用户名: 密码: 验证码:
贲门癌和远端胃癌中染色体18q区域杂合性丢失的差异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     从解剖学的角度来说,贲门(cardia)属于胃的一部分。贲门癌(Adenocarcinoma of gastric cardia,AGC)即来源于贲门粘膜的癌。但目前的证据表明,贲门癌与其它部位的胃癌,在流行病学、生物学行为和临床特点上有着显著的不同。这也提示贲门癌可能是一种相对独立的临床疾病,具有其独特的发病机制。近年的研究发现,贲门癌中4q、18q、5q等染色体区域的异常丢失较为常见。根据knudson的“二次打击”假说,这些染色体区域内可能存在着与贲门癌密切相关的抑癌基因(Tumor suppressor gene,TSG)。
     为了更加深入地了解贲门癌和胃癌的分子生物学特征,揭示贲门癌的发病机制,本研究系统地考察了贲门癌和远端胃癌(Adenocarcinoma of distal stomach,ADS)中染色体18q区域内的杂合性丢失(Loss of heterozyosity,LOH)情况。我们首先利用激光捕获显微切割(Laser capture microdissection,LCM)技术对取自临床的肿瘤标本进行显微切割,分别获取均质的癌细胞和相应的正常胃粘膜细胞;然后利用多重置换扩增(Multiple displacement amplification,MDA)技术对LCM捕获细胞的基因组DNA进行全基因组扩增(Whole genome amplification,WGA);进而以WGA产物为实验材料进行LOH分析。本研究中,我们选择了覆盖染色体18q区域的11个微卫星多态标记位点,应用聚合酶链反应(Polymerase chain reaction,PCR)结合变性聚丙烯酰胺凝胶电泳及硝酸银染色的方法,分析了20例AGC和36例ADS的LOH情况。并根据实验发现,进一步考察了SMAD4基因在两种肿瘤中的丢失情况以及SMAD4蛋白的表达情况。力图定位与AGC和ADS密切相关的染色体区域,进而为发现新的抑癌基因提供方向。
     材料与方法
     1、获取均质的癌细胞和相应的正常胃粘膜细胞
     20例AGC和36例ADS均来自临床手术切除标本。分别切取正常胃粘膜和原发癌灶,OCT包埋,液氮中保存。8μm厚连续冷冻切片,按NIH推荐程序行HE染色。利用LM200型LCM系统,分别获取正常胃粘膜细胞、原发灶癌细胞各约5000个。
     2、提取LCM捕获细胞的基因组DNA
     将载有细胞的塑料帽置于预先加有30μl DNA裂解缓冲液的离心管,37℃水浴16h。
     3、全基因组多重置换扩增
     按照Genomiphi WGA Kit(Amersham Bioscience Corp.,USA)说明书进行MDA扩增。每份样品重复两次,将两次扩增产物混匀,稀释20倍后用于LOH分析。
     4、微卫星标记的选择
     利用UCSC人类基因组注释数据库和Marshfield数据库,选取覆盖染色体18q的11个微卫星多态标记,其中3个微卫星多态标记位于SMAD4基因序列的两翼。
     5、LOH分析
     以全基因组扩增后的产物为模板,用PCR方法扩增所选择的微卫星标记位点。PCR反应体系为10μl,其中包括10×Ex Taq缓冲液1μl、2.5 mmol/L dNTPs 0.8μl、Ex Taq 0.05μl、10μmol/L的引物混合物0.8μl,MDA产物0.5μl。PCR扩增的热循环条件为:94℃变性1 min后,94℃30s,退火75s,72℃15s,重复30个循环,最后72℃延伸6min。经琼脂糖电泳检测后,取2μl PCR产物与8μl变性终止液混合,98℃变性8min,冰上冷却5min。上样于8%变性聚丙烯酰胺凝胶中,进行电泳。电泳条件为:500v电压,室温下,电泳2.5小时。电泳结束后,根据标准的硝酸银染色方法进行染色。
     6、LOH的判定
     将肿瘤组织与其相应的正常细胞基因组DNA的电泳结果相比较,若肿瘤样品某一等位基因条带消失或相对密度减少70%以上,则判为LOH。其中纯合子个体(即该微卫星位点在正常细胞中只显示一个电泳条带)判为无信息病例,不列入结果分析。有信息的杂合子病例为该微卫星位点在正常细胞中显示两个条带。
     7、免疫组织化学方法检测SMAD4蛋白的表达情况
     SP法检测20例AGC和36例ADS中SMAD4蛋白的表达情况。另增加其它部位的胃癌蜡块标本47例,其中胃底部癌10例,胃体部癌28例,胃窦部癌9例。标本蜡块取自病理科,癌灶和癌旁正常组织分别作连续切片,厚4μm。鼠抗人SMAD4单克隆抗体购自美国Santa Cruz公司。
     8、统计学分析
     分析ADS和AGC之间各个微卫星标记的LOH差异,以及LOH与临床病理特征之间的关系,所用统计学方法为双侧Fisher检验。分析SMAD4蛋白的表达情况与临床病理特征之间的关系用x~2分析。P<0.05被认为统计学上有显著意义,所用的统计软件为SPSS 11.0。
     实验结果
     1、染色体18q LOH分析的结果
     20例AGC中,有10例(50.0%)存在一个或多个位点的LOH。位点D18S858的LOH检出频率最高,为54.5%(6/11),其位于染色体18q21.31。另外还有四个微卫星标记的丢失频率大于30%,即D18S1357(41.7%,5/12)、ATA82B02N(33.3%,3/9)、D18S1364(33.3%,5/15)和D18S535(30.8%,4/13),见表1-3。根据染色体的丢失情况,我们确定了一个共同丢失区域,位于位点D18S858、D18S1357、D18S1364(LOH检出频率分别为54.5%、41.7%和33.3%)。这个区域的遗传距离为19厘摩(cM)。在发生LOH的10例AGC样品中,有8例在这个区域内存在着丢失。
     36例ADS中,有19例(52.7%)存在一个或多个位点的LOH。位点D18S535的LOH检出频率最高,为37.5%(9/24),其位于18q12.3。另外还有两个微卫星标记的丢失频率大于30%,即D18S858(36.8%,7/19)和D18S1364(31.8%,7/22),它们分别位于染色体18q21.2和18q22.1。根据染色体的丢失情况,我们确定了两个共同丢失区域,第一个共同丢失区域定位于位点ATA82B02N和D18S1371(LOH检出频率分别为28.6%和30.0%),这个区域的遗传距离为9厘摩(cM)。在发生LOH的15例ADS样品中,11例在这个区域内有丢失。第二个共同丢失区域位于位点D18S851、D18S858和D18S1357(LOH检出频率分别为23.5%,36.8%和22.7%),这个区域的遗传距离为13.7厘摩(cM)。在发生LOH的15例ADS样品中,有11例在这个区域内有丢失。
     2、AGC与ADS之间染色体18q区域LOH的差异
     通过对比AGC和ADS中18q的LOH作图结果,我们发现两肿瘤中染色体18q的丢失区域并不一致。ADS的丢失区域为18q21.1-21.32和18q22.2-22.3。而AGC为18q21.2-22.1。AGC中大部分微卫星标记的丢失频率高于ADS,但二者的差异无统计学意义。微卫星标记D18S858的LOH与AGC的关系似乎更加密切些,但ADS与AGC在这个位点的丢失频率差异并无统计学意义(P=0.283,7/19 vs6/11)。
     3、SMAD4基因LOH分析的结果
     我们分析了36例ADS中SMAD4基因两侧3个微卫星标记的LOH情况,其中有13例(33.3%)存在一个或多个位点的LOH。其中240号标本在3个位点均出现了LOH,262号和283号标本在2个位点(D18S816和D18S1110)出现了LOH。位点D18S816的LOH检出频率最高为30.4%,位点D18S1110和CTTT分别为26.1%和21.1%。
     20例AGC中只有2例(10%)存在LOH,分别是84号标本在D18S816位点,以及133号标本在D18S1110位点。位点CTTT上没有发现LOH。
     4、SMAD4蛋白表达的结果
     AGC中SMAD4蛋白正常表达阳性率为75.0%(15/20),而ADS中SMAD4蛋白正常表达阳性率则为47.2%(17/36)。两者间有显著性差异(P<0.05)。
     若将后增加的47例胃癌也列入统计分析,则不同部位胃癌中SMAD4蛋白表达阳性率分别为贲门75.0%(15/20),胃底50.0%(5/10),胃体53.6%(15/28),胃窦46.7%(21/45)。虽然从总体上看各个部位的肿瘤在蛋白表达上没有显著差异,但贲门部癌的表达阳性率明显高于非贲门部癌(P<0.05)。
     结论
     1.本研究联合应用激光捕获显微切割和多重置换扩增技术,较为系统地研究了20例AGC和36例ADS中染色体18q区域的LOH情况。发现染色体18q区域的LOH在AGC和ADS中均高发,丢失频率分别为50.0%和52.7%。
     2.本研究定位了两个与ADS密切相关的染色体共同丢失区域,即18q21.1-21.32和18q22.2-22.3,一个与AGC密切相关的染色体共同丢失区域18q21.2-22.1。这些区域内可能分别存在着与ADS和AGC相关的一个或多个抑癌基因。
     3.我们的结果显示已知抑癌基因SMAD4位于ADS的染色体共同丢失区域,这与以往的研究结果一致,但SMAD4并不位于AGC的染色体共同丢失区域。通过进一步考察SMAD4基因在ADS和AGC中LOH和蛋白表达情况,我们发现ADS中存在着较高频率的SMAD4基因LOH和蛋白表达下降。而AGC中出现SMAD4基因LOH和蛋白表达下降的频率要显著地低于ADS(P<0.05),提示SMAD4基因与AGC的关系可能不像ADS那么密切。
     4.染色体18q区域内可能存在着尚未被发现的、与AGC关系密切的抑癌基因。
     5.ADS和AGC具有不同的分子遗传学特征,两者可能是不同的临床疾病。
Objective
     The cardia was defined as the part of the stomach cantaining cardiac glands.Adenocarcinoma of gastric cardia (AGC) was the carcinoma which arised from thecardiac epithelium. Based on recent data, AGC are significantly different fromadenocarcinomas in the remainder of the stomach in some respectes, such asepidemiology, biologic behave and clinicopathologic features. These evidence alsosuggust AGC maybe a distinct pathological entity compared with adenocarcinoma ofdistal stomach (ADS). Recent comparative genomic hybridization (CGH) studiesshowed allelic loss of chromosome 4q, 18q, and 5q were common in AGC, and thesechromosomes may harbor tumor suppressor genes (TSGs) associated with AGC.
     To reveal molecular features of AGC, detailed deletion reaping of 18q iswarranted. In the present study, laser capture microdisection (LCM) was used to obtainthe homogeneous tumor cells and paired normal cell. Subsequently, microdissected cellDNA was whole genome amplified (WGA) by multiple displacement amplification(MDA). The amplified product was used for LOH analysis. In the present study, weassessed tumors from AGC and ADS for allelic loss using 11 microsatellite markerscovering 18q (n=8) and flanking the SMAD4 gene (n=3).
     Materials and methods
     1. Laser capture microdissection
     A total of 56 resection specimens with adenocarcinoma of gastric cardia (n=20)and distal stomach (n=36) were HE-stained followed by microdissected using a PixCellⅡLCM system (Arcturus Engineering Inc., USA).
     2. Extract DNA from LCM-captured cells
     The cells were immersed in 30μl of digestion buffer, containing 10 mM Tris (pH8.0), 1 mM EDTA, 0.4 mg/ml proteinase K, and 1% Tween 20, and digested at 37℃for 16 hours.
     3. Multiple displacement amplification
     MDA was performed using the Genomiphi WGA Kit (Amersham BiosciencesCorp., USA) according to kit instructions with some modifications for LCM. MDA wasperformed twice for each sample, and reaction products were pooled together. The finalproduct was diluted by 20 fold and used for LOH anlaysis.
     4. Selection of microsatellite markers
     The 11 microsatellite markers covering chromosome 18q (n=8) and flanking theSMAd4 gene (n=3) were omitted from our analyses.
     5. LOH analysis
     PCR amplification was carried out using 0.5μl MDA product, 0.05μl Ex Taqpolymerase, 0.25μM of each deoxynucleotides, 0.25μM of each primer and 1μl 10×ExTaq PCR buffer in a total reaction volume of 10μl. The PCR conditions used were94℃for 1 min to pre-denature, followed by 30 cycles of denaturation of 94℃for 30 s,annealing for 75 s, and extension at 72℃for 15s. The final elongation was at 72℃for6 min. The PCR product was electroqhoresis on polyacrylamid gel.
     6. Definition of LOH
     For a given informative marker, the microsatellite marker is considered to displayLOH when 70% or greater difference is seen in the relative allele intensity between thetumor DNA and normal DNA.
     7. Expression of SMAD4 protein
     Immunohistochemical staining was performed using the standard streptavidinperoxidase procedure. Formalin-fixed and paraffin-embedded specimens were obtainedfrom departmental of pathology. A mouse anti-smad4 monoclonal antibody was used(Santa Cruz Biotechnology, Inc.).
     8. Statistical analysis
     The difference in deletion frequency between AGC and ADS for individualmarkers, and possible correlation between detected LOH and histological type, clinicalstage, and pathological grade were carried out with Fisher's exact x~2 test. P<0.05 wasregarded as statistically significant. The data was processed using SPSS 11.0.
     Results
     1. Allelic loss of 18q in AGC and ADS
     Amplification products of 20 AGC were detected on chromosome 18q, and theoverall LOH incidence was 50.0% (10/20). The frequency of LOH in D18S858 was54.5% (6/11). Four microsatellite markers (D18S1357, ATA82B02N, D18S1364, andD18S535) showed loss frequency larger than 30%. According to LOH result, wemapped one common deletion region in AGC, which was between marker D18S851,D18S1357 and D18S1364 (approximately 19 cM). 8 out of 10 cases with LOH had lossat this region.
     For ADS, 19 cases (52.7%) showed loss at least at one marker. The loss frequencyof D18S535 was the highest with 37.5% (9/24). Two microsatellite markers (D18S858and D18S1364) showed loss frequency larger than 30%. According to LOH result, we mapped one common deletion region in ADS. One was defined by ATA82B02N andD18S1371 (approximately 9 cM). 11 out of 15 cases with LOH had loss at this region.The second was defined by D18S851, D18S858 and D18S1357 (approximately 13.7cM), and 10 out of 15 cases with LOH had loss at this region.
     2. Difference in LOH at chromosome 18q between AGC and ADS
     By comparing LOH mapping of chromosome 18q between AGC and ADS,different common deletion regions were found between two types of tumor. Commondeletion region of AGC was located on 18q21.2-22.1, and the regions defined in ADSwere located on 18q21.1-21.32 and 18q22.2-22.3. AGC showed higher LOH frequencyfor most markers. However the difference in LOH frequency did not reach statisticalsignficance between AGC and ADS.
     3. LOH of SMAD4 in AGC and ADS
     We assayed for LOH of SAMD4 in samples of AGC and ADS. For ADS, 13 cases(33.3%) showed loss at least at one marker. The No. 240 case showed LOH in all ofthree markers, No.262 case and No.283 case showed LOH in two markers (D18S816and D18S1110). The loss frequency of D 18S816 was the highest with 30.4%.
     Only two AGC cases (10%) showed LOH. There were No. 84 case in D18S816and No. 133 case in D18S1110, respectively.
     4. The expression of SMAD4
     The positive rate of SMAD4 expression in AGC and ADS were 75.0% (15/20)and 47.2% (17/36) respectively. There was statistical difference between AGC andADS (P<0.05). The positive rate of SMAD4 expression in fundus, corpus and sinuswere 50.0% (5/10), 53.6% (15/28) and 46.7% (21/45) respectively. Positive expressionof SMAD4 was found in 15 of 20 AGC (75.0%), which was significantly higher thanthat in other locational carcinoma (P<0.05).
     Conclusion
     1. We improved and adjusted the LCM-MDA-PCR strategy, and performed it forLOH analysis of AGC and ADS in this study. By this strategy, we investigated LOHstatus of 11 microsatellite markers covering chromosome 18q.
     2. One common deletion region in AGC and two common deletion regions in ADSwere identified. These results suggested these regions might harbor tumor suppressorgenes associated with AGC and ADS.
     3. The common deletion region identified for ADS harbors the known TSG,SMAD4 gene (locate 18q21.1), which already have been linked to gastriccarcinogenesis. This result consists with previous studies on gastric carcinoma.However, SMAD4 was excluded from deletion region in AGC. The LOH frequency ofSMAD4 gene and reduced expression rate of protein in ADS was significantly lowerthan that in AGC (P<0.05).
     4. Chromosome 18q may harbor other some new tumor suppressor genes relatedto AGC.
     5. AGC and ADS have different molecular features, AGC maybe a distinctpathological entity compared with ADS.
引文
1. Ling Yang. Incidence and mortality of gastric cancer in China. World J Gastroenterol 2006; 12(1): 17-20.
    2. Yang L, Parkin DM, Ferlay J, Li L, Chen Y. Estimates of cancer incidence in China for 2000 and projections for 2005. Cancer Epidemiol Biomarkers Prev 2005; 14: 243-250.
    3. Crew KD, Neugut AI. Epidemiology of upper gastrointestinal malignancies. Semin Oncol 2004; 31(4): 450-464.
    4. Mayne ST, Navarro SA. Diet, obesity and reflux in the etiology of adenocarcinomas of the esophagus and gastric cardia in humans. J Nutr 2002; 132(11 Suppl): 3467S-3470S.
    5. Kim MA, Lee HS, Yang HK, Kim WH. Clinicopathologic and protein expression differences between cardia carcinoma and noncardia carcinoma of the stomach. Cancer 2005;103(7):1439-1446.
    6. de Manzoni G, Pedrazzani C, Verlato G, Roviello F, Pasini F, Pugliese R, Cordiano C. Comparison of old and new TNM systems for nodal staging in adenocarcinoma of the gastro-oesophageal junction. Br J Surg 2004;91(3):296-303.
    7. Siewert JR, Stein HJ. Classification of adenocarcinoma of the oesophagogastric junction. Br J Surg 1998;85(11): 1457-1459.
    8. Gleeson CM, Sloan JM, McGuigan JA, Ritchie AJ, Weber JL, Russel SEH. Allelotype analysis of adenocarcinoma of the gastric cardia. Br J Cancer 1997; 76: 1455-1465.
    9. van Dekken H, Geelen E, Dinjens WN, Wijnhoven BP, Tilanus HW, Tanke HJ, Rosenberg C. Comparative genomic hybridization of cancer of the gastroesophageal junction: deletion of 14Q31-32.1 discriminates between esophageal (Barrett's) and gastric cardia adenocarcinomas. Cancer Res 1999;59(3):748-752.
    10. van Dekken H, Alers JC, Riegman PH, Rosenberg C, Tilanus HW, Vissers K. Molecular cytogenetic evaluation of gastric cardia adenocarcinoma and precursor lesions. Am J Pathol 2001;158(6):1961-1967.
    11. Wu MS, Chang MC, Huang SP, Tseng CC, Sheu JC, Lin YW, Shun CT, Lin MT, Lin JT. Correlation of histologic subtypes and replication error phenotype with comparative genomic hybridization in gastric cancer. Genes Chromosomes Cancer 2001; 30(1): 80-86.
    12. Lin L, Prescott MS, Zhu Z, Singh P, Chun SY, Kuick RD, Hanash SM, Orringer MB, Glover TW, Beer DG. Identification and characterization of a 19q12 amplicon in esophageal adenocarcinomas reveals cyclin E as the best candidate gene for this amplicon. Cancer Res 2000; 60(24): 7021-7027.
    13. Lin L, Aggarwal S, Glover TW, Orringer MB, Hanash S, Beer DG. A minimal critical region of the 8p22-23 amplicon in esophageal adenocarcinomas defined using sequence tagged site-amplification mapping and quantitative polymerase chain reaction includes the GATA-4 gene. Cancer Res 2000; 60(5): 1341-1347.
    14. Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 1971; 68(4): 820-823.
    15. Cavenee WK, Dryja TP, Phillips RA, Benedict WF, Godbout R, Gallie BL, Murphree AL, Strong LC, White RL. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 1983; 305(5937): 779-784.
    16. Hogg A, Bia B, Onadim Z, Cowell JK. Molecular mechanisms of oncogenic mutations in tumors from patients with bilateral and unilateral retinoblastoma. Proc Natl Acad Sci U S A 1993; 90(15): 7351-7355.
    17.王振宁,马琳,徐惠绵,姜莉,张成洪,何向民,陈峻青,张学.激光捕获显微切割细胞的全基因组DNA扩增.中华病理学杂志2002:31:76-78.
    18. http://dir.nichd.nih.gov/lcm/lcm.htm
    19. http://genome.ucsc.edu/index.html
    20. http://research.marshfieldclinic.org/genetics/home/index.asp
    21. Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, Kern SE. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996; 271(5247): 350-353.
    22. Schwarte-Waldhoff I, Volpert OV, Bouck NP, Sipos B, Hahn SA, Klein-Scory S, Luttges J, Kloppel G, Graeven U, Eilert-Micus C, Hintelmann A, Schmiegel W. Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proc Natl Acad Sci U S A 2000;97(17):9624-9629.
    23. Reiss M, Santoro V, de Jonge RR, Vellucci VF. Transfer of chromosome 18 into human head and neck squamous carcinoma cells: evidence for tumor suppression by Smad4/DPC4. Cell Growth Differ 1997;8(4):407-415.
    24. Fearon ER, Cho KR, Nigro JM, Kern SE, Simons JW, Ruppert JM, Hamilton SR, Preisinger AC, Thomas G, Kinzler KW, et al. Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 1990;247(4938):49-56.
    25. Klingelhutz AJ, Hedrick L, Cho KR, McDougall JK. The DCC gene suppresses the malignant phenotype of transformed human epithelial cells. Oncogene 1995;10(8):1581-1586.
    26. Zenklusen JC, Conti CJ, Green ED. Mutational and functional analyses reveal that ST7 is a highly conserved tumor-suppressor gene on human chromosome 7q31. Nat Genet 2001;27(4):392-398.
    27. Thomas NA, Choong DY, Jokubaitis VJ, Neville PJ, Campbell IG. Mutation of the ST7 tumor suppressor gene on 7q31.1 is rare in breast, ovarian and colorectal cancers. Nat Genet 2001;29(4):379-380.
    28. Hughes KA, Hurlstone AF, Tobias ES, McFarlane R, Black DM. Absence of ST7 mutations in tumor-derived cell lines and tumors.Nat Genet 2001;29(4):380-381.
    29. Hosono S, Faruqi AF, Dean FB, Du Y, Sun Z, Wu X, Du J, Kingsmore SF, Egholm M, Lasken RS. Unbiased whole-genome amplification directly from clinical samples. Genome Res 2003;13(5):954-964.
    30. Dean FB, Nelson JR, Giesler TL, Lasken RS. Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 2001;11(6):1095-1099.
    31. Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J, Driscoll M, Song W, Kingsmore SF, Egholm M, Lasken RS. Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA 2002;99:5261-5266.
    32. Lage JM, Leamon JH, Pejovic T, Hamann S, Lacey M, Dillon D, Segraves R, Vossbrinck B, Gonzalez A, Pinkel D, Albertson DG, Costa J, Lizardi PM. Whole genome amplification of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array-CGH. Genome Res 2003; 13:294-307.
    33. Kimura Y, Noguchi T, Kawahara K, Kashima K, Daa T, Yokoyama S. Genetic alterations in 102 primary gastric cancers by comparative genomic hybridization: gain of 20q and loss of 18q are associated with tumor progression. Mod Pathol 2004; 17(11): 1328-1337.
    34. Okada K, Sugihara H, Bamba M, Bamba T, Hattori T. Sequential numerical changes of chromosomes 7 and 18 in diffuse-type stomach cancer cell lines: combined comparative genomic hybridization, fluorescence in situ hybridization, and ploidy analyses. Cancer Genet Cytogenet 2000;118(2):99-107.
    35. Inoue T, Uchino S, Shiraishi N, Adachi Y, Kitano S. Loss of heterozygosity on chromosome 18q in cohesive-type gastric cancer is associated with tumour progression and poor prognosis.Clin Cancer Res 1998; 4: 973-977.
    36. Candusso ME, Luinetti O, Villani L, Alberizzi P, Klersy C, Fiocca R, Ranzani GN, Solcia E. Loss of heterozygosity at 18q21 region in gastric cancer involves a number of cancer-related genes and correlates with stage and histology, but lacks independent prognostic value. J Pathol 2002;197(1):44-50.
    37. De Manzoni G, Tomezzoli A, Di Leo A, Moore PS, Talamini G, Scarpa A. Clinical significance of mutator phenotype and chromosome 17p and 18q allelic loss in gastric cancer. Br J Surg 2001; 88: 419-425.
    38. Fazeli A, Dickinson SL, Hermiston ML, Tighe RV, Steen RG, Small CG, Stoeckli ET, Keino-Masu K, Masu M, Rayburn H, Simons J, Bronson RT, Gordon JI, Tessier-Lavigne M, Weinberg RA. Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature 1997;386(6627):796-804.
    39. Fang DC, Jass JR, Wang DX. Loss of heterozygosity and loss of expression of the DCC gene in gastric cancer. J Clin Pathol 1998; 51(8):593-596.
    40. Uchino S, Tsuda H, Noguchi M, Yokota J, Terada M, Saito T, Kobayashi M, Sugimura T, Hirohashi S. Frequent loss of heterozygosity at the DCC locus in gastric cancer. Cancer Res 1992;52:3099-3102.
    41. Yoshida Y, Itoh F, Endo T, Hinoda Y, Imai K. Decreased DCC mRNA expression in human gastric cancers is clinicopathologically significant. Int J Cancer 1998; 79(6):634-639.
    42. Powell SM, Harper JC, Hamilton SR, Robinson CR, Cummings OW. Inactivation of Smad4 in gastric carcinomas. Cancer Res 1997; 57(19):4221-4224.
    43. Kim YH, Lee HS, Lee HJ, Hur K, Kim WH, Bang YJ, Kim SJ, Lee KU, Choe KJ, Yang HK. Prognostic significance of the expression of Smad4 and Smad7 in human gastric carcinomas. Ann Oncol 2004;15(4):574-580.
    44. Kim JY, Park DY, Kim GH, Choi KU, Lee CH, Huh GY, Sol MY, Song GA, Jeon TY, Kim DH, Sim MS. Smad4 expression in gastric adenoma and adenocarcinoma: frequent loss of expression in diffuse type of gastric adenocarcinoma. Histol Histopathol 2005;20(2):543-549.
    45. Lassus H, Salovaara R, Aaltonen LA, Butzow R. Allelic analysis of serous ovarian carcinoma reveals two putative tumor suppressor loci at 18q22-q23 distal to SMAD4, SMAD2, and DCC. Am J Pathol 2001;159(1):35-42.
    46. Harada T, Baril P, Gangeswaran R, Kelly G, Chelala C, Bhakta V, Caulee K, Mahon PC, Lemoine NR. Identification of genetic alterations in pancreatic cancer by the combined use of tissue microdissection and array-based comparative genomic hybridisation. Br J Cancer 2007;96(2):373-382.
    47. Darnell GA, Antalis TM, Johnstone RW, Stringer BW, Ogbourne SM, Harrich D, Suhrbier A. Inhibition of retinoblastoma protein degradation by interaction with the serpin plasminogen activator inhibitor 2 via a novel consensus motif. Mol Cell Biol 2003;23(18):6520-6532.
    48. Xu X, Brodie SG, Yang X, Im YH, Parks WT, Chen L, Zhou YX, Weinstein M, Kim SJ, Deng CX. Haploid loss of the suppressor Smad4/DPC4 initiates gastric polyposis and cancer in mice. Oncogene 2000;19(15):1868-1874.
    49. Xiangming C, Natsugoe S, Takao S, Hokita S, Ishigami S, Tanabe G, Baba M, Kuroshima K, Aikou T. Preserved Smad4 expression in the transforming growth factor beta signaling pathway is a favorable prognostic factor in patients with advanced gastric cancer. Clin Cancer Res 2001; 7: 277-282.
    50.黄国俊,吴英恺.食管癌和贲门癌.上海:上海科学技术出版社,1990:89.
    51.中国抗癌协会编.新编常见恶性肿瘤诊治规范:食管癌和贲门癌分册.北京:北京医科大学中国协和医科大学联合出版社,1999:3.
    52.西满正,野村秀洋,加治隆,他.食道.胃境界领域外科的治疗问题点.胃肠1978,13(11):1497-1507
    53.日本胃癌学会编.胃癌取扱规约.第13版.束京:金原出版,1999
    54. Rudiger Siewert J, Feith M, Werner M, Stein HJ. Adenocarcinoma of the esophagogastric junction: results of surgical therapy based on anatomical/topographic classification in 1,002 consecutive patients. Ann Surg 2000; 232(3): 353-361.
    55. Ohno S, Tomisaki S, Oiwa H, Sakaguchi Y, Ichiyoshi Y, Maehara Y, Sugimachi K. Clinicopathologic characteristics and outcome of adenocarcinoma of the human gastric cardia in comparison with carcinoma of other regions of the stomach. J Am Coll Surg 1995; 180(5): 577-582.
    56. Kajiyama Y, Tsurumaru M, Udagawa H, Tsutsumi K, Kinoshita Y, Ueno M, Akiyama H. Prognostic factors in adenocarcinoma of the gastric cardia: pathologic stage analysis and multivariate regression analysis. J Clin Oncol 1997; 15(5): 2015-2021.
    57. Okabayashi T, Gotoda T, Kondo H, Inui T, Ono H, Saito D, Yoshida S, Sasako M, Shimoda T. Early carcinoma of the gastric cardia in Japan: is it different from that in the West? Cancer 2000; 89(12): 2555-2559.
    58. Hold GL, Rabkin CS, Chow WH, Smith MG, Gammon MD, Risch HA, Vaughan TL, McColl KE, Lissowska J, Zatonski W, Schoenberg JB, Blot WJ, Mowat NA, Fraumeni JF Jr, El-Omar EM. A functional polymorphism of toll-like receptor 4 gene increases risk of gastric carcinoma and its precursors. Gastroenterology 2007; 132(3): 905-912.
    59. Gotze T, Rocken C, Rohl FW, Wex T, Hoffmann J, Westphal S, Malfertheiner P, Ebert MP, Dierkes J. Gene polymorphisms of folate metabolizing enzymes and the risk of gastric cancer. Cancer Lett 2007; 251(2): 228-236.
    60. Wang Y, Guo W, He Y, Chen Z, Wen D, Zhang X, Wang N, Li Y, Ge H, Zhang J. Association of MTHFR C677T and SHMT(1) C1420T with susceptibility to ESCC and GCA in a high incident region of Northern China. Cancer Causes Control 2007;18(2):143-152.
    61. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2002;2(7):489-501.
    62. Ma YY, Wei SJ, Lin YC, Lung JC, Chang TC, Whang-Peng J, Liu JM, Yang DM, Yang WK, Shen CY. PIK3CA as an oncogene in cervical cancer. Oncogene 2000;19(23):2739-2744.
    63. Shayesteh L, Lu Y, Kuo WL, Baldocchi R, Godfrey T, Collins C, Pinkel D, Powell B, Mills GB, Gray JW. PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 1999;21(1):99-102.
    64. Woenckhaus J, Steger K, Werner E, Fenic I, Gamerdinger U, Dreyer T, Stahl U. Genomic gain of PIK3CA and increased expression of p110alpha are associated with progression of dysplasia into invasive squamous cell carcinoma. J Pathol 2002;198(3):335-342.
    65. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004;304(5670):554.
    66. Sui G, Affar el B, Shi Y, Brignone C, Wall NR, Yin P, Donohoe M, Luke MP, Calvo D, Grossman SR, Shi Y. Yin Yang 1 is a negative regulator of p53. Cell 2004;117(7):859-872.
    67. Gronroos E, Terentiev AA, Punga T, Ericsson J. YY1 inhibits the activation of the p53 tumor suppressor in response to genotoxic stress. Proc Natl Acad Sci U S A 2004;101(33):12165-12170.
    68. Lee JW, Soung YH, Kim SY, Lee HW, Park WS, Nam SW, Kim SH, Lee JY, Yoo NJ, Lee SH. PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene 2005; 24(8): 1477-1480.
    69. Li VS, Wong CW, Chan TL, Chan AS, Zhao W, Chu KM, So S, Chen X, Yuen ST, Leung SY. Mutations of PIK3CA in gastric adenocarcinoma. BMC Cancer 2005;5:29.
    1. Moller H. Incidence of cancer of esophagus, cardia and stomach in Denmark. European J of Cancer Prevention 1992; 1(2): 159-164.
    2. Fuchs CS, Mayer RJ. Gastric carcinoma (medical progress). The Nes England J of Medicine 1995; 6(3): 314.
    3. Powell J, McConkey CC. The rising trend in esophageal and adenocarcinoma and gastric cardia. European J of Cancer Prevention 1992; 1(4): 265-269.
    4. Li-Dong Wang, Shu Zheng, Zuo-Yu Zheng, Alan G. Casson. Primary adenocarcinomas of lower esophagus, esophagogastric junction and gastric cardia: in special reference to China. World J Gastroenterol 2003;9(6):1156-1164.
    5. Taniere P, Martel-Planche G, Maurici D, Lombard-Bohas C, Scoazec JY, Montesano R, Berger F, Hainaut P. Molecular and clinical differences between adenocarcinomas of the esophagus and of the gastric cardia.Am J Pathol 2001;158(1):33-40.
    6. El-Serag HB, Mason AC, Petersen N, Key CR. Epidemiological differences between adenocarcinoma of the oesophagus and adenocarcinoma of the gastric cardia in the USA. Gut 2002;50(3):368-372.
    7. Flejou JF, Muzeau F, Potet F, Lepelletier F, Fekete F, Henin D. Overexpression of the p53 tumor suppressor gene product in esophageal and gastric carcinoma. Path Res Prac 1994; 190: 1141-1148.
    8. Ireland AP, Shibata DK, Para Chandrasoma P, Lord RVN, Peters JH, DeMeester TR. Clinical significance of p53 mutations in adenocarcinoma of the esophagus and cardia. Ann Surg 2000;231: 179-187.
    9. Herman van Dekken, Janneke C. Alers, Peter H. J. Riegman, Carla Rosenberg, Hugo W. Tilanus, Kees Vissers .Molecular Cytogenetic Evaluation of Gastric Cardia Adenocarcinoma and Precursor Lesions. American Journal of Pathology 2001;158:1961-1967.
    10. Ming-Shiang Wu, Ming-Chu Chang, Shih-Pei Huang, Chieh-Chih Tseng , Jin-Chuan Sheu, Ya-Wen Lin, Chia-Tung Shun, Ming-Tsan Lin, Jaw-Town Lin. Correlation of histologic subtypes and replication error phenotype with comparative genomic hybridization in gastric cancer. Genes Chromosomes and Cancer 2001; 30(1): 80-86.
    11. Gleeson CM, Sloan JM, McGuigan JA, Ritchie AJ, Weber JL, Russel SEH. Allelotype analysis of adenocarcinoma of the gastric cardia. Br J Cancer 1997; 76: 1455-1465
    12. Lin L, Prescott MS, Zhu Z, Singh P, Chun SY, Kuick RD, Hanash SM, Orringer MB,Glover TW, Beer DG. Identification and characterization of a 19q12 amplicon in esophageal adenocarcinomas reveals cyclin E as the best candidate gene for this amplicon. Cancer Res 2000; 60(24): 7021-7027.
    13. Lin L, Aggarwal S, Glover TW, Orringer MB, Hanash S, Beer DG. A minimal critical region of the 8p22-23 amplicon in esophageal adenocarcinomas defined using sequence tagged site-amplification mapping and quantitative polymerase chain reaction includes the GATA-4 gene. Cancer Res 2000; 60(5): 1341-1347.
    14. Gao H, Wang LD. P53 tumor suppressor gene mutatioin in early esophageal precancerous lesions and cancinoma among high risk populations in henan, china. cancer res 1994, 54(16); 4342.
    15.刘宾,王立东.关于barretts食管.华人消化杂志1999;7(11):921.
    16. Wang LD, Liu B, Zheng S. Analysis of p53 mutational spectra of esophageal squamous cell carcinomas from Linzhou: comparison with esophageal and other cancers from other areas. Zhonghua Liuxing Bingxue Zazhi 2003; 24: 202-205.
    17. Gleeson CM, Sloan JM, McManus DT, Maxwell P, Arthur K, McGuigan JA, Ritchie AJ, Russell SEH. Comparison of p53 and DNA content abnormalities in adenocarcinoma of the esophagus and gastric cardia. Br J Cancer 1998; 77: 277-286.
    18.王立东,李晓芳,周琦,李永欣,高珊珊.贲门癌前病变组织P16和Rb蛋白的表达.河南医科大学学报1997;32(1):55-57.
    19.束余声,肖文恩,顾学文,陶晓钰,石维平,史宏灿,陆世春.抑癌基因P16在食管、贲门癌中的表达及其临床相关性的研究.实用肿瘤学杂志1999;13(2):87-88.
    20.华平,张华,熊利华,黄洪铮.贲门癌中p16和Rb基因表达的研究.广东医学1999;20(5):341-342.
    21.刘迪填,杨捷生,陈于平,杨卫平,陈玉泉.C-erbB-2基因蛋白在贲门癌中的表达及其临床意义.汕头大学医学院学报2002;15(1):23-25.
    22. Pinto-de-Sousa J, David L, Almeida R, Leitao D, Preto JR, Seixas M, Pimenta A. c-erb B-2 expression is associated with tumor location and venous invasion and influences survival of patients with gastric carcinoma. Int J Surg Pathol 2002; 10(4): 247-256.
    23. Roth J, Dobbelstein M, Freedman DA, Shenk T, Levine AJ. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J 1998; 17(2): 554-564.
    24. Freedman DA, Levine AJ. Regulation of the p53 protein by the MDM2 oncoprotein-thirty-eighth G. H. A. Clowes Memorial Award Lecture. Cancer Res 1999; 59(1): 1-7.
    25. Meltzer PS. MDM2 and p53: a question of balance. J Natl Cancer Inst 1994; 86(17): 1265-1226.
    26.薛晓英,段惠军,刘元昀,李英敏.Mdm2基因扩增在贲门癌中的作用及临床病理意义.河北医科大学学报2001;22(1):1-4.
    27.王立东,郑树.河南食管癌高发区人群食管和贲门癌变机制.郑州大学学报(医学版)2002;37(6):717-729.
    28. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10(1): 111-113.
    29.缪小平,邢德印,谭文,吕文富,林东昕.MTHFR基因C677T和A1298C多态与贲门癌的遗传易感性.中华医学杂志2002;82(10)669-672.
    30.李华川,赵新吉,刘海玲,陆士新,王越英,毕美霞.食管癌和贲门癌组织中错配修复基因表达的研究.肿瘤杂志 2002;22(1):23-28.
    31.赫捷,唐槐静,王越英,熊美华,周芳,邵康,李体平.赖氨酰氧化酶基因在上消化道癌组织内的表达及临床意义.癌症2002;21(6):671-674.
    32.马遇庆,陈朝轮,沈宝茵,萨滢娜,柳菊.90例贲门腺癌p53、bcl-2和PCNA异常表达的病理生物学意义.新疆医科大学学报2001;24(2):122-124.
    33.王立东,刘宾,郭瑞锋,白永敏,孙超,益新娜.河南食管癌高发区居民食管和贲门上皮癌变过 程中G-erbB2和c-myc表达的变化.郑州大学学报(医学版)2002;37(6):739-742.
    34.赵锡江,姜宏景,孟晓冬,张熙曾,傅西林,范宇.贲门癌雌激素受体的研究.中国肿瘤临床1998;259(1):33-34.
    35.罗镧,印其友,肖明兵.贲门癌患者肿瘤组织中碱性磷酸酶变化分析.南通医学院学报1999;19(4):429.
    36.郑晓飞,王升启,邢瑞云,朱宝珍,李华,孙志贤.人贲门癌,食管癌细胞端粒酶RNA和端粒酶活性检测.军事医学科学院院刊1998;22(2):122-124.
    37.王强,吴清明,李胜保.细胞学联合端粒酶检测对贲门癌诊断价值的探讨.中国实用内科杂志2001;21(7):400-401.
    38.安继业,王立东,贺新伟,王启鸣,范宗民,高珊珊,郭花芹.河南食管癌高发区食管和贲门癌组织中PTEN蛋白的表达.郑州大学学报(医学版)2002;37(6):750-752.
    39.庄则豪,王立东,高珊珊,范宗民,宋子博,齐义军,李燕杰,李吉学.河南食管癌高发区食管和贲门癌组织中粘蛋白1的表达.郑州大学学报(医学版)2002;37(6):774-777.
    40. Chen H, Wang LD, Guo M, Gao SG, Guo HQ, Fan ZM, Li JL. Alterations of p53 and PCNA in cancer and adjacent tissues from concurrent carcinomas of the esophagus and gastric cardia in the same patient in Linzhou, a high incidence area for esophageal cancer in northem China. World J Gastroenterol 2003; 9(1): 16-21.
    41. Miao X, Xing D, Tan W, Qi J, Lu W, Lin D. Susceptibility to gastric cardia adenocarcinoma and genetic polymorphisms in methylenetetrahydrofolate reductase in an at-risk Chinese population. Cancer Epidemiol Biomarkers Prev 2002; 11(11): 1454-1458.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700