, Raake P, Vinge LE, DeGeorge BR Jr, Chuprun JK, Harris DM, Gao E, Eckhart AD, Pitcher JA, Koch WJ. Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes[J]. Proc Natl Acad Sci USA.2008,105(34):12457-62.
    59. Suo Z, Cox AA, Bartelli N, Rasul I, Festoff BW, Premont RT, Arendash GW. GRK5 deficiency leads to early Alzheimer-like pathology and working memory impairment [J]. Neurobiol Aging.2007,28(12):1873-88.
    60. Li L, Liu J, Suo WZ. GRK5 deficiency exaggerates inflammatory changes in TgAPPsw mice. JNeuroinflammation [J].2008,5:24.
    61. Johnson LR, Scott MG, Pitcher JA. G protein-coupled receptor kinase 5 contains a DNA-binding nuclear localization sequence [J]. Mol Cell Biol.2004,24:10169-79.
    62. Eckhart, A. D., S. J. Duncan, R. B. Penn, J. L. Benovic, R. J. Lefkowitz, and W. J. Koch. Hybrid transgenic mice reveal in vivo specificity of G protein-coupled receptor kinases in the heart [J]. Circ Res.2000,86:43-50.
    63. Martini JS, Raake P, Vinge LE, DeGeorge BR Jr, Chuprun JK, Harris DM, Gao E, Eckhart AD, Pitcher JA, Koch WJ.Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes [J]. Proc Natl Acad Sci USA.2008,105(34):12457-62.
    64. Sorriento D, Ciccarelli M, Santulli G, Campanile A, Altobelli GG, Cimini V, Galasso G, Astone D, Piscione F, Pastore L, Trimarco B, Iaccarino G. The G-protein-coupled receptor kinase 5 inhibits NF{kappa} B transcriptional activity by inducing nuclear accumulation of I{kappa} B{alpha} [J]. Proc Natl Acad Sci USA.2008, 105(46):17818-17823.
    65. Okochi M, Walter J, Koyama A, Nakajo S, Baba M, Iwatsubo T, Meijer L, Kahle PJ, Haass C. Constitutive phosphorylation of the Parkinson's disease associated a-synuclein [J]. J Biol Chem.2000,275:390-7.
    66. Pronin AN, Morris A J, Surguchov A, Benovic J L. Synucleins are a novel class of substrates for G protein-coupled receptor kinases [J]. J Biol Chem.2000, 275:26515-26522.
    67. Cai G, Gurdal H,Smith C,et al.Inverse agonist properties of dopaminergic antagonists at the D1 A dopamine receptor.uncou-piing of the D1A dopamine receptor from Gs protein [J].Mol Pharmacol.1999,56:989-999.
    68. Jin L, Wang HY, Friedman E.Stimulated Dl dopamine receptorscoupled to multiple Ga proteins in different brain regions [J] JNeurochem.2001,78:981-990.
    69. Guigoni C, Aubert I, Li Q, Gurevich VV, Benovic JL, Ferry S, Mach U, Stark H, Leriche L, Hakansson K, Bioulac BH, Gross CE, Sokoloff P, Fisone G, Gurevich EV, Bloch B, Bezard E.Pathogenesis of levodopa-induced dyskinesia:focus on D1 and D3 dopamine receptors [J]. Parkinsonism Relat Disord.2005,11 Suppl 1:S25-9.
    70. Kimmel HL, Joyce AR, Carroll FI, Kuhar MJ. Dopamine D1 and D2 receptors influence dopamine transporter synthesis and degradation in the rat [J]. J Pharmacol Exp Ther.2001,298(1):129-40.
    71. Muriel MP, Bernard V, Levey AI, Laribi O, Abrous DN, Agid Y, Bloch B, Hirsch EC. Levodopa induces a cytoplasmic localization of Dl dopamine receptors in striatal neurons in Parkinson's disease [J]. Ann Neurol.1999,46(1):103-11.
    72. Ryoo HL, Pierrotti D, Joyce JN. Dopamine D3 receptor is decreased and D2 receptor is elevated in the striatum of Parkinson's disease [J]. Mov Disord.1998, 13(5):788-97.
    73. Araki T,Tanji H,Fujihara K,et al.Sequential changes of cholinergic and dopaminergic receptors in brains after 6-hy-droxydopamine lesions of the forebrain bundle in rats [J] J Neural Transm.2000,107(8-9):873-884.
    74. Cai G, Wang HY, Friedman E. Increased dopamine receptor sig-nating and dopamine receptor-G protein coupling in denervated striatum.J Pharmacol Exp Ther [J].2002,302(3):1105-1112.
    75. Zhen X,Torres C,Cai G,et al.Inhibition of protein tyosine/mi-togen-activited protein kinase phosphatase activity is associated with D2 dopamine receptor supersensitivity in a rat model of Pakinson's disease [J].Mol Pharmacol.2002, 62:1356-1363.
    76. Cai G, Zhen X,Uryu K.et al.Activation of extracellular signal-regulated protein kinase is associated with a sensitized locomotor response to D2 dopamine receptor stimulation in unilateral 6-hy-droxydopamine-lesioned rats [J]. J Neurosci.2000, 20(5):1849-1857.
    77. Cai G, Wang HY, Friedman E. Increased dopamine receptor sig-nating and dopamin-e receptor-G protein coupling in denervated striatum [J]. J Pharmacol Exp Ther. 2002,302(3):1105-1112.
    78. Cai G,Wang HY,Bhamre S.Enhanced D1 dopamine receptor/G protein coupling in unilateral 6-hydroxydopamine-lesioned rats [J].Soc Neurosci Abstr.24:869.
    79. Cai G, Wang HY, Friedman E. Increased dopamine receptor sig-nating and dopamin-e receptor-G protein coupling in denervated striatum [J]. J Pharmacol Exp Ther. 2002,302(3):1105-1112.
    80. Barrone P, Morelli M,Popoli M, et al. Behavioural sensitization in 6-hydroxydopa-mine lesioned rats involves the dopamine signal transduction:changes in DARPP-32 phosphorylation [J]. Neu-roscience.1994,61(4):867-873.
    81. Cai G, Zhen X, Uryu K.et al. Activation of extracellular signal-regulated protein kinase is associated with a sensitized locomotor response to D2 dopamine receptor stimulation in unilateral 6-hy-droxydopamine-lesioned rats [J] J Neurosci.2000, 20(5):1849-1857.
    82. Yasunari K,Kohno K,Kano H,et al.Dopamine D1-like receptor stimulation inhibits hypertrophy induced by platelet-derived growth factor in cultured rat renal vascular smooth muscle cells [J].Hypertension.1997,29:350-355
    83. Zhen X.Uryu K, Wang HY,et al.D1-dopamine receptor ago-nists mediate activation of p38 mitogen-activated protein kinase and c-Jun amino-terminal kinase by a protein A-dependentmechanism in SK-N-MC human neuroblagtoma cells [J].Mol Pharmacol.1998,54(3):453-458.
    84. Gerfen CR,Miyachi S,Paletzki R,et al.D1-dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/ MAP kinase [J] JNeu-rosci.2002,22(12):5042-5054.
    85. Seeman P, Van Tol HH. Dopamine receptor pharmacology[J].Trends pharmacol Sci. 1994,15(7):264-270.
    86. Shiman R, Akino M. Solubilization and Partial Purification of Tyrosine Hydroxylase From Bovine Adrenal Medulla [J].Biol Chem.1971,246 (5):1330-1334.
    87. Freeman TB, Olanow CW, Hauser RA, et al. Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson's disease [J]. Ann Neurol.1995,38: 37923-88
    88. Mcritchie DA, Cartwright HR, Halliday GM. Specific A10 Dopaminetgic Nuclei in the Midbrain Degenergate in Parkinson's Disease [J]. Exp Neurol.1997,144: 202-213.
    89. Kappick TJ, Caradonna JP. Pterin-depentent amino acid hydroxylase [J]. Chem Rev, 1996,96:2659-2756.
    90. Haavik J, Almas B, Flamark T. Generation of reactive oxygen species by tyrosine hydroxylase in substantia nigra of aged rat [J]. J Neurochem.1997,68:328-332.
    91. Meyer-Klaucke W, Winkler H, Schunemann V, Trautwein AX, Nolting HF, Haavik J. Mossbauer, electron-paramagnetic-resonance and X-ray-absorption fine-structure studies of the iron environment in recombinant human tyrosine hydroxylase [J]. Eur J Biochem.1996,241:432-439.
    92. Donald M, Cheryl W, Timothy J. Peroxynitrite Inactivation of Tyrosine Hydroxylase: Mediation by Sulfhydryl Oxidation, Not Tyrosine Nitration[J]. J Neurosci.1999,19 (23):10289-10294.
    93. Kuhn DM, Arthur RE, Thmas DN, et al. Tyrosine Hydroxylase in Inactivated by Catechol quinones and Converted to a Redox2cycling Quinoprotein:Possible Relevance to Parkinson's Disease [J].Neurochem.1999,73:1309-1317.
    94. Thomas G, Haavik J, Cohen P. Participation of a Stress activated MAP Kinase Cascade in the Activation of Tyrosine Hydroxylase in Chromaffen Cells [J]. J Biochem.1997,247:1180-1189.
    95. Yu Shun, Zuo Xiaohong, Li Yaohua, et al.Inhibition of tyrosine hydroxylase expression in a-synuclein-tranfected dopaminergic neuronal cells [J].Neurosci lett. 2004,367:34-39.
    96. Ruth GP, Jack CW. A Role for a-synulein in the Regulation of Dopamine Biosynthesis [J]. Neurosci.2002,22 (8):3090-3099.
    97. Baptista M J, OpFarrell C, Daya S, et al. Coordinate transcriptional regulation of dopamine synthesis genes by alpha-synuclein in human neuroblastoma cell lines [J]. J Neurochem.2003,85:957-968.
    98. Jurgensmeier JM, Xie Z, Deveraux Q, et al. Bax directly induces release of cytochrome c from isolated mitochondria [J]. Proc Natl Acad Sci USA.1998, 95:4997250-02.
    99. Narita M, Shimizu S, Ito T, et al. Bax interacts with the permeability transition pore to induce permeability t ra nsition and cytochrome c release in isolated mitochondria [J]. Proc Natl Acad Sci USA.1998,95:146812-14686.
    100. Li P, Nijhawa n D, Budiha rdjo I, et al. Cytochrome c and dATP dependent f ormation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade [J] Cell.1997,91:4792489.
    101. Thornberry NA, Lazebnik Y. Caspases:enemies within [J]. Science,1998, 281:13122-1316.
    102. Steven H, Gra ham, Ghen J. Programmed cell deat h in cerebral ischemia [J]. J Cereb Blood Flow Metab.2001,21:99210-9.
    103. Yang E, Korsmeyer SJ. Molecular thanatopsis:a discourse on the BCL2 family and cell death [J]. Blood.1996,88(2):386-401.
    104. Mochizuku H, Goto K, Mori H, et al. Histoehemieal detcelion of apoptosis in Parkinson's disease [J] J Neurol Sci.1996,137:12o-123.
    105. Nglade P, Vyas S, Javoy agid F.Apoptosis andautophagy in nigrnculns of patients with Parkinson's disease [J]. J Histol Histopathd.1997,12:25-31.
    106. Tompkins MM, Basgall FJ, Zanrini E. Apoptotic-llke changes in Lewy-body-associated disorders and normal aging in substantia nigral neurons [J] Am JPathol.1997,150:119-131.
    107. Takai N, Nakanishi H, Tanabe K. Involvement of easpase-like pinapoptosis of neural PC12 cells and primary cultures mieroglia induced by 6-hydroxydopamine[J]. JNeuroseiRes.1998.54:214-222.
    108. Offen D, Ziv I, Bap, Zilai A. Dopamine-melanin induces apoptosis in PCI2 cells:possible implications for the eli-ology of Parkinsen's disease [J]. Neurochem Int.1997,31:207-216.
    109. Seo JH, Rah JC, Choi SH. Alpha-synuclein regulates neuronal survival via Bcl-2 family expression and P13/Aki kinase pathway [J]. FASEB J.2002,16 (13):1826-8.
    110. Jensen PJ, Alter BJ, Malley KL. Alpha-synuclein protects naive but not dbcAMP-treated dopaminersic cell types from 1-methyl-4-phenylpyridinium toxicity [J] JNearochem.2003.86:196-209.
    111. Polyak K, Lee MH, Erdjument, Bromage H. Cloning of P27 Kipl, a cyclin-Cdk inhibitor, links transforming growth factor beta and contact inhibition to cell cycle arrest [J]. Genes Dev,1994,8 (1):9.
    112. Pietenpol JA,Bohlander SK,Sato Y, et al. Assignment of the human p27 Kip1 gene to 12p13 and its analysis in leukemias [J]. Cancer Res.1995,55 (6):1206.
    113. Jellinek M, Castaneda M, Garvin PJ, et al. Oxidation2re2 duction maintenance in organ preservation [J]. Arch Surg.1985,120 (4):439.
    114. Kawamata N,Morosetti R, Miller CW, et al. Molecular analysis of the cyclin2dependent kinase inhibitor gene p27/Kip1 in human malignancies [J] Cancer Res.1995,55(11):2266.
    115. Bullrich F,MacLachlan TK, Sang N, et al. Chromosomal mapping of members of the cdc2 family of protein kinases, cdk3, cdk6, PISSLRE, and PITALRE, and a cdk in2 hibitor,p27Kipl,to regions involved in human cancer [J].Cancer Res.1995, 55 (6):1999.
    116. Polyak K,Lee MH, Erdjument2Bromage H, et al. Cloning of p27 Kipl,a cyclin2dependent kinase inhibitor and a po2 tential mediator of extracellular antimitogenic signals [J]. Cell.1994,78 (1):59.
    117. Bullrich F, MacLachlan TK, Sang N, et al. Chromosomal mapping of members of the cdc-family of protein kinases,cdk3, cdk6, PISSLRE, and PITALRE, and a cdk in2 hibitor,p27Kipl,to regions involved in human cancer [J].Cancer Res.1995,55 (6):1999.
    118. Nourse J,Firpo E,Flanagan WM, et al Interleukin mediated elimination of the p27 Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin [J]. Nature. 1994,372 (6506):570.
    119. Peng D,Fan Z,Lu Y, et al. Anti-epidermal growth factor receptor monooclonal antibody up-regulates p27 KIP1 and induces G1 arrest in prostatic cancer cell line DU145 [J]. Cancer Res.1996,56(16):3666.
    120. Kato J Y, Matsuoka M, Polyak K, et al. Cyclic AMP-induced G1 phase arrest mediated by an inhibitor (p27 Kip1) of cyclin-dependent kinase 4 activation[J]. Cell. 1994,79 (3):487.
    121. Rivard N, LpAllemain G, Bartek J, et al. Abrogation of p27Kip1 by cDNA antisense suppresses quiescence (GO state) in fibroblasts [J]. J Biol Chem.1996, 271 (31):18337.
    122. Durand B, Gao FB, Raff M. Accumulation of the cyclin2 dependent kinase inhibitor p27/Kip1 and the timing of oligodendrocyte differentiation [J]. EMBO J. 1997,16 (2):306.
    123. Huss R, Firpo E, Deeg HJ. Stem cell factor induced expression of p27kip21 during hematopoietic differentiation [J]. Exp Mol Pathol.1995,63 (2):129
    124. Ransone LJ, Verma IM. Nuclear protooncogenes fos and jun[J]. Annu Rev Cell Biol.1990,6:5392557.
    125. Russell D. Intravenous anaesthesia:manual infusion schemes versus TCI systems [J]. Anesthesia.1998,53:42245.
    126. Glass PS, Glen JB, Kenny GN, et al Nomenclature for computer assisted infusion devices [J]. Anesthesiology.1997,86 (6):143021431.
    127. Glass PS, Glen JB, Kenny GN, et al. Nomenclature for computer2assist2ed infusion devices [J]. Anesthesiology.1997,86 (6):143021431.
    128. Kouzarides T, Ziff E. The role of the leucine zipper in the fos-jun interaction[J]. Nature.1988,336 (6200):6462651.
    129. Herrera DG, Robertson HA. Activation of c2fos in the brain [J]. Prog Neurobiol.1996,50 (223):832107-4
    130. J ung MY, Schmauss C. Decreased c2fos responses to dopamine Dl receptor agonist stimulation in deficient for D3 receptors [J]. J Biol Chem.1999,274 (41):294062-294120.
    131. J ung MY, Schmauss C. Decreased c2fos responses to dopamine Dl receptor agonist stimulation in deficient for D3 receptors [J]. J BiolChem.1999,274. (41): 294062-29412.
    132. Meloni EG, Davis M. Enhancement of the acoustic startle response by dopamine agonists after 6-hydroxydopamine lesions of the substan tianigra pars compacta: corresponding changes in c-fos expression in the caudate putamen [J]. Brain Res. 2000,879 (122):932104.
    133. Colby CR, Whisler K, Steffen C, et al Stiatal cell type specific overexpression of Fos-B enhances incentive for cocaine [J]. JNeurosci.2003,23 (6):24882-24930.
    134. Ishida Y, Denovan2Wright E, Hebb MO. Amphetamine induced Fos expression is evident in y-aminobutyric acid neurons in the globus pallidus and entopeduncular nucleus in rats treated with intrastriatal c-fos antisense oligodexynuleotides [J]. Exp Neurol.2002,175 (1):2752281.
    135. Tamatani T, Turk P, Weitzman S, Oyasu R. Tumorigenic conversion of a rat urothelial cell line by human polymorphonuclear leukocytes activated by lipopolysaccharide [J]. JpnJ Cancer Res.1999; 90(8):829-36.
    136. Alnemri ES, Livingston DJ, Nicholson DW, et al Human ICEPCED-3 protease nomenclature [J]. Cell.1996,87 (2):171.
    137. Zhan Y, van de Water B, Wang Y, et al. The roles of caspase-3 and bcl-2 in chemically induced apoptosis but not necrosis of renal epithelial cells[J]. Oncogene. 1999,18 (47):6505.
    138. Granville DJ, Jiang H, An MT, et al Bcl-2 overexpression blocks Caspase activation and downstream apoptotic events instigated by photodynamic therapy [J]. Br J Cancer.1999,79 (1):95.
    139. Schrantz N, Blanchard DA, Mitenne F, et al. Manganese induces apoptosis of human B cells:Caspase-dependent cell death blocked by Bcl-2 [J]. Cell Death Differ. 1999,6 (5):445.
    140. Planchon SM, Wuerzberger2Davis SM, Pink JJ, et al. Bcl-2 protects against beta-lapachone mediated Caspase 3 activation and apoptosis in human myeloid leukemia (HL260) cells [J]. Oncol Rep.1999,6 (3):485.
    141. Swanton E, Savory P, Cosulich S, et al. Bcl-2 regulatesa Caspase-3/Caspase-2 apoptotic cascade in cytosolic extracts [J]. Oncogene.1999,18(10):1781.
    142. Swanton E, Savory P, Cosulich S, et al. Bcl-2 regulates a Caspase3/Caspase2 apoptotic cascade in cytosolic extracts [J]. Oncogene,1999,18 (10):1781.
    143. Nunez G, Benedict MA, HuY.et al. Caspase:The proteases apoptotic pathway [J]. Oncogene.1998,17:3237.
    144. Pettmann B, Henderson CE. Neuronal cell death [J]. Neuron.1998,20:633.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700