用户名: 密码: 验证码:
无线传感器网络的节点定位与覆盖技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络是随着微机电技术、传感器技术、嵌入式计算技术、现代网络、无线通信技术以及分布式信息处理技术等的发展建立起来的分布式信息感知与处理系统,在军事、医疗、商业以及环境保护等领域具有广泛的应用前景。
     无线传感器网络是由具有感知、计算和通信能力的无线传感器节点组成。在其各种各样的应用研究中,节点定位与网络覆盖是无线传感器网络应用的两个主要支撑技术。节点定位是实现无线传感器网络众多应用的前提,其定位精度是无线传感器网络的关键性能指标之一;而网络覆盖则决定了无线传感器网络所能提供的服务范围,也在很大程度上影响了网络的成本和各种具体应用的性能,是网络设计时必须要考虑的首要问题。
     本文主要针对无线传感器网络中的节点定位与网络覆盖技术进行深入的研究与探讨。在节点定位技术方面,分别研究了基于距离的定位算法,距离无关的定位算法以及递增式定位算法;在网络覆盖技术方面,分别对静态网络覆盖与动态网络覆盖进行了研究。
     本文的主要工作可以归纳如下:
     1.基于距离的定位算法与距离无关的定位算法研究
     1)研究了基于距离的定位算法,提出基于UWB的TOA测距方法。UWB信号具有信号带宽大、测距精度高的特点,但在节点定位应用中,UWB直达信号难以精确检测。本文提出通过对首次到达信号时间和最强信号时间进行加权来得到直达信号到达时间,并采用模糊逻辑技术计算加权系数。实测数据仿真试验表明,基于UWB的定位技术可极大地提高定位精度。
     2)研究了距离无关的定位算法,并对其中的典型DV-Hop算法提出了改进。DV-Hop算法本身是一种传统的距离无关定位算法,在各向同性的密集网络中,DV-Hop可以得到比较合理的定位精度。然而,在随机分布的网络中,节点定位误差较大。本文根据DV-Hop算法定位过程,在平均每跳距离估计、未知节点到各参考节点之间距离的计算和节点位置估计方法等3个方面进行了改进,分析和仿真了不同改进措施和综合改进的定位性能。这些改进有效的提高了传感器节点的定位精度,且无需增加网络中节点的通讯开销与硬件复杂度。
     2.递增式定位算法研究
     1)在对递增式定位算法进行详细分析的基础上,指出了递增式定位算法存在的累积误差和无效节点问题。
     2)在对累积误差特点进行分析的基础上,提出将未知节点与其参考节点中定位精度较高的节点间的距离作为约束条件来减少定位过程中的累积误差。仿真结果表明,本文方法能够显著减小传感器节点定位过程中的传播误差,提高节点定位精度,改善了方法的适用性。
     3)分析了无效节点的存在特征并对其进行分类,提出利用运动目标的位置信息以及无效节点与已知节点的连接信息对无效节点进行定位,显著提高了无线传感器网络对目标的跟踪性能。
     3.网络覆盖技术研究
     1)研究了静态网络覆盖,提出了新的网络静态覆盖与动态覆盖方式。在业已开展的网络静态覆盖研究中,网络1-覆盖得到深入研究。本文针对网络静态覆盖中的确定性覆盖和随机性覆盖,分别提出了新的传感器节点部署策略和调整传感器节点感知半径的方式,实现了无线传感器网络的k(≥3)-覆盖。针对网络动态覆盖,提出了能量有效的本地节点选择方案,节点根据相邻时刻接收到的目标信号能量变化独立决定其工作状态。理论分析和计算机仿真表明该方案可大大减少与相邻节点及中心节点的信息交换,减少网络的能量消耗。
     2)研究了动态网络覆盖,提出一种最佳节点分布几何结构,提高了网络对目标位置的估计性能。
Wireless sensor network (WSN) is a newly-developed distributed system for information sensing and processing. The network integrates various techniques from the areas of MEMS, smart sensors, embedded computing, wirless communications and distributed information processing, and has great application potentials in military, medical treatment, business and environment monitoring and so on.
     WSN consists of a large amount of sensor nodes which have sensing, computing and communication capabilities. Among various application researches, the sensor node localization and the network coverage are two support techniques. The node localization is the premiss for practical applications and its accuracy is one of important performance criteria. The network coverage defines the service area supported by WSNs and affects the network costs and application performance. In the WSN design, the network coverage problem sould be firstly involved in.
     This dissertation conducts researches in the node localization and network coverage techniques. In the node localization, range-based localization, range-free localization and incremental localization techniques are deeply studied. In the network coverage, static network coverage and mobile network coverage are separately investigated.
     The main works in the dissertation are summarized as follows:
     1. Study on the range-based localization and range-free localization techniques
     (1) An UWB-based time-of-arrival (TOA) distance-measuring method is presented for the the range-based localization. The UWB signal has large bandwidth and high distance-measuring accuracy. However, in the application of the node localization, it is difficult to detect direct-path UWB signal. The dissertation proposes to calculate the TOA of the direct-path signal by weighting the TOAs of the first-path singal and the strongest-path signal. The weighting coefficients are obtained through fuzzy logic techniques. Simulation experiments with real data show the UWB-based technique can greatly enhance the localization accuracy.
     (2) Typical DV-Hop algorithm is improved for the range-free localization techniques. The DV-Hop algorithm performs well in isotropic density sensor network, however, it has larger location errors in randomly distributed networks. According to the localization principle of the DV-Hop algorithm, this dissertation proposes three improvements including the estimation of average single hop distance, the calculation of distance between unknown nodes and reference nodes and the estimation of node positions. These improvements can be used independently or jointly to replace the corresponding steps in the DV-Hop algorithm. The theoretic and simulation results show that the proposed improvements can greatly enhance the localization accuracy of the unknown nodes. In addition, the proposed schemes do not change the localization process of the DV-Hop algorithm, and hence they need no further communication resource and additional hardware requirement.
     2. Study on the incremental localization techniques
     (1) After thorough analyses on the incremental localization techniques, it is poined out that there are the accumulative errors and inefficient sensor node (InESN) problems in the techniques.
     (2) The effects of the errors on localization accuracy are firstly revealed. Then an improved incremental localization algorithm is proposed to reduce the accumulative errors. The basic idea behind the proposed algorithm is to reduce the error propagation by using the constraints on the distances between the unknown nodes and the most accurate nodes in previously known nodes. The simulation results confirm that this method can significantly reduce the accumulative errors of the incremental localization algorithm, and thus enhance the localization accuracy.
     (3) The InESN is defined and its existing characteristics are analysed. The InESNs are classified into three categories. With a moving target in the WSN and the link information between the InESN and known nodes, a constrained least-squares formulation is developed for estimating the InESNs. Numerical evaluations are carried out to examine the performance of the proposed method and show that it is indeed effective for locating the InESNs. By incorporating the InESNs in the tracking applications, the performance of the target tracking can be greatly enhanced.
     3. Study on the network coverage techniques
     (1) For the static network coverage, the network 1-coverage has acquired wide attention. The dissertation achives the network k (≥3) -coverage with new strategies onnode deployment and on the adjustment of node sensing radii. The strategies are suitable for deterministic coverage and random coverage, separatelly. For the network dynamic coverage, an energy-efficient selection of local nodes is presented, which greatly reduces the information exchanges with the neighbor nodes and center node and saves the network energy.
     (2) For the mobile network coverage, an optimal node distribution is proposed, which can enhance the performance on the target localization.
引文
[1]IEEE 802 Working Group.Standard for Part 15.4:Wireless LAN Medium Access Control(MAC)and Physical Layer(PHY)specifications for Low-Rate Wireless Personal Area Networks(LR-WPANs).IEEE Computer Society,2003.
    [2]J.Zheng and M.J.Lee.A Comprehensive Performance Study of IEEE 802.15.4.Sensor Network Operations.IEEE Press,Wiley Interscience.2004.
    [3]F.Akyildiz,W.Su,Y.Sankarasubramaniam and E.Cayirci.A Survey on Sensor Networks.IEEE Communications Magazine.2002(8):102-114.
    [4]孙利民,李建中,陈渝等.无线传感器网络.第l版.北京:清华大学出版社,2005.1
    [5]于海斌,曾鹏等.智能无线传感器网络系统.第1版.北京:科学出版社,2006.1
    [6]http://grouper.ieee.org/groups/802/11/
    [7]https://www.bluetooth.org/
    [8]P.Johnson and D.C.Andrews.Remote continuous physiological monitoring in the home.Journal of Telemedicine and YeIecare.1996(2):107-113.
    [9]L.Schwiebert,S.K.S Gupta,J.Weinmann.Research challenges in wireless networks of biomedical sensors.Proceeding of the 7th annual international conference on Mobile Computing and Networking(MobiCOM).Rome,Italy,2001:151-165.
    [10]E.M.Petriu,N.D.Georganas,D.C.Petriu,D.Makrakis,V.Z.Groza.Sensor-based information appliances.IEEE Instrumentation and Measurement Magazine.2000(10):31-35.
    [11]A.Mainwaring,J.Polastre,R.Szewczyk,et al.Wireless sensor networks for habitat monitoring.Proceeding of the 1st ACM international workshop on Wireless sensor networks and applications(WSNA).Atlanta,Georgia,USA,2002:88-97.
    [12]A.Cerpa,J.Elson,M.Hamilton,et al.Habitat monitoring:application driver for wireless communications technology.Proceeding of the 2001 ACM SIGCOMM Workshop on Data Communications in Latin America and the Caribbean.Costa,Rica,2001:20-41.
    [13]D.C.Steere,A.Baptista,et al.Research challenges in environmental observation and forecasting systems.Proceeding of the 6th Annual International Conference on Mobile Computing and Networking(MobiCom).2000(8):292-299.
    [14]P.Bonnet,J.Gehrke,et al.Querying the physical world.IEEE Personal Communications.2000(10):10-15.
    [15]R.Lacoss,R.Walton.Strawman design for a DSN to detect and track low flying aircraft.Proceeding of Distributed Sensor Nets Conference.Carnegie-Mellon University,Pittsburgh,PA,1978:41-52.
    [16]W.J.Kaiser.Low Power Wireless Integrated Microsensors.http://www.j anet.ucla.edu/lpe.lwim/
    [17]http://research.cens.ucla.edu
    [18]http://www.janet.ucla.edu/WINS/
    [19]G.J.Pottie and W.J.Kaiser.Wireless Integrated Network Sensors.Communications of the ACM.2000(5):551-58.
    [20]http://bwrc.eecs.berkeley.edu
    [21]http://webs.cs.berkeley.edu/
    [22]http://bnrg.eecs.berkeley.edu/-randy/Daedalus/BARWAN/BARWAN_index.html
    [23]http://robotics.eecs.berkeley.edu/-pister/SmartDust/
    [24]J.M.Kahn,R.H.Katz,and K.S.J.Pister,"Next Century Challenges:Mobile Networking for Smart Dust," Proceeding of ACM Mobile Computing and Networking(MobiCom).Washington,DC,1999:271-78.
    [25]http://www.robotics.usc.edu/-embedded/
    [26]http://www.isi.edu/scadds/
    [27]http://www.ece.gatech.edu/research/labs/bwn/index.html
    [28]http://www.cast.cse.ohio-state.edt/exscal/
    [29]http://www.wings.cs.sunysb.edu/
    [30]http://www.eecs.harvard.edu/-mdw/proj/codeblue/
    [31]http://mantis.cs.colorado.edu/index.php/tiki-index.php
    [32]http://www.eng.yale.edu/enalab/
    [33]http://nms.csail.mit.edu/
    [34]http://www-mtl.mit.edu/researchgroups/icsystems/uamps/
    [35]http://lion.cs.uiuc.edu/
    [36]http://projects.cerias.purdue.edu/esp/
    [37]http://www.zurich.ibm.corrdsys/communication/senosor.html
    [38]http://www.intel.com/research/exploratory/wireless_sensors.htm
    [39]http://research.microsoft.corn/nec/
    [40]http://www.cir.nus.edu.sg/research/sensor/
    [41]http://www.xbow.com/Products/Wireless_Sensor_Networks.htm
    [42]http://bwrc.eecs.berkeley.edu/Research/Pico_Radio/Default.htm
    [43] http://nesl.ee.ucla.edu/projects/ahlos/
    [44] http://www.intel.com/research/exploratory/motes.htm
    [45] http://www.tinyos.net
    [46] http://nesl.ee.ucla.edu/projects/sos/
    [47] J.J. Rabacy, M.J. Ammer, da Silva Jr. JL, D. Patel, S. Roundy. Picorodio supports ad hoc ultra-low power wireless networking. Computer. 2000(7): 42-48.
    [48] C. Savarese, J.M. Rabaey, J. Beutel. Locationing in distributed ad-hoc wireless sensor network. Proceeding of IEEE International Conference on Acoustics, Speech, and Signal (ICASSP). Salt Lake, USA, 2001(4): 2037-2040.
    [49] S. Capkun, M. Hamdi, J-P. Hubaux. GPS-free positioning in mobile ad-hoc networks. Cluster Computing. 2002(2): 157-167.
    [50] L. Doherty, K.S.J Pister, L. EI Ghaoui. Convex position estimation in wireless sensor networks. Proceeding of Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM). Anchorage, AK, USA, 2001(3): 1655-1663.
    [51] L. Girod, D. Estrin. Robust Range Estimation using Acoustic and Multimodal Sensing. Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Maui, Hawaii, USA, 2001(3): 1312-1320.
    [52] A. Harter, A. Hopper, P. Steggles, et al. The anatomy of a context-aware application. Proceeding of Mobile Computing and Networking (MobiCom). Seattle, Washington, USA, 1999:59-68.
    [53] J. Hightower, G. Boriello. Location systems for ubiquitous computing. Computer. 2001(8): 57-66.
    [54] S. Meguerdichian, F. Koushanfar, M. Potkonjak, M.B. Srivastava. Coverage problems in wireless ad-hoc sensor network. Proceeding of the IEEE Conference on Computer Communications (INFOCOM). Anchorage, Alaska, USA, 2001(3): 1380-1387.
    [55] N. Bulusu, J. Heidemann, D. Estrin. Adaptive beacon placement. Proceeding of the 21st International Conference on Distributed Computing Systems. Phoenix, Arizona, 2001:489-498.
    [56] J.H. Chang, L. Tassiulas. Energy conserving routing in wireless ad-hoc networking. Proceeding of the IEEE Conference on Computer Communications (INFOCOM). Tel Aviv, Israel, 2000(1): 22-31.
    [57] Y. Xu, J. Heidemann, D. Estrin. Geography-Informed energy conservation for ad hoc routing. Proceeding of the 7th Annual Conference on Mobile Computing and Networking. Rome, 2001: 70-84.
    [58] C. Alberto, E. Deborah. Ascent: Adaptive self-configuring sensor network topologies. ACM SIGCOMM Computer Communication Review, 2002(1):62-62.
    [59] B. Hofmann-Wellenhof, H. Lichtenegger, J. Collins. Global Positioning System: Theory and Practice. Fourth Edition. New York: Springer-Verlag, 1997.
    [60] P.N. Pathirana, N. Bulusu, A.V. Savkin, and S. Jha. Node Localization Using Mobile Robots in Delay-Tolerant Sensor Networks. IEEE Transactions on Mobile Computing. 2005(3): 285-296.
    [61] E. Rimon, D.E. Koditschek. Exact robot navigation using artificial potential functions. IEEE Transactions on Robotics and Automation. 1992(5): 501-518.
    [62] R. Want, A. Hopper, V. Falcao, J. Gibbons. The active badge location system. ACM Transactions on Information Systems (TOIS). 1992(1): 91-102.
    [63] http://www.cl.cam.ac.uk/research/dtg/attarchive/ab.html
    [64] T. He, C. Huang, B.M. Blum, J.A. Stankovic, T. Abdelzaher. Range-free localization schemes for large scale sensor networks. Proceeding of the 9th Annual International Conference on Mobile Computing and Networking (MobiCom). San Diego, CA, 2003:81-95.
    [65] P. Bahl, V. Padmanabhan. RADAR: An In-building RF-based user location and tracking system. Proceeding of the IEEE Conference on Computer Communications (INFOCOM). Tel Aviv, Israel, 2000(2): 775-584.
    [66] J. Beutel. Geolocation in a PicoRadio environment. MS Thesis, ETH Zurich Electronics Laboratory, 1999.
    [67] S. Meguerdichian, S. Slijepcevic, V. Karayan, et al. Localized algorithms in wireless ad-hoc networks: location discovery and sensor exposure. Proceeding of the 2001 ACM International Symposium on Mobile Ad Hoc Networking & Computing. Long Beach, USA, 2001: 106-116.
    [68] J. Hightower, G. Boriello, R. Want. SpotON: An indoor 3D location sensing technology based on RF signal strength. Technical Report, UW CSE 2000-02-02, University of Washington, Department of Computer Science and Engineering, Seattle, WA, USA, 2000.
    [69] A. Rao, C. Papadimitrou, S. Ratnasamy, S. Shenker, I. Stoica. Geographic routing without location information. Proceeding of the 9th Annual International Conference on Mobile Computing and Networking (MobiCom). San Diego, California, USA, 2003:96-108.
    [70] N.B. Priyantha, A.K.L. Miu, H. Balakrishnan, et al. The cricket compass for context-aware mobile applications. Proceeding of 7th ACM International Conference on Mobile Computing and Networking (MobiCom). Rome, Italy, 2001: 1-14.
    [71] D. Niculescu, B. Nath. Ad hoc positioning system (APS) using AOA. Proceeding of the 22nd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM). San Francisco, CA, USA, 2003: 1734-1743.
    [72] N.B. Priyantha, A. Chakraborty, H. Balakrishnan. The cricket location-support system. Proceeding of 6th ACM International Conference on Mobile Computing and Networking (MobiCom). Boston, MA, USA, 2000: 32-43.
    [73] A. Avvides, H. Park, M.B. Srivastava. The bits and flops of the n-hop multilateration primitive for node localizaton problems. Proceeding of the First ACM International Workshop on Wireless Sensor Networks and Application (WSNA). Atlanta, Georgia, USA, 2002: 112-121.
    [74] X.Z. Cheng, A. Thaeler, G.L. Xue, et al. TPS: a time-based positioning scheme for outdoor wireless sensor networks. Proceeding of the IEEE Conference on Computer and Communications Societies (INFOCOM). 2004(4): 2685-2696.
    [75] C. Savarese, J. Rabaey, K. Langendoen. Robust Positioning Algorithm for Distributed Ad-hoc Wireless Sensor Networks. Proceeding of the USENIX Technical Annual Conference. Monterey, CA, 2002: 317-327.
    [76] N. Bulusu, J. Heidemann, D. Estrin. GPS-less low cost outdoor localization for very small devices. IEEE Personal Communications. 2000(5): 28-34.
    [77] D. Niculescu, B. Nath. Ad-hoc positioning system (APS). Proceeding of the IEEE GlOBECOM. San Antonio, 2001: 2926-2931.
    [78] D. Niculescu, B. Nath. DV based positioning in ad hoc networks. Journal of Telecommunication Systems. 2003(1-4): 267-280.
    [79] R. Nagpal. Organizing a global coordinate system from local information on an amorphous computer. Technical Report A.I. Memo 1666, MIT A.I. Laboratory, 1999.
    [80] Y. Shang, W. Ruml, Y. Zhang, et al. Localization from mere connectivity. Proceeding of the fourth ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHOC). Annapolis, MD, USA, 2003: 201-212.
    [81] Y. Shang, W. Ruml. Improved MDS-based localization. Proceeding of the IEEE Computer and Communications Societies (INFOCOM). Hongkong, 2004: 2640-2651.
    [82]N.B.Priyantha,H.Balakrishnam,E.Demaine,S.Teller.Anchor-free distributed localization in sensor networks.Technical Report MIT-LCS-TR-892.MIT Lab for Computer Science.April 2003.
    [83]A.Sawides,C.C.Han,M.B.Srivastava.Dynamic fine-grained localization in ad-hoc networks of sensors.Proceeding of Mobile Computing and Networking (MobiCom).Rome,Italy,2001:166-179.
    [84]J.N.A1-Karaki,A.E.Kamal.Routing techniques in wireless sensor networks:a survey.IEEE Wireless Communications.2004(6):6-28.
    [85]D.Niculescu,B.Nath.Localized positioning in ad hoc networks.Elsevier's Journal of Ad Hoc Networks,Special Issue on Sensor Network Protocols and Applications.2003:211-349.
    [86]王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法.软件学报.2005(5):857-868.
    [87]任彦,张思东,张宏科.无线传感器网络中覆盖控制理论与算法.软件学报.2006(3):422-433.
    [88]M.Cardei,J.Wu.Coverage in wireless sensor networks.Handbook of Sensor Networks.CRC Press,chapter 19,2004.
    [89]J.O'Rourke.Art gallery theorem and algorithms.New York:Oxford University Press,1987.
    [90]J.O'Rourke.Computational geometry column 15.International Journal of Computational Geometry and Applications.1992(2):215-217.
    [91]M.Marengoni,B.A.Draper,A.Hanson,R.Sitaraman.A system to place observers on a polyhedral terrain in polynomial time.Image and Vision Computing.2000(18):773-780.
    [92]K.Chakrabarty,S.S.Iyengar,H.Qi,et al.Grid coverage for surveillance and target location in distributed sensor networks.IEEE Transactions on Computers.2002(12):1448-1453.
    [93]T.Couqueur,V.Phipatanasuphorn,P.Ramanathan,et al.Sensor deployment strategy for target detection.Proceeding of the First ACM International Workshop on Wireless Sensor Networks and Applications(WSNA).Atlanta,Georgia,USA,2002:42-48.
    [94]S.Slijepcevic,M.Potkonjak.Power efficient organization of wireless sensor networks.Proceeding of the IEEE International Conference on Communications (ICC). Helsinki, Finland, 2001: 472-476.
    [95] S. Meguerdichian, F. Koushanfar, G. Qu, M. Potkonjak. Exposure in wireless ad-hoc sensor networks. Proceeding of the ACM International Conference on Mobile Computing and Networking (MobiCom). Rome, Italy, 2001: 139-150.
    [96] C.F. Huang, Y.C. Tseng. The coverage problem in a wireless sensor network. Proceeding of the ACM International Workshop on Wireless Sensor Networks and Applications (WSNA). San Diego, CA, USA, 2003: 115-121.
    
    [97] 刘丽萍, 王智,孙优贤. 无线传感器网络部署及其覆盖问题研究. 电子与信息学报.2006(9): 1752-1757.
    [98] J. Liu, P. Cheung, et al. A dual-space approach to tracking and sensor management in wireless sensor network. Proceeding of the ACM International Workshop on Wireless Sensor Networks and Applications (WSNA). Atlanta, Georgia, USA, 2002: 131-139.
    [99] D. Tian, N.D. Georganas. A node scheduling scheme for energy conservation in large wirless sensor networks. Wireless Communications and Mobile Computing. 2003(2): 271-290.
    [100] F. Ye, G. Zhong, S. Lu, et al. Energy efficient robust sensing coverage in large sensor network. UCLA Technical Report. 2002.
    [101] M. Cardei, D.Z Du. Improving wireless sensor network lifetime through power aware organization. ACM Journal of Wireless Networks. 2005(3): 333-340.
    [102] M. Kubisch, H. Karl, A. Wolisz, L.C. Zhong, J. Rabaey. Distributed algorithms for transmission power control in wireless sensor networks. Proceeding of IEEE Wireless Communications and Networking Conference (WCNC). New Orleans, LA, USA, 2003(1): 16-20.
    [103] N. Li, J.C. Hou. Localized topology control algorithms for heterogeneous wireless networks. IEEE/ACM Transactions on Networking. 2005(6): 1313-1324.
    [104] R. Wattenhofer, A. Zolinger. XTC: A practical topoloty control algorithm for ad-hoc networks. Proceeding of the International Parallel and Distributed Processing Symposium (IPDPS). Santa Fe, New Mexico, 2004: 216-223.
    [105] P. Varshney. Distributed detection and data fusion. New York: Spinger-Verlag, 1996.
    [106] D. Li, K. Wong, Y.H. Hu, et al. Detection, classification and tracking of targets in distributed sensor networks. IEEE Signal Processing Magazine. 2002(2): 17-29.
    [107] B. Wang, W. Wang, V. Srinivasan, K.C. Chua. Information coverage for wireless sensor networks. IEEE Communications Letters. 2005(11): 967-969.
    [108] A.F.T. Winfield. Distributed sensing and data collection via broken ad hoc wireless connected networks of mobile robots. Distributed Autonomous Robotic Systems. 2000(4): 273-282.
    [109] H. Nojeong, P.K. Varshney. An intelligent deployment and clustering algorithm for a distributed mobile sensor network. IEEE International Conference on Systems, Man and Cybernetics. 2003(5): 4576-4581.
    [110] J. Tan, et al. Multiple vechile for sensor network area coverage. Proceeding of the 5th World Congress on Intelligent Control and Automation. Hangzhou, China, 2004: 4666-4670.
    [111] Y. Zou, K. Chakrabarty. Sensor deployment and target localization based on virtual forces. Proceeding of the IEEE Conference on Computer Communications (INFOCOM). San Francisco, USA, 2003(2): 1293-1303.
    [112] A. Howard, M.J. Mataric, G.S. Sukhatme. Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem. The 6th International Conference on Distributed Autonomous Robotic Systems (DARS). Fukuoka, Japan, 2002: 299-308.
    [113]K. Kar, S. Banerjee. Node placement for connected coverage in sensor networks. Proceeding of the Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt). Sophia-Antipolis, France, 2003: 50-52.
    [114] T. Yan, T. He, J.A. Stankovic. Differentiated surveillance for sensor networks. Proceeding of the ACM International Conference on Embedded Networked Sensor Systems (SenSys). Los Angeles, California, USA, 2003: 51-62.
    [115]H. Gupta, S.R. Das, Q. Gu. Connected sensor cover: Self-Organization of sensor networks for efficient query execution. Proceeding of the ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHOC). Annapolis, USA, 2003: 189-200.
    [116] C.F. Huang, Y.C. Tseng. A survey of solutions to the coverage problems in wireless sensor networks. Journal of Internet Technology. 2005(1): 1-8.
    [117] S. Shakkottai, R. Srikant, N. Shroff. Unreliable sensor grids: Coverage, connectivity and diameter. IEEE Conference of Computer and Communications (INFOCOM). San Francisco, California, 2003: 1073-1083.
    [118]F.Y.S. Lin, P.L. Chiu. A near-optimal sensor placement algorithm to achieve complete coverage/discrimination in sensor networks. IEEE Communications Letters. 2005(1): 43-45.
    [119] S. Megerian, F. Koushanfar, M. Potkonjak, M.B. Srivastava. Worst and best-case coverage in sensor networks. IEEE Transaction on Mobile Computing. 2005(1): 84-92.
    [120] F. Ye, G. Zhong, J. Cheng, S.W. Lu, L.X. Zhang. PEAS: A robust energy conserving protocol for long-lived sensor networks. Proceeding of the International Conference on Distributed Computing Systems (ICDCS). Providence, Rhode Island, USA, 2003: 28-37.
    [121] X.Y. Li, P.J. Wan, O. Frieder. Coverage in wireless ad hoc sensor networks. IEEE Transaction on Computers. 2003(6): 753-763.
    [122] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, C. Gill. Integrated coverage and connectivity configuration in wireless sensor networks. Proceeding of the ACM International Conference on Embedded Networked Sensor Systems (SenSys). Los Angeles, California, USA, 2003: 28-39.
    [123] C.F. Huang, Y.C. Tseng, L.C. Lo. The coverage problem in three-dimensional wireless sensor networks. Proceeding of the GLOBECOM. Dallas, 2004(5): 3182-3186.
    [124] V. Ravelomanana. Extremal properties of three-dimensional sensor networks with applications. IEEE Transaction on Mobile Computing. 2004(3): 246-257.
    [125] J. Cortes, S. Martinez, T. Karatas, F. Bullo. Coverage control for mobile sensing networks. IEEE Transaction on Robotics and Automation. 2004(2): 243-255.
    [126] G. Veltri, Q. Huang, G. Qu, M. Potkonjak. Minimal and maximal exposure path algorithms for wireless embedded sensor networks. Proceeding of the ACM International Conference on Embedded Networked Sensor Systems (SenSys). Loc Angeles, USA, 2003: 40-50.
    [127] S. Adlakha, M. Srivastava. Critical density thresholds for coverage in wireless sensor networks. Proceeding of the IEEE Wireless Communications and Networking (WCNC). New Orleans, LA, USA, 2003: 1615-1620.
    [128] J.Z Li, J.B Li, S.F Shi. Concepts, issues and advance of sensor networks and data management of sensor networks. Journal of Software. 2003(10): 1717-1727
    [129] Y. Shimizu and Y. Sanada. Accuracy of relative distance measurement with ultra wideband system. IEEE Conference on Ultra Wideband Systems and Technologies (UWBST). Reston, VA, 2003: 374-378.
    [130] H. Urkowitz. Signal Theory and Random Processes. Artech House, 1983.
    [131]2005年国家自然科学基金重点项目申请指南。
    [132]R.J.Fontana,E.Richley and J.Barney.Commercialization of an ultra wideband precision asset location system.IEEE Conference on Ultra Wideband Systems and Technologies.2003:369-373.
    [133]P.Agrravel,Tan Sun Teck and A.L.Ananda.A lightweight protocol for wireless sensor networks.IEEE Conference on Wireless Communications and Networking (WCNC).2003(2):1280-1285.
    [134]S.J.Ingrain,D.Harmer and M.Quinlan.Ultra wideband indoor positioning system and their use in emergencies.Position Location and Navigation Symposium (PLANS).2004:706-715.
    [135]S.Gezici,T.Zhi,G.B.Giannakis,et al.Localization via ultra-wideband radio:a look at positioning aspects for future sensor networks.IEEE Signal Processing Magazine.2005(4):70-84.
    [136]G.B.Gianmakis.Ultra-wideband communications:an idea whose time has come.Proceeding of IEEE International Conference on Acoustics,Speech,and Signal (ICASSP).2003(1):1-3.
    [137]R.Fontana,A.Ameti,E.Richley,L.Beard,D.Guy.Recent advances in ultra-wideband communications system.IEEE Conference on Ultra Wideband Systems and Technologies.Baltimore,MD,2002:129-133.
    [138]2003年863计划通信技术主题项目申请指南。
    [139]2004年国家自然科学基金项目申请指南。
    [140]H.V.Poor.An Introduction to Signal Detection and Estimation.2nd edition,New York:Springer-Verlag.1994.
    [141]J.Y.Lee and R.A.Scholtz.Ranging in a dense multipath environment using an UWB radio link.IEEE Journal on Selected Areas in Communications.2002(9):1677-1683.
    [142]C.Mazzucco,U.Spagnolini and G.Mulas.A ranging technique for UWB indoor channel based on power delay profile analysis.2004 IEEE 59~(th)Conference on Vehicular Technology.2004(5):2595 - 2599.
    [143]M.Z.Win and R.A.Scholtz.Energy capture versus correlator resources in ultra-wide bandwidth indoor wireless communications channels.Proceeding of Military Communications(MILCOM).1997(3):1277-1281.
    [144]W.C.Chung and D.S.Ha.An accurate Ultra Wideband(UWB)ranging for precision asset location.Proceeding of IEEE Conference on Ultra Wideband Systems and Technologies.2003:389-393.
    [145]B.Denis,J.Keignart,and N.Daniele.Impact of NLOS propagation upon ranging precision in UWB systems.IEEE Conference on Ultra Wideband Systems and Technologies.2003:379-383.
    [146]R.N.P.Singh,W.H.Bailey.Fuzzy logic applications to multisensor-multitarget correlation.IEEE Transactions on Aerospace and Electronic Systems.1997(3):752-769.
    [147]Intel Channel Measurement Database Web Page,http://implulse.usc.edu or Intel Channel Measurement Database FTP Site,ftp://click.usc.edu
    [148]X.Li,H.Shi,and Y.Shang.A partial-range-aware localization algorithm for ad-hoc wireless sensor networks.Proceeding of the 29th Annual IEEE International Conference on Local Computer Networks(LCN).2004:77-83.
    [149]张贤达.现代信号处理.清华大学出版社,2002.
    [150]R.Fletcher.Practical Methods of Optimization.New York:John Wiley & Sons,1987:chapter 10.
    [151]孙文瑜,徐成贤,朱德通.最优化方法.高等教育出版社,2004.
    [152]李董辉,童小姣,万中.数值最优化.科学出版社,2005.
    [153]A.Savvides,C.C.Han,and M.B.Srivastava.Dynamic finge-grained localization in ad-hoc networks of sensors.Proceeding of 7th Annual International Conference on Mobile Computing and Networking(MobiCom).Rome,Italy,2001,166-179.
    [154]H.Soonjoo and D.B.Williams.A constrained total least square approach for sensor position calibration and direction finding.Radar Conference.1994:155 - 159.
    [155]Z.Huang and J.Lu.Total least square and equilibration algorithm for range difference location.Electronics Letter.2004(5):323-325.
    [156]J.A.Costa,P.Neal and O.H.Alfred.Distributed weighted-multidimensional scaling for node localization in sensor networks.IEEE/ACM Transactions on Sensor Networks.2005:1-26.
    [157]V.Cevher and J.H.McClellan.Sensor array calibration via tracking with the extended Kalman filter.IEEE International Conference on Acoustics,Speech,and Signal Processing(ICASSP).Salt Lake City,UT,USA,2001(5):2817-2820.
    [158]A.Galstyan,B.Krishnamachari,K.Lerman,and S.Pattern.Distributed online localization in sensor networks using a moving target.Third International Symposium on Information Processing in Sensor Networks(IPSN).Berkeley,California,USA,2004:61-70.
    [159]D.Li and Y.H.Hu.Energy based collaborative source localization using acoustic micro-sensor array. EURASIP Journal of Applied Signal Processing. 2003(4): 321-337.
    [160] X.H. Sheng and Y.H. Hu. Maximum likelihood multiple-source localization using acoustic energy measurements with wireless sensor networks. IEEE Transactions on Signal Processing. 2005(1): 44-53.
    [161] J.D. Gorman and A.O. Hero. Lower bounds for parametric estimation with constraints. IEEE Transactions on Information Theory. 1990(6): 1285-1301.
    [162] D. Tian, N. D. Georganas. A coverage-preserving node scheduling scheme for large wireless sensor network. Proceeding of the 1 st ACM Workshop on Wireless Sensor Networks and Applications (WSNA), Atlanta, October 2002.
    [163] S. Yang, F. Dai, M. Cardei, and J. Wu. On connected multiple point coverage in wireless sensor networks. Journal of Wireless Information Networks. 2006.
    [164] Z. Zhou, S. Das, and H. Gupta. Connected k-coverage problem in sensor networks. Proceeding of International Conference on Computer Communications and Networks (ICCCN). Chicago, IL, USA, 2004.
    [165] M. Bagheri, M. Hefeeda, H. Ahmadi. A near optimal k-coverage algorithm for large-scale sensor networks. Technical Report: TR 2006-10.
    [166] C. F. Huang, Y. C. Tseng. The Coverage Problem in a wireless sensor network. Proceeding of the ACM International Workshop on Wireless Sensor Networks and Application (WSNA). San Diego, California, USA, Sep. 19, 2003.
    [167] J. Jiang and W. Dou. A coverage-preserving density control algorithm for wireless sensor network. ADHOC-NOW. Vancouver, Canada, 2004.
    [168] J.J. Lee, B. Krishnamachari and C.C. Kuo. Impact of heterogeneous deployment on lifetime sensing coverage in sensor networks. Proceeding of the 1 st Annual IEEE Sensor, Mesh and Ad Hoc Communication and Networks (SECON). Santa Clara, CA, USA, 2004: 367- 376.
    [169] J. Wu, S.H. Yang. Coverage issue in sensor networks with adjustable ranges. Proceeding of the 2004 International Conference on Parallel Processing Workshops (ICPPW). Montreal, Quebec, Canada, 2004: 61-68.
    [170] Z.H. Zhou, S.R. Das, H. Gupta. Fault tolerant connected sensor cover with variable sensing and transmission ranges. Proceeding of the 2nd Annual IEEE Sensor and Ad Hoc Communications and Networks (SECON). Santa Clara, CA, USA, 2005.
    [171] R.A. Powers. Batteries for low power electronics. Proceedings of the IEEE. 1995(4): 687-693.
    [172]G.J.Pottie,W.J.Kaiser.Wireless integrated network sensors.Communications of ACM.2000(5):51-58.
    [173]D.Estrin,R.Covindan,J.Heidemann,et al.Next century challenges:Scalable coordination in sensor networks.Proceedings of the ACM/IEEE International Conference on Mobile Computing and Networking.Seattle,USA,1999:263-270.
    [174]汪琼,张锋.无线传感器网络中的节点协作算法研究.传感器技术学报.2006(2):481-485.
    [175]H.Chen,H.Wu,N.F.Tzeng.Grid-based approach for working node selection in wireless sensor networks.IEEE International Conference on Communications.Paris,France,2004:3673-3678.
    [176]F.Zhao,J.Shin,J.Reich.Information-driven dynamic sensor collaboration for tracking applications.IEEE Signal Processing Magazine.2002(2):61-72.
    [177]J Liu,J.Reich,F.Zhao.Collaborative in-network processing for target tracking.EURASIP Journal on Applied Signal Processing.2003(4):378-391.
    [178]M.Chu,H.Haussecker,F.Zhao.Scalable information-driven sensor querying and routing for ad hoc heterogeneous sensor networks.International Journal of High Perform Computing Applications.2002(3):293-313.
    [179]W.S.Zhang,G.H.Cao.DCTC:Dynamic convey tree-based collaboration for target tracking in sensor networks.IEEE Transactions on wireless communications.2004(5):1689-1701.
    [180]L.M.Kaplan.Global node selection for localization in a distributed sensor network.IEEE Transactions on Aerospace and Electronic Systems.2006(1):113-135.
    [181]L.M.Kaplan.Local node selection for localization in a distributed sensor network.IEEE Transactions on Aerospace and Electronic Systems.2006(1):136-146.
    [182]A.Sayeed.A statistical signal modeling framework for sensor networks.Technical Report ECE-1-04,University of Wisconsin-Madison,WI,February 2004.
    [183]J.J.Liu,J.Liu,J.Reich,et al.Distributed group management for track initiation and maintenance in target localization applications.IEEE Pervasive Computing.2003(4):50-62.
    [184]W.R.Heinzelman,A.P.Chandrakasan,H.Balakrishnan.An application-specific protocol architecture for wireless microsensor networks.IEEE Transactions on Wireless Communications.2002(4):660-670.
    [185]W.R.Heinzelman,A.P Chandrakasan,H.Balakrishnan.Energy-efficient communication protocol for wireless microsensor networks.Proceeding of the 33rd Annual Hawaii International Conference on System Sciences.Maui,HI,USA,2000.
    [186]A.Wang,W.Heinzelman,A.Chandrakasan.Energy-scalable protocols for battery-operated microsensor networks.IEEE Workshop on Signal Processing Systems(SiPS).Taipei,Taiwan,1999:483-492.
    [187]李建中,李金宝,石胜飞.传感器网络及其数据管理的概念、问题与进展.软件学报.2003(10):1717-1727.
    [188]I.Kadar.Optimum Geometry Selection for Sensor Fusion.Part of SPIE Conference on Signal Processing,Sensor Fusion,and Target Recognition Ⅶ.Oriando,Florida,1998:96-107.
    [189]N.Patwari,J.N.Ash,S.Kyperountas,et al.Locating the Nodes:Cooperative Localization in Wireless Sensor Networks.IEEE Signal Processing Magazine.2005(4):54-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700