用户名: 密码: 验证码:
镍基单晶高温合金中相界面的电子显微学与第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镍基单晶高温合金具有优良的高温性能,是目前制造先进航空发动机和燃气轮机叶片的关键材料。随着镍基单晶高温合金的开发,通过添加大量的难熔元素来提高高温合金强度。然而,由于合金呈现很高的过饱和度,增大了拓扑密排相(TCP相)的析出倾向。TCP相的析出不仅消耗了大量的固溶强化元素,往往也作为裂纹的发源地和裂纹迅速扩展的通道,导致单晶高温合金的持久寿命降低,塑性和韧性明显恶化,严重地影响了合金的高温力学性能。第四代镍基单晶高温合金中加入了铂族元素Ru,能明显抑制TCP相的析出,进而提高单晶合金的高温蠕变性能,但其作用机制尚不清楚。有关Ru元素对镍基单晶高温合金中基体与TCP相界面结构及其合金元素赋存状态的研究还非常有限。本文采用电子显微学分析方法研究了镍基单晶高温合金蠕变断裂之后γ/γ'界面的精细结构以及合金元素的分布行为,并探讨了Ru元素对基体与TCP相界面结构及合金元素分布行为的影响规律。通过第一性原理方法研究了合金元素在γ/γ'界面、γ'相和基体/TCP界面的分配行为及择优占位倾向。
     (1)1100℃/137MPa蠕变实验研究表明:合金元素在γ/γ'界面两侧的分布趋势很明显:Co、Re和Cr元素容易富集在Y相中,而Ni、Al、Ta和W元素较容易向丫'相中偏析。在γ/γ'界面形成的扭结结构的尖端存在2-3nm的Re原子团簇。蠕变过程中,这种扭结结构的形成是由于γ/γ'界面附近的重金属原子团簇和界面位错芯部结构的交互作用。γ相和丫'相以共格的台阶形式相结合。在高温和外加应力的作用下,丫'相发生筏排化,γ/γ'相界面处形成了六角形和四边形的位错网。
     (2)1100℃/800h热暴露测试研究表明:在不含Ru元素合金1中,TCP相呈细长的针状,基体/TCP相界面结构呈不规律的高度不一的台阶状;在含Ru元素合金2中,TCP相呈短棒状,基体/TCP相界面结构呈规律的两个原子层高度的台阶状。Ru元素的添加,改变了合金中其他合金元素在基体和TCP相间的分布行为,减少了TCP相的析出数量,也改变了基体/TCP相界面的精细结构以及TCP相的形貌。
     (3)采用第一性原理方法研究了Ru元素在γ/γ'界面和γ'相中对其他合金元素分配行为的影响规律,揭示了Ru元素与Re元素之间的强化机制是由于Re原子和Ru原子间p-p轨道的杂化而产生较强的相互作用。
     (4)采用第一性原理方法研究了Re原子易于向TCP相偏聚的微观机制。由于Re原子在6相中特殊的键合特征以及6相独特的晶体结构,Re原子倾向于占据6相中非密排面上的W原子。
The superior high-temperature properties of Ni-based single crystal superalloys make them the best candidates for use in jet engines and for the blades in aerospace turbine engines. To improve the high-temperature strength, solid solution strengthening elements have been added to create advanced-generation superalloys. However, when Ni-based superalloys are composed of excessive amounts of such refractory elements, instabilities are promoted. These instabilities can lead to the formation of deleterious topologically close-packed (TCP) phases as a result of the depletion of the solid solution strengthening elements when the superalloy is exposed to elevated temperatures. Furthermore, these TCP phases can serve as damage accumulation sites that initiate or accelerate crack propagation, which ultimately cause the creep strength of the material to decrease. The platinum group element Ru plays as a symbol element in the fourth-and fifth-generation, Ni-based single crystal superalloys. It is known that the fundamental mechanisms by which Ru additions are able to suppress the formation of TCP phases and improve the high-temperature phase stability of Ni-based superalloys are still controversial. There have been only a few detailed reports describing the influence of Ru on the TCP/matrix atomic interfacial structure in single-crystal Ni-based superalloys. In this study, the γ/γ' interfacial structure at the atomic scale and related distribution characteristics of alloying elements have been investigated by high-resolution transmission electron microscopy. The influence of Ru on the TCP/matrix interfacial structure and the related redistribution behaviors of alloying elements have been analyzed. In addition, the site preference and partition behaviors of alloying elements have also been investigated by the first principle calculation.
     (1) The experimental results of the investigated superalloys after creep rupture test at1100℃/137MPa indicate that the distribution behaviors of alloying elements at both sides of the γ/γ' interface are obvious:Ni, Al, Ta and W mainly partition into the γ' phase, while Cr, Co and Re mainly partition into the y phase. Local clustering of Re (clusters~2-3nm in size) appears at the apexes of the kink structure. During creep, the formation of the kink structure results from the interactions of heavy atoms clusters and the core structure of the interfacial dislocation. An atomic structural model of the coherent γ/γ'interface includes a step. During high temperature low stress creep of single crystal superalloys, y'rafting occurs and the γ/γ' interfacial dislocation networks display six-fold and four-fold symmetry.
     (2) The study of microstructural stability during long-term thermal exposure at1100℃/800h indicates that the TCP phase in Ru-free alloy has the typical long, slender needles shaped morphology and the corresponding TCP/matrix interfacial structure exhibits irregular step-shaped with overlapping minor and major steps. However, with the addition of Ru, the morphology of TCP phases changes to short, board-plate-shaped, and the corresponding TCP/matrix interfacial structure represents regular two-atomic-layer step shape. The addition of Ru changes the distribution behaviors of alloying elements between the matrix and TCP phases, suppresses the precipitation of TCP phases and changes TCP morphology as well as the related TCP/matrix interfacial structure.
     (3) The influence of Ru on the site preference of alloying elements at y/y' interface and γ' phase has been investigated using the first-principles method based on the density functional theory. The strength mechanism between Ru and Re have been clarified that there is a strong interaction between Re atom and Ru atom through p-p hybridization.
     (4) The micro-mechanisms of Re atoms preferentially partitioning to TCP phase has been investigated using the first-principles method. Re is prone to occupy the W site in a less close-packed plane of the σ phase due to the bonding characteristics and interstitial spaces in the crystal structure of σ phase.
引文
[1]郭建亭.高温合金材料学:高温合金材料与工程应用[M].北京:科学出版社,2008.
    [2]孙晓峰,金涛,周亦胄,胡壮麒.镍基单晶高温合金研究进展[J].中国材料进展,2012,31(12):1-11.
    [3]R.C. Reed. The superalloys:Fundamentals and applications[M]. Cambridge, UK: Cambridge University Press,2006.
    [4]R. Biirgel, J. Grossmann, O. Lusebrink, H. Mughrabi, F. Pyczak, R.F. Singer, A. Volek. Development of a new alloy for directional solidification of large industrial gas turbine blades[C]//K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S. Walston, (editors). Superalloys 2004. Warrendale, PA:TMS,2004:25-34.
    [5]M. J. Donachie, S. J. Donachie, Superalloys:A Technical Guide[M],2nd. Edition. ASM International,2002.
    [6]Y.H. Zhang, D.M. Knowles. Isothermal and Thermomechanical Fatigue of Superalloy C263[C]//T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, J.J. Schirra, (editors). Superalloys 2000. Warrendale, PA: TMS,2000:545-552.
    [7]http://www.c-mgroup.com/vacuum_melt_index/nickel_base_ds.htm.
    [8]http://www.c-mgroup.com/vacuum_melt_index/nickel_base_sx.htm.
    [9]http://www.c-mgroup.com/vacuum_melt_index/nickel_base_equiax.htm.
    [10]K.A. Ellison, J. A. Daleo, K. Hussain. A New Method of Metal Temperature Estimation For Service-Run Blades and Vanes[C]//K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S. Walston, (editors). Superalloys 2004. Warrendale, PA:TMS,2004:759-768.
    [11]T.M. Simpson, A.R. Price. Oxidation Improvements of Low Sulfur Processed Superalloys[J]. Parameters,2000,650:2E.
    [12]http://www.matweb.com/search/SpecificMaterial.asp?bassnum=NMETEK156.
    [13]http://sakimori.nims.go.jp/htm21-e.html.
    [14]J.X. Zhang, T. Murakumo, H. Harada, Y. Koizumi, T. Kobayashi. Creep Deformation Mechanisms in Some Modern Single-Crystal Superalloys[C]//K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S. Walston, (editors). Superalloys 2004. Warrendale, PA:TMS,2004:189-195.
    [15]R. Schafrik, R. Sprague. Saga of Gas Turbine Materials:Part Ⅲ[J]. Advanced Materials and Processes,2004,162:27-30.
    [16]M. Hansen, K. Anderko, Constitution of Binary Alloys [M]. New York, McGraw-Hill Publ. Co.,1958.
    [17]L. R. Woodyatt, C.T. Sims, H.J. Beattie Jr. Prediction of sigma-type phase occurrence from compositions in austenitic superalloys[J]. Trans. AIME,1966, 236:519.
    [18]R. O. Williams. Aging of Nickel-Base Aluminium Alloys[J]. Trans. AIME, 1959,215:1026-1032.
    [19]郭建亭. 高温合金材料学:应用基础理论[M]. 北京: 科学出版社,2008.
    [20]R. Darolia, D.F. Lahrman, R.D. Field, R, Sisson. Formation of Topologically Closed Packed Phases in Nickel Base Single Crystal Superalloys[C]//S. Reichman, D.N. Duhl, G. Maurer, S. Antolovich, C. Lund, (editors). Superalloys 1988. Warrendale, PA:TMS,1988:255-264.
    [21]C.M.F. Rae, M.S.A. Karunaratne, C.J. Small, R.W. Broomfield. C.N. Jones, R.C. Reed. Topologically Close Packed Phases in an Experimental Rhenium-Containing Single Crystal Superalloy[C]//T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, J.J. Schirra, (editors). Superalloys 2000. Warrendale, PA:TMS,2000:767-776.
    [22]C.M.F. Rae, R. C. Reed. The precipitation of topologically close-packed phases in rhenium-containing superallous[J]. Acta Materialia,2001,49(19):4113-4125.
    [23]CT Sims. A contemporary view of nickel-base superalloys[J]. Journal of Metals, 1966,18 (10):1119-1130.
    [24]C.T. Sims. Prediction of phase composition[C]//Superalloys II. New York: Wiley,1987:635-639.
    [25]J.X. Yang, Q. Zheng, X.F. Sun, H.R. Guan, Z.Q. Hu. Topologically close-packed phase precipitation in a nickel-base superalloy during thermal exposure[J]. Materials Science and Engineering A,2007,465(1-2):100-108.
    [26]M.V. Acharya, G. E. Fuchs. The effect of long-term thermal exposures on the microstructure and properties of CMSX-10 single crystal Ni-base superalloys[J]. Materials Science and Engineering A,2004,381(1-2):143-153.
    [27]F. Long, Y.S. Yoo, C.Y. Jo, S.M. Seo, H.W. Jeong, Y.S. Song, T. Jin, Z.Q. Hu. Phase transformation of η and a phases in an experimental nickel-based superalloy [J]. Journal of Alloys and Compounds,2009,478(1-2):181-187.
    [28]F. Sun, J.X. Zhang, P. Liu, Q. Feng, S.C. Mao, X.D. Han. Atomic scale interfacial and compositional characteristics of the σ and y phases of Ni-based single-crystal superalloys[J]. Acta Materialia,2012,60(19):6631-6640.
    [29]D. Wang, J. Zhang, L.H. Lou. On the role of μ phase during high temperature creep of a second generation directionally solidified superalloy [J]. Materials Science and Engineering A,2010,527(20):5161-5166.
    [30]A.F. Giamei, D.L. Anton. Rhenium additions to a Ni-base superalloy:Effects on microstructure[J]. Metallurgical and Materials Transactions A,1985, 16(11):1997-2005.
    [31]M. Simonetti, P. Caron. Role and behaviour of μ phase during deformation of a nickel-based single crystal superalloy [J]. Materials Science and Engineering A, 1998,254(1-2):1-12.
    [32]L.Z. He, Q. Zheng, X.F. Sun, H.R. Guan, Z.Q. Hu. Effect of carbides on the creep properties of a Ni-base superalloy M963[J]. Materials Science and Engineering A,2005,397(1-2):297-304.
    [33]J.X. Yang, Q. Zheng, X.F. Sun, H.R. Guan, Z.Q. Hu. Formation of μ phase during thermal exposure and its effect on the properties of K465 superalloy[J]. Scripta Materialia,2006,55(4):331-334.
    [34]H.M. Tawancy. Precipitation characteristics of μ-phase in wrought nickel-base alloys and its effect on their properties[J]. Journal of Materials Science,1996, 31(15):3929-3936.
    [35]M.H.F. Sluiter, Pasturel A, Kawazoe Y. Site occupation in the Ni-Nb u phase[J]. Physical Review B,2003,67(17):174203.
    [36]F. Long, Y.S.Yoo, C.Y. Jo, S.M. Seo, Y.S. Song, T. Jin, Z.Q. Hu. Formation of η and σ phase in three polycrystalline superalloys and their impact on tensile properties[J]. Materials Science and Engineering A,2009,527(1-2):361-369.
    [37]P. Villars. Pearson's Handbook Desk Edition[M]. Materials Park, OH:ASM International,1997.
    [38]H.E. Collins, Effect of thermal exposure on the microstructure and mechanical properties of nickel-base superalloys[J]. Metall Trans,1974,6(1):189-204.
    [39]李双明,杜炜,张军,李金山,刘林,傅恒志CMSX-2单晶高温合金高梯度定向凝固下过渡区的组织演化特征[J].金属学报,2002,38:1195-1198.
    [40]G.L. Erickson. The development and application of CMSX-10[C]//R. D. Kissinger, D. J. Deye, D. L. Anton, A. D. Cetel, M. V. Nathal, T. M. Pollock, D. A. Woodford, (editors). Superalloys 1996. Warrendale, PA:TMS,1996:35-44.
    [41]G.E. Fuchs. Solution heat treatment response of a third generation single crystal Ni-base superalloy[J]. Materials Science and Engineering:A,2001, 300(1):52-60.
    [42]M. Durand-Charre. The Microstructure of Superalloys[M]. Amsterdam: Gordon and Breach,1997.
    [43]K. Kawagishi, A. Sato, H.Harada, A.C. Yeh, Y. Koizumi, T. Kobayashi. Oxidation resistant Ru containing Ni base single crystal superalloys [J]. Materials Science and Technology,2009,25:271-275.
    [44]F.L. Versnyder, M.E. Shank. Development of Columnar Grain and Single Crystal High-Temperature Materials Through Directional Solidification[J]. Materials Science and Engineering,1970,6(4):213-247.
    [45]骆宇时,刘世忠,孙凤礼.铼在单晶高温合金中强化机理的研究现状[J].材料导报,2006,19(8):55-58.
    [46]P. Caron. High γ' solvus new generation nickel-based superalloys for single crystal turbine blade applications[C]//T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, J.J. Schirra, (editors). Superalloys 2000. Warrendale, PA:TMS,2000:737-746.
    [47]H. Murakami, T. Honma, Y. Koizumi, H. Harada. Distribution of platinum group metals in Ni-base single-crystal superalloys [C]//T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, J.J. Schirra, (editors). Superalloys 2000. Warrendale, PA:TMS,2000:747-756.
    [48]K.S. O'Hara, W.S. Walston, E.W. Ross, R. Darolia. Nickel base superalloy and article:U.S. Patent 5,482,789[P].1996-1-9.
    [49]S. Tin, L. Zhang, R.A. Hobbs, A. C. Yeh, C.M.F. Rae, B. Broomfield. Linking the properties, processing and chemistry of advanced single crystal Ni-base superalloys[C]//R.C. Reed, K.A.Green, P. Caron, T.P. Gabb, M.G. Fahrmann, E.S. Huron, S.A.Woodard, (editors). Superalloys 2008. Warrendale, PA:TMS, 2008:81-90.
    [50]R.A. Hobbs, L. Zhang, C.M.F. Rae, S. Tin. Mechanisms of topologically close-packed phase suppression in an experimental ruthenium-bearing single-crystal nickel-base superalloy at 1100 ℃ [J]. Metallurgical and Materials Transactions A,2008,39 (5):1014-1025.
    [51]A.C. Yeh, S. Tin. Solidification and phase stability of Ru-bearing Ni-base superalloys[C]//A. Strang, R. D. Conroy, W. M. Banks, M. Blackler, J. Leggett, G. M. McColvin, S. Simplson, M. Smith, F. Starr, R. W. Vanstone, (editors).6th International Charles Parsons Turbine Conference. Dublin, Ireland:Maney Publishing,2003:673-686.
    [52]Q. Feng, T.K. Nandy, S. Tin, T.M. Pollock. Solidification of high-refractory ruthenium-containing superalloys [J]. Acta Materialia,2003,51(1):269-284.
    [53]A.C. Yeh, C.M.F. Rae, S. Tin. High temperature creep behavious of Ru-bearing Ni-based single crystal superalloy[C]//K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S. Walston, (editors). Superalloys 2004. Warrendale, PA:TMS,2004:677-685.
    [54]师昌绪,仲增墉.中国高温合金40年[J].金属学报,1977,33(1):1-8.
    [55]胡壮麒,刘丽荣,金涛, 孙晓峰.镍基单晶高温合金的发展[J].航空发动机,2005,31(3):1-7.
    [56]C.Y. Geng, C.Y. Wang, T. Yu. Site preference and alloying effect of platinum group metals in y'-Ni3Al[J]. Acta Materialia,2004,52 (18):5427-5433.
    [57]S. Raju, E. Mohandas, V.S. Raghunathan. A study of ternary element site substitution in Ni3Al using pseudopotential orbital radii based structure maps[J]. Scripta Materialia,1996,34(11):1785-1790.
    [58]J. Shen, Y. Wang, N.X. Chen, Y. Wu. Site preference of ternary additions in Ni3Al[J]. Progress in Natural Science,2000,10:457-462.
    [59]D.C. Cox, C.M.F. Rae, R.C. Reed. Life assessment of hot section gas turbine Components[C]. Proceedings of the 11th international conference. London:The Institute of Materials,2000:119-123.
    [60]T. Kobayashi, Y. Koizumi, S. Nakazawa. Creep life extension of a single crystal superalloy [C]. Proceedings of the Fourth International Charles Parsons Turbine Conference on "Advances in Turbine Materials, Design and Manufacturing". UK:Newcastle upon Tyne,1997:766.
    [61]Y.J. Wang, C.Y. Wang. The alloying mechanisms of Re, Ru in the quaternary Ni-based superalloys y/y'interface:A first principles calculation [J].Materials Science and Engineering A,2008,490:242-249.
    [62]H.E. Collins. Relative Long-Time Stability of Carbide and Intermetallic Phase in. Nickel-Base Superalloys[J]. Trans. ASM,1969,62:82-104.
    [63]Y.H. Kong, Q.Z. Chen. Effect of minor additions on the formation of TCP phases in modified RR2086 SX superalloys [J]. Materials Science and Engineering A,2004,366(1):135-143.
    [64]R.M. Kearsey, J.C. Beddoes, K.M. Jaansalu, W.T. Thompson, P. Au. The effects of Re, W and Ru on microsegregation behaviour in single crystal superalloy systems[C]//K.A. Green, T.M. Pollock, H. Harada, R.C. Reed, J.J. Schirra, S. Walston, (editors).. Superalloys 2004. Warrendale, PA:TMS,2004:801-810.
    [65]田素贵,杜洪强,王春涛,孟凡来,水丽,胡壮麒.W含量对单晶镍基合金组织与性能的影响[J].航空材料学报,2006,26(3):16-19.
    [66]Y.H. Zhang, D.M. Knowles, P.J. Withers. Microstructural development in Pt-aluminide coating on CMSX-4 superalloy during TMF[J]. Surface and Coatings Technology,1998,107(1):76-83.
    [67]C.M.F. Rae, M.S. Hook, R.C. Reed. The effect of TCP morphology on the development of aluminide coated superalloys[J]. Materials Science and Engineering A,2005,396(1-2):231-239.
    [68]M. V. Acharya, G.E. Fuchs. The effect of stress on the microstructural stability of CMSX-10 single crystal Ni-base superalloys[J]. Scripta Materialia,2006, 54(1):61-64.
    [69]S. Tin, T.M. Pollock. Phase instabilities and carbon additions in single-crystal nickel-base superalloys[J]. Materials Science and Engineering A,2003, 348(1-2):111-121.
    [70]S.H. Mousavi Anijdan, A. Bahrami. A new method in prediction of TCP phases formation in superalloys[J]. Materials Science and Engineering A,2005, 396(1-2):138-142.
    [71]Q.Z. Chen, N. Jones, D.M. Knowles. The microstructures of base/modified RR2072 SX superalloys and their effects on creep properties at elevated temperatures[J]. Acta Materialia,2002,50(5):1095-1112.
    [72]S. Tin, T.M. Pollock, W.T. King. Carbon Additions and Grain Defect Formation in High Refractory Nickel-Base Single Crystal Superalloys[C]//T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, J.J. Schirra, (editors). Superalloys 2000. Warrendale, PA:TMS,2000:201-210.
    [73]S. Tin, T.M. Pollock, W. Murphy. Stabilization of thermosolutal convective instabilities in Ni-based single-crystal superalloys:Carbon additions and freckle formation[J]. Metallurgical and Materials Transactions A,2001,32(7):1743-1753.
    [74]A.C. Yeh, S. Tin. Effects of Ru on the High-Temperature Phase Stability of Ni-Base Single-Crystal Superalloys [J]. Metallurgical and Materials Transactions A,2006,37(9):2621-2631.
    [75]A. P. Ofori, C. J. Humphreys, S. Tin, C. N. Jones. A TEM study of the effect of platinum group metals in advanced single crystal nickel-base superalloys//K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S. Walston, (editors). Superalloys 2004. Warrendale, PA:TMS,2004:787-794.
    [76]S. Walston, A. Cetel, R. MacKay, K. O'Hara, D. Duhl, R. Dreshfield. Joint development of a fourth generation single crystal superalloy[C]//K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S. Walston, (editors). Superalloys 2004. Warrendale, PA:TMS,2004:15-24.
    [77]Y. Koizumi, T. Kobayashi, J.X. Zhang, T. Yokokawa, H. Harada, Y. Aoki, M.Arai. Development of Next-Generation Ni-Base Single Crystal Superalloys[C]//K.A. Green, T.M. Pollock, H. Harada, R.C. Reed, J.J. Schirra, S. Walston, (editors). Superalloys 2004. Warrendale, PA:TMS,2004:35-44.
    [78]A. Volek, F. Pyczak, R.F. Singer, H. Mughrabi. Partitioning of Re between y and y'phase in nickel-base superalloys[J]. Scripta Materialia.2005,52(2):141-145.
    [79]S.M. Seo, I.S. Kim, J.H. Lee, C.Y. Jo, H. Miyahara, K. Ogi. Eta Phase and Boride Formation in Directionally Solidified Ni-Base Superalloy IN792+ Hf[J]. Metallurgical and Materials Transactions A,2007,38(4):883-893.
    [80]W.R. Sun, J.H. Lee, S.M. Seo, S.J. Choe, Z.Q. Hu. Relationship between eta phase formation and solidification rate in directionally solidified IN792+Hf alloy[J]. Materials Science and Technology,1999,15(11):1221-1224.
    [81]B.G. Choi, I.S. Kim, D.H. Kim, C.Y. Jo. Temperature dependence of MC decomposition behavior in Ni-base superalloy GTD 111[J]. Materials Science and Engineering A,2008,478(1-2):329-335.
    [82]G. Lvov, V.I. Levit, M.J. Kaufman. Mechanism of primary MC carbide decomposition in Ni-base superalloys[J]. Metallurgical and Materials Transactions A,2004,35(6):1669-1679.
    [83]X.Z. Qin, J.T. Guo, C. Yuan, C.L. Chen, H.Q. Ye. Effects of Long-Term Thermal Exposure on the Microstructure and Properties of a Cast Ni-Base Superalloy[J]. Metallurgical and Materials Transactions A,2007,38(12):3014-3022.
    [84]S.G. Tian, M.G.Wang, T. Li. Influence of TCP phase and its morphology on creep properties of single crystal nickel-based superalloys[J]. Materials Science and Engineering A,2010,527(21-22):5444-5451.
    [85]M. Pessah-Simonetti, P. Donnadieu, P. Caron. T.C.P. phase particles embedded in a superalloy matrix:Interpretation and prediction of the orientation relationships[J]. Scripta Metallurgica et Materialia,1994,30(12):1553-1558.
    [86]M.S.A. Karunaratne, D.C. Cox, P. Carter, R.C. Reed. Modelling of the Microsegregation in CMSX-4 Superalloy and Its Homogenisation During Heat Treatment[C]//T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, J.J. Schirra, (editors). Superalloys 2000. Warrendale, PA: TMS,2000:263-272.
    [87]H. Chen, D.X. Li, K.H. Kuo. New type of two-dimensional quasicrystal with twelvefold rotational symmetry[J]. Physical Review Letters,1988,60:1645-1648.
    [88]R.A. Hobbs. Solidification characteristics, microstructural stability & creep behaviour of advanced ruthenium-bearing nickel-base single crystal superalloys[D]. Cambridge, UK:The University of Cambridge,2006.
    [89]A. Sato, H. Harada, T. Yokokawa, T. Murakumo, T. Kobayashi, H. Imai. The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys[J]. Scripta Materialia,2006,54 (9):1679-1684.
    [90]R.A. Hobbs, L. Zhang, C.M.F. Rae, S. Tin. The effect of Ru on the intermediate to high temperature creep response of high refractory content single crystal nickel-base superalloys [J]. Materials Science and Engineering A,2008, (489): 65-76.
    [91]任怀亮.金相实验技术[M].北京:冶金工业出版社,1986.
    [92]P. Hohenberg, W. Kolln. Inhomogeneous electron gas[J]. Physical Review,1964, 136:B 864-B871.
    [93]W. Kolln, L.J. Sham. Self-consistent equations including exchange and correlation effects[J]. Physical Review,1965,140:A1133-A1138.
    [94]D.M. Ceperley, B J. Alder. Ground state of the electron gas by a stochastic method[J]. Phys. Physical Review Letters,1980,45:566-569.
    [95]S.H. Vosko, L. Wilk, M. Nusair. Accurate spin-dependent electron liquid correlation energies for local spin density calculations:A critical analysis[J]. Canadian Journal of Physics,1980,58:1200-1211.
    [96]U.V. Barth, L. Hedin. A local exchange-correlation Potential for the spin Polarized case[J]. Journal of Physics C:Solid State Physics,1972,5:1629-1642.
    [97]J.P. Perdew, Y. Wang Accurate and simple analytic representation of the electron-gas correlation energy [J]. Physical Review B,1992,45:13244-13249.
    [98]J.P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation make simple[J]. Physical Review Letters,1996,77:3865-3868.
    [99]A.D. Becke. A multicenter numerical integration scheme for polyatomic molecules[J]. Journal of Chemical Physics,1988,88:2547-2553.
    [100]C. Lee, Ying W, Pan RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B,1988,37:785-789.
    [101]B.J. Delley. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. Journal of Chemical Physics,1990,92 (1):508-517.
    [102]B.J. Delley. Analytic energy derivatives in the numerical local-density-functional Approach[J]. Journal of Chemical Physics,1991,94 (11):7245-7250.
    [103]尚家香.金属界面复合体电子结构和能量学研究[D].北京:钢铁研究总院2001.
    [104]R.S. Mulliken. Electronic population analysis on LCAO-MO molecular wave functions. Ⅰ[J]. The Journal of Chemical Physics,2004,23(10):1833-1840.
    [105]H. Harada, M. Yamazaki, Y. Koizumi. A Series of Nickel-base Superalloys on γ-γ' Tie Line of Alloy Inconel 713C[J]. Tetsu-to-Hagane',1979,65:1049-1058.
    [106]Y. Ro, Y. Koizumi, H. Harada. High temperature tensile properties of a series of nickel-base superalloys on a γ/γ' tie line[J]. Materials Science and Engineering A,1997,223:59-63.
    [107]R.C. Reed, D.C. Cox, C.M.F. Rae. Damage accumulation during creep deformation of a single crystal superalloy at 1150 ℃[J]. Materials Science and Engineering A,2007,448(1-2):88-96.
    [108]张永刚,韩雅芳,陈国良,郭建亭,万晓景,冯涤.金属间化合物结构材料[M].国防工业出版社,2003年4月.
    [109]J.D. Nystrom, T.M. Pollock, W.H. Murphy, A. Garg. Discontinuous cellular precipitation in a high-refractory nickel-base superalloy[J]. Metallurgical and Materials Transactions A,1997,28:2443-2452.
    [110]P.J. Warren, A. Cerezo, G.D.W. Smith. An atom probe study of the distribution of rhenium in a nickel-based superalloy[J]. Materials Science and Engineering A,1998,250:88-92.
    [111]K.E. Yoon, D. Isheim, R.D. Noebe, D.N. Seidman. Nanoscale studies of the chemistry of a Rene N6 superalloy [J]. Interface Science,2001,9:249-255.
    [112]J. Rusing, N. Wanderka, U. Czubayko, V. Naundorf, D. Mukherji, J. Rosler. Rhenium distribution in the matrix and near the particle-matrix interface in a model Ni-Al-Ta-Re superalloy [J]. Scripta Materialia,2002,46:235-240.
    [113]A. Mottura, R.T. Wu, M.W. Finnis, R.C. Reed. A critique of rhenium clustering in Ni-Re alloys using extended X-ray absorption spectroscopy[J]. Acta Materialia,2008,56:2669-2675.
    [114]A. Mottura, N. Warnken, M.K. Miller, M.W. Finnis, R.C. Reed. Atom probe tomography analysis of the distribution of rhenium in nickel alloys [J]. Acta Materialia,2010,58:931-942.
    [115]R.C. Reed, A.C. Yeh, S. Tin, S.S Babu, M.K. Miller. Identification of the partitioning characteristics of ruthenium in single crystal superalloys using atom probe tomography [J]. Scripta Materialia,2004,51:327-331.
    [116]T. Yokokawa, M. Osawa, K. Nishida, T. Kobayashi, Y. Koizumi, H. Harada. Partitioning behavior of platinum group metals on the γ and γ' phases of Ni-base superalloys at high temperatures[J]. Scripta Materialia,2003,49:1041-1046.
    [117]T.M. Pollock, R.D. Field. Dislocations and High Temperature Plastic Deformation of Superalloy Single Crystals. Dislocation in solids, Amsterdam: Elsevier,2002:547-618.
    [118]W.R. Johnson, C.R. Barrett, W.D. Nix. The high-temperature creep behavior of nickel-rich Ni-W solid solutions[J]. Metallurgical Transactions,1972,3: 963-969.
    [119]M.S.A. Karunaratne, P. Carter, R.C. Reed. Interdiffusion in the face-centred cubic phase of the Ni-Re, Ni-Ta and Ni-W systems between 900 and 1300° C[J]. Materials Science and Engineering A,2000,281:229-233.
    [120]S. Ma, L. Carroll, T.M. Pollock. Development of y phase stacking faults during high temperature creep of Ru-containing single crystal superalloys[J]. Acta Materialia,2007,55:5802-5812.
    [121]M.S.A. Karunaratne, R.C. Reed. Interdiffusion of the platinum-group metals in nickel at elevated temperatures [J]. Acta Materialia,2003,51:2905-2919.
    [122]A. Janotti, M. Krcmar, C.L. Fu, R.C. Reed. Solute diffusion in metals:Larger atoms can move faster[J]. Physical Review Letters,2004,92:085901.
    [123]D. Blavette, P. Caron, T. Khan. An atom probe investigation of the role of rhenium additions in improving creep resistance of Ni-base superalloys[J]. Scripta Metallurgica 1986,20:1395-1400.
    [124]B. Wang, C.Y. Wang. Effect of alloying Re and Ru in the edge-dislocation core of the Ni/Ni3Al interface[J]. Chinese Physics B,2009,18:3928-3933.
    [125]H. Murakami, Y. Saito, H. Harada. Determination of Atomistic Structure of Ni-Base Single Crystal Superalloys Using Monte Carlo Simulations and Atom-Probe Microanalysis[C]//R.D. Kissinger, D.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, D.A. Woodford, (editors). Superalloys 1996, Warrendale, PA:TMS,1996:249-257.
    [126]J.X. Zhang, T. Murakumo, Y. Koizumi, T. Kobayashi, H. Harada, S. Masaki Jr. Interfacial dislocation networks strengthening a fourth-generation single-crystal TMS-138 superalloy [J]. Metallurgical and Materials Transactions A,2002,33: 3741-3746.
    [127]王亚男,陈树江,董希淳.位错理论及其应用[M].北京:冶金工业出版社,2007.
    [128]J.K. Tian, SM Copley. The effect of uniaxial stress on the periodic morphology of coherent gamma prime precipitates in nickel-base superalloy crystals[J]. Metallurgical transactions,1971,2(1):215-219.
    [129]T.M. Pollock, A.S. Argon. Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates [J]. Acta metallurgica et materialia,1994,42(6):1859-1874.
    [130]J.H. Zhang, Z.Q. Hu, Y.B. Xu, Z.G. Wang. Dislocation structure in a single-crystal nickel-base superalloy during low cycle fatigue[J]. Metallurgical Transactions A,1992,23(4):1253-1258.
    [131]L. Liu, T.W. Huang, J. Zhang, H.Z. Fu. Microstructure and stress rupture properties of single crystal superalloy CMSX-2 under high thermal gradient directional solidification[J]. Materials Letters,2007,61:227-230.
    [132]郑亮,谷臣清,郑运荣.Ru对铸造镍基高温合金凝固行为的影响[J].中国有色金属学报,2002,12(6):1199-1204.
    [133]R.M. Kearsey, J.C. Beddoes, P. Jones, P. Au. Compositional design considerations for microsegregationin single crystal superalloy systems[J]. Intermetallics,2004,12(7-9):903-910.
    [134]刘刚,刘林,赵新宝,闵志先,葛丙明.难熔元素对镍基单晶高温合金凝固特性及组织的影响[J].材料导报,2008,22(9):38-54.
    [135]L.J. Carroll, Q. Feng, J.F. Mansfield, T.M. Pollock. Elemental partitioning in Ru-containing nickel-base single crystal superalloys[J]. Materials Science and Engineering:A,2007,457(1):292-299.
    [136]C. Schulze, M. Feller-Kniepmeier. Transmisson electron microscopy of phase composition and lattice misfit in the Re-containing nickel-base superalloy CMSX-10[J]. Materials Science and Engineering:A,2000,281(1):204-212.
    [137]T. Kitashima, T. Yokokawa, A.C. Yeh, H. Harada. Analysis of element-content effects on equilibrium segregation at γ/γ' interface in Ni-base superalloys using the cluster variation method[J]. Intermetallics,2008,16(6):779-784.
    [138]H. Murakami, P.J. Warren, H. Harada. Atom-probe microanalyses of some Ni-base single crystal superalloys[C]. Third International Charls Parsons Turbine Conference "Materials Engineering in Turbines and Compressors" Civic Center, Newcastle upon Tyne, UK,1995:343.
    [139]U. Hemmersmeier, M. Feller-Kniepmeier. Element distribution in the macro-and microstructure of nickel base superalloy CMSX-4[J]. Materials Science and Engineering:A,1998,248(1):87-97.
    [140]D. Blavette, P, Caron, T. Khan. An atom-probe study of some fine scale microstructure feature in Ni-base SC superalloy[C]//S. Reichman, D.N. Duhl, G. Maurer, S. Antolovich, C. Lund, (editors). Superalloys 1988. Warrendale, PA: TMS,1988:305-314.
    [141]叶恒强,王元明.透射电子显微学[M].科学出版社,2003年8月.
    [142]李斗星.透射电子显微学的新进展[J].电子显微学报,2004,2(3):278-292.
    [143]A.N. Stroh. The formation of cracks as a result of plastic flow[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1954,223(1154):404-^14.
    [144]A.N. Stroh. The formation of cracks in plastic flow. Ⅱ[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1955, 232(1191):548-560.
    [145]刘跃生,赵先国,刘志中,谢锡善.镍基高温合金中片状σ相对合金的弱化机制研究.冶金部钢铁研究总院汇编,第六届全国高温合金年会论文集1987,58.
    [146]J.X. Zhang, T. Murakumo, Y. Koizumi, T. Kobayashi, H. Harada. Strengthening by y/y'interfacial dislocation networks in TMS-162-Toward a fifth-generation single-crystal superalloy[J]. Metallurgical and Materials Transactions A,2004, 35(6):1911-1914.
    [147]A.F. Voter, S.P. Chen. Accurate interatomic potentials for Ni, Al and Ni3Al[C]//MRS Proceedings. Cambridge University Press,1986,82:175.
    [148]J.P. Perdew, K. Burke, M. Ernzerhof. Generalized Gradient Approximation Made Simple[J]. Physical Review Letters,1997,78:1396.
    [149]S. Tin, A. C. Yeh, A. P. Ofori, R. C. Reed, S. S. Babu, M. K. Miller. Atomic Partitioning of Ruthenium in Ni-Based Superalloys[C]//K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S. Walston, (editors). Superalloys 2004. Warrendale, PA:TMS,2004:735-741.
    [150]A.P. Ofori, C. J. Rossouw, C. J. Humphreys. Determining the site occupancy of Ru in the Ll2 phase of a Ni-base superalloy using ALCHEMI[J]. Acta materialia,2005,53(1):97-110.
    [151]J.S. Van Sluytman, A.L. Fontaine, J.M. Cairney, T.M. Pollock. Elemental partitioning of platinum group metal containing Ni-base superalloys using electron microprobe analysis and atom probe tomography [J]. Acta Materialia, 2010,58(6):1952-1962.
    [152]I.L. Mrkin, O.D. Kanchee. Relationship between heat resistance and difference in lattice spacings of phases in precipitation-hardening alloys [J]. Metal Science and Heat Treatment,1967,9(1):10-13.
    [153]Y. Liu, K.Y. Chen, G. Lu, J.H. Zhang, Z.Q. Hu. Impurity effects on the Ni/Ni3Al interface cohesion[J]. Acta Materialia,1997,45:1837-1849.
    [154]K. Chen, L.R. Zhao, J.S. Tse. Atomic mechanism of the Re and Ru strengthening effect on the y/y'interface of Ni-based single-crystal superalloys: a first-principles study[J]. Philosophical Magazine,2003,83:1685-1698.
    [155]K. Chen, L.R. Zhao, J.S. Tse. Synergetic effect of Re and Ru on y/y'interface strengthening of Ni-base single crystal superalloys [J]. Materials Science and Engineering:A,2003,360:197-201.
    [156]K. Chen, L.R. Zhao, J.S. Tse. Sulfur embrittlement on γ/γ' interface of Ni-base single crystal superalloys [J]. Acta Materialia,2003,51:1079-1086.
    [157]K. Chen, L.R. Zhao, J.S. Tse. A first-principles survey of y/y' interface strengthening by alloying elements in single crystal Ni-base superalloys [J]. Materials Science and Engineering:A,2004,365:80-84.
    [158]P. Peng, Z.H. Jin, R. Yang, Z.Q. Hu. First principles study of effect of lattice misfit on the bonding strength of Ni/Ni3Al interface[J]. Journal of materials science,2004,39(12):3957-3963.
    [159]P. Peng, D.W. Zhou, J.S. Liu, R. Yang, Z.Q. Hu. First-principles study of the properties of Ni/Ni3Al interface doped with B or P [J]. Materials Science and Engineering:A,2006,416(1):169-175.
    [160]P. Peng, A.K. Soh, R. Yang, Z.Q. Hu. First-principles study of alloying effect of Re on properties of Ni/Ni2Al interface [J]. Computational materials science, 2006,38(2):354-361.
    [161]L.J. Carroll, Q. Feng, J.F. Mansfield, T.M. Pollock. High refractory, low misfit Ru-containing single-crystal superalloys[J]. Metallurgical and Materials Transactions A,2006,37(10):2927-2938.
    [162]A.C. Yeh, S.Tin. Effects of Ru and Re additions on the high temperature flow stresses of Ni-base single crystal superalloys[J]. Scripta materialia,2005,52(6): 519-524.
    [163]Y. Zhou, Z. Mao, C. Booth-Morrison, D.N. Seidman. The partitioning and site preference of rhenium or ruthenium in model nickel-based superalloys:An atom-probe tomographic and first-principles study[J]. Applied Physics Letters, 2008,93:171905.
    [164]Y. Amouyal, Z. Mao, C. Booth-Morrison, D.N. Seidman. On the interplay between tungsten and tantalum atoms in Ni-based superalloys:An atom-probe tomographic and first-principles study[J]. Applied Physics Letters,2009, 94:041917.
    [165]S. Yu, Chongyu Wang, Tao Yu, The first-principles study on the doping effect of Re in Ni3Al[J]. Progress in Natural Science,2008,18:861-866.
    [166]M.H.F. Sluiter, Y. Kawazoe, Site preference of ternary additions in Ni2Al[J]. Physical Review B,1995,51(7):4062-4073.
    [167]C. Booth-Morrison, Z. Mao, R. D. Noebe, D. N. Seidman. Chromium and tantalum site substitution patterns in Ni3Al (Ll2) γ'-precipitates[J]. Applied Physics Letters,2008,93(3):033103.
    [168]Y J. Wang, Chong-Yu Wang. Influence of the alloying element Re on the ideal tensile and shear strength of y'-Ni3Al[J]. Scripta Materialia,2009,61:197-200.
    [169]C. Jiang, B. Gleeson. Site preference of transition metal elements in Ni3Al [J]. Scripta materialia,2006,55(5):433-436.
    [170]A.D. Cetel, D.N.Duhl. Second generation columnar grain nickel-base superalloy[C]//S.D.Antolovich, R.W. Stusrud, R.A. Mackay, D.L. Anton, T.Khan, R.D. Kissinger, D.L. Klarstrom, (editors). Superalloys 1992. Warrendale, PA:TMS,1992:287.
    [171]R. W. Broomfield, M. C. Thomas, K. Harris, G. L. Erickson, D. J. Frasier, D. A. Ford, J. K. Bhangu, P. S. Burkholder, J. B. Wahl. Development and turbine engine performance of three advanced rhenium containing superalloys for single crystal and directionally solidified blades and vanes[J]. Journal of engineering for gas turbines and power,1998,120(3):595-608.
    [172]H.J. Monkhorst, J.D. Pack. Special points for Brillouin-zone integrations[J].s Physical Review B,1976,13(12):5188-5192.
    [173]E.S. Machlin, J. Shao. SIGMA-SAFE:A phase diagram approach to the sigma phase problem in Ni-base superalloys [J]. Metallurgical Transactions A,1978, 9(4):561-568.
    [174]K. Kuo. Ternary laves and sigma-phases of transition metals[J]. Acta metallurgica,1953,1(6):720-724.
    [175]H. Mohammed, K. Asgar. A New Superalloy System:Embrittling Phase Trans-formations [J]. Journal of Dental Research,1974,53:7-14.
    [176]M. P. Jackson, R. C. Reed. Heat treatment of UDIMET 720Li:the effect of microstructure on properties [J]. Materials Science and Engineering:A,1999, 259(1):85-97.
    [177]Y. Chen, J.X. Shang, Y. Zhang. Bonding characteristics and site occupancies of alloying elements in different NbsSi3 phases from first principles[J]. Physical Review B,2007,76(18):184204.
    [178]F. Sun, J.X. Zhang, P. Liu, Q. Feng, X.D. Han, S.C. Mao. High resolution transmission electron microscopy studies of σ phase in Ni-based single crystal superalloys [J]. Journal of Alloys and Compounds,2012,536:80-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700