用户名: 密码: 验证码:
LY294002对人骨肉瘤类肿瘤干细胞的影响及其作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1.研究无血清培养法和免疫磁珠分选法用于人骨肉瘤类肿瘤干细胞的分离培养,探讨两者作为分选方法的可行性。
     2.研究Nanog在人骨肉瘤及其类肿瘤干细胞的中的表达及意义。
     3.研究LY294002对人骨肉瘤类肿瘤干细胞增殖和细胞周期的影响,并初步探讨其抑制增殖作用可能的机制。
     4.研究LY294002对人骨肉瘤类肿瘤干细胞凋亡的影响,并初步探讨其诱导凋亡作用可能的机制。
     方法:
     1.无血清培养法分离人骨肉瘤类肿瘤干细胞;免疫磁珠分选CD133+CD44+人骨肉瘤细胞;免疫组织化学法鉴定人骨肉瘤类肿瘤干细胞CD44和CD133的表达情况;蛋白印迹法检测骨肉瘤及其类肿瘤干细胞Nanog的表达并进行半定量分析。
     2.实验分组:LY294002在培养基中的浓度分别为0μmol/L(对照组)、5μmol/L、15μmol/L和45μmol/L。
     3.CCK-8法检测人骨肉瘤类肿瘤干细胞在不同LY294002浓度下的增殖情况;碘化丙啶PI染色流式细胞术检测人骨肉瘤类肿瘤干细胞在不同LY294002浓度下细胞周期的变化;蛋白印迹法法检测人骨肉瘤类肿瘤干细胞在不同LY294002浓度下总AKT、磷酸化AKT和β-肌动蛋白的表达情况。
     4. Annexin V/PI双染法流式细胞术检测人骨肉瘤类肿瘤干细胞在不同LY294002浓度下的凋亡情况;蛋白印迹法检测半胱天冬酶-3、活化型半胱天冬酶-3、半胱天冬酶-9、活化型聚腺苷二磷酸核糖聚合酶和β-肌动蛋白的表达情况。
     结果:
     1.采用无血清培养法可以从人骨肉瘤MG63细胞中分离出成“细胞球”生长的人骨肉瘤类肿瘤干细胞;采用免疫磁珠法可以从人骨肉瘤MG63细胞中分离出CD133+CD44+人骨肉瘤细胞,该细胞亦可在含表皮生长因子和成纤维生长因子的无血清培养基中形成“细胞球”;将上述骨肉瘤类肿瘤干细胞球传代于无血清培养基仍可形成相似的人骨肉瘤类肿瘤干细胞球;人骨肉瘤类肿瘤干细胞CD44和CD133均呈阳性表达;人骨肉瘤类肿瘤干细胞Nanog表达水平强于人骨肉瘤MG63细胞(P<0.05)。
     2.与对照组相比较,无论何种浓度的LY294002均对人骨肉瘤类肿瘤干细胞的增殖有一定的抑制作用,且其抑制作用与剂量有一定的相关性;各干预组与对照组比较人骨肉瘤类肿瘤干细胞中Go/G1期的细胞比例明显增多(P<0.01),增殖指数明显减低(P<0.01);随着LY294002浓度的不断增加,人骨肉瘤类肿瘤干细胞中的pAKT表达量逐渐下降。
     3.随着LY294002浓度的逐渐增加,各干预组活细胞有所下降,而凋亡有所增加,这种对凋亡的促进作用同样表达出一定的剂量依赖性,其中45μmol/L组最为明显(P<0.01);在对照组和干预组中均可以检测到半胱天冬酶-3的表达,但是活化型半胱天冬酶-3只有在干预组中才能观察到明显的表达,且活化型半胱天冬酶-3和聚腺苷二磷酸核糖聚合酶的表达量随LY294002浓度的增高也呈现上升趋势。
     结论:
     1.无血清培养法可以用于人骨肉瘤类肿瘤干细胞的分离和培养;Nanog作为维持细胞多能性的关键蛋白,可能成为分离和鉴定入骨肉瘤类肿瘤干细胞的标志之一。
     2.LY294002对人骨肉瘤类肿瘤干细胞表现出对增殖的抑制作用,该作用可能是通过其抑制PI3K而导致其下游AKT活性减弱,细胞发生G0/G1期细胞周期阻滞所介导的。
     3.LY294002对人骨肉瘤类肿瘤干细胞表现出对凋亡的促进作用,该作用可能是通过其抑制PI3K导致其下游AKT活性减弱,从而激活半胱天冬酶-9、半胱天冬酶-3和聚腺苷二磷酸核糖聚合酶等参与的凋亡通路所介导的。
Objective
     1. To isolate and culture human osteosarcoma cancer stem-like cells with serum-free cell culture method and magnetic activated cell sorting method, and to explore the feasibility of both as sorting method.
     2. To investigate the expression and significance of Nanog in human osteosarcoma and its cancer stem-like cells.
     3. To investigate the effect of LY294002on the proliferation and cell cycle of human osteosarcoma cancer stem-like cells, and to explore the possible mechanism in the inhibitory effect on proliferation.
     4. To investigate the effect of LY294002on the apoptosis of human osteosarcoma cancer stem-like cells, and to explore the possible mechanism to enhance apoptosis.
     Methods
     1. Human osteosarcoma cancer stem-like cells were isolated with serum-free media. CD133+CD44+human osteosarcoma cancer stem-like cells were isolated with magnetic activated cell sorting method. The expression levels of CD44and CD133in human osteosarcoma cancer stem-like cells were detected by using immunohistochemistry. The expression of Nanog in human osteosarcoma and its cancer stem-like cells were detected by western blot and analyzed by semi-quantitative method.
     2. Experimental groups:the concentration of LY294002in culture medium was Oumol/L (control group),5μmol/L,15μmol/L and45μmol/L respectively.
     3. The proliferation of human osteosarcoma cancer stem-like cells under different LY294002concentrations was detected by CCK-8method. The cell cycle disturbutions of human osteosarcoma cancer stem-like cells under different LY294002concentrations was detected by Propyl iodide staining andflow cytometry. Western blotting was employed to detect the expression levels of total Akt, p-Akt and β-actin in human osteosarcoma cancer stem-like cells in different LY294002concentrations.
     4. Annexin V/PI double staining and flow cytometry was employed to detect the apoptosis of human osteosarcoma cancer stem-like cells under different LY294002concentrations. Western blotting was employed to detect the expression levels of Caspase-3cleaved Caspase-3、Caspase-9、cleaved poly ADP-ribose polymerase.
     Results
     1. Human osteosarcoma cancer stem-like cells coule be isolated from human osteosarcoma MG63cells with serum-free media method, and coule grow as cell spheres. The CD133+CD44+human osteosarcoma cells could be isolated from human osteosarcoma MG63cells with magnetic activated cell sorting method, and cells could form cell spheres in serum-free media contained EGF and bFGF. The human osteosarcoma cancer stem-like cells sphere as previously described could be passaged in serum-free media and form similar human osteosarcoma stem-like cells spheres. The osteosarcoma cancer stem-like cells show positive expressions of CD44and CD133. The Nanog was higher expressed in osteosarcoma cancer stem-like cells than human osteosarcoma MG63cells (P<0.05).
     2. Compared with the control group, the proliferation of human osteosarcoma cancer stem-like cells could be significantly inhibited by LY294002regardless of concentration, and the inhibitory effect of LY294002on osteosarcoma cancer stem-like cells maybe dose-dependent. Compared with the control group, LY294002increase the number of osteosarcoma cancer stem-like cells in G0/G1phase (P<0.01) and a corresponding decrease in proliferation index (P<0.01) after treatment with LY294002. LY294002led to a decrease phosphorylation of AKT, and the expressions of phosphorylated AKT was corresponding decreased as the increasing LY294002concentration.
     3. The decrease of viable cells was corresponding to a increase in apoptotic cells with different concentrations of LY294002. The effect of apoptotic enhancement also maybe dose-dependent, and in45μmol/L group was significant (P<0.01). Caspase-3expression could be detected in both control group and the intervention groups, but cleaved caspases-3expression could only be obviously observed in the intervention groups, and cleaved caspases-3and poly ADP-ribose polymerase expression increased with concentration of LY294002.
     Conclusion
     1. Human osteosarcoma cancer stem-like cells could be isolated and cultured in serum-free medium; Nanog, a key protein in the maintenance of cell pluripotency, may serve as a marker for prostate cancer stem cells for isolation and identification of human osteosarcoma cancer stem-like cells.
     2. LY294002could inhibit the proliferation of human osteosarcoma cancer stem-like cells, and this effect may be relative to by inhibition of PI3K and its downstream AKT activity, and induction of G0/G1cell cycle arrest.
     3. LY294002could induce the apoptosis of human osteosarcoma cancer stem-like cells, and the effect may be related to by AKT activity reduction caused by inhibition of PI3K, and activation of Caspase-9, Caspaser3and poly ADP-ribose polymerase.
引文
[1]Schwartz C. L., Gorlick R, Teot L., et al. Multiple drug resistance in osteogenic sarcoma:Int0133 from the children's oncology group [J]. J Clin Oncol, 2007,25(15):2057-2062.
    [2]Caudill J. S., Arndt C. A. Diagnosis and management of bone malignancy in adolescence [J]. Adolesc Med State Art Rev,2007,18(1):62-78, ix.
    [3]Heare T., Hensley M. A., Dell'Orfano S. Bone tumors:Osteosarcoma and ewing's sarcoma [J]. Curr Opin Pediatr,2009,21(3):365-372."
    [4]Makino S. The role of tumor stem-cells in regrowth of the tumor following drastic applications [J]. Acta Unio Int Contra Cancrum,1959,15(Suppl 1):196-198.
    [5]Lapidot T., Sirard C., Vormoor J., et al. A cell initiating human acute myeloid leukaemia after transplantation into scid mice [J]. Nature,1994,367(6464):645-648.
    [6]Visnyei K., Onodera H., Damoiseaux R., et al. A molecular screening approach to identify and characterize inhibitors of glioblastoma stem cells[J]. Mol Cancer Ther.2011, 10(10):1818-1828.
    [7]Zhang S. S., Han Z. P., Jing Y. Y., et al. CD133(+)CXCR4(+) colon cancer cells exhibit metastatic potential and predict poor prognosis of patients [J]. BMC Med.2012,10: 85.
    [8]Szotek P. P., Pieretti-Vanmarcke R., Masiakos P. T., et al. Ovarian cancer side population defines cells with-stem cell-like characteristics and mullerian inhibiting substance responsiveness [J]. Proc Natl Acad Sci U S A,2006,103(30):11154-11159.
    [9]Ma S. Biology and clinical implications of CD133(+) liver cancer stem cells[J]. Exp Cell Res.2013,319(2):126-132.
    [10]Ho M. M., Ng A. V., Lam S., et al. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells [J]. Cancer Res,2007,67(10):4827-4833.
    [11]Lun S. W., Cheung S. T., Cheung P. F., et al. CD44+ cancer stem-like cells in EBV-associated nasopharyngeal carcinoma[J]. PLoS One.2012,7(12):e52426.
    [12]Chen Y., Z.hao J., Luo Y., et al. Isolation and identification of cancer stem-like cells from side population of human prostate cancer cells[J]. J Huazhong Univ Sci Technolog Med Sci.2012,32(5):697-703.
    [13]Cobaleda C., Cruz J. J., Gonzalez-Sarrmiento R., et al. The emerging picture of human breast cancer as a stem cell-based disease [J]. Stem Cell Rev,2008,4(2):67-79.
    [14]Delude C. Tumorigenesis:Testing ground for cancer stem cells [J]. Nature, 2011,480(7377):S43-45.
    [15]Reya T., Morrison S. J., Clarke M. F., et al. Stem cells, cancer, and cancer stem cells [J]. Nature,2001,414(6859):105-111.
    [16]Lou N., Wang Y, Sun D., et al. Isolation of stem-like cells from human MG-63 osteosarcoma cells using limiting dilution in combination with vincristine selection [J]. Indian J Biochem Biophys,2010,47(6):340-347.
    [17]Gibbs C. P., Kukekov V. G, Reith J. D., et al. Stem-like cells in bone sarcomas: Implications for tumorigenesis [J]. Neoplasia,2005,7(11):967-976.
    [18]Wilson H., Huelsmeyer M., Chun R., et al. Isolation and characterisation of cancer stem cells from canine osteosarcoma [J]. Vet J,2008,175(1):69-75.
    [19]Fujii H., Honoki K., Tsujiuchi T., et al. Sphere-forming stem-like cell populations with drug resistance in human sarcoma cell lines [J]. Int J Oncol,2009,34(5):1381-1386.
    [20]Zhao C, Chen A., Jamieson C. H., et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia [J]. Nature, 2009,458(7239):776-779.
    [21]Liu B., Ma W., Jha R. K., et al. Cancer stem cells in osteosarcoma:Recent progress and perspective [J]. Acta Oncol,2011,50(8):1142-1150.
    [22]Furuya F., Lu C., Willingham M. C., et al. Inhibition of phosphatidylinositol 3-kinase delays tumor progression and blocks metastatic spread in a mouse model of thyroid cancer[J]. Carcinogenesis.2007,28(12):2451-2458..
    [23]Cantley L. C. The phosphoinositide 3-kinase pathway [J]. Science, 2002,296(5573):1655-1657.
    [24]Vanhaesebroeck B., Stephens L., Hawkins P. PI3K signalling:the path to discovery and understanding[J]. Nat Rev Mol Cell Biol.2012,13(3):195-203.
    [25]Sale E. M., Hodgkinson C. P., Jones N. P., et al. A new strategy for studying protein kinase b and its three isoforms. Role of protein kinase B in phosphorylating glycogen synthase kinase-3, Tuberin, Wnkl, and ATP citrate lyase [J]. Biochemistry, 2006,45(1):213-223.
    [26]Toriumi D. M., O'Grady K., Desai D., et al. Use of octyl-2-cyanoacrylate for skin closure in facial plastic surgery [J]. Plast Reconstr Surg,1998,102(6):2209-2219.
    [27]Zhang H., Bajraszewski N., Wu E., et al. Pdgfrs are critical for PI3K/AKT activation and negatively regulated by mtor [J]. J Clin Invest,2007,117(3):730-738.
    [28]Xu Q., Simpson S. E., Scialla T. J., et al. Survival of acute myeloid leukemia cells requires PI3 kinase activation [J]. Blood,2003,102(3):972-980.
    [29]Zhou J., Wulfkuhle J., Zhang H., et al. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance [J]. Proc Natl Acad SciUSA,2007,104(41):16158-16163.
    [30]Eyler C. E., Foo W. C., LaFiura K. M., et al. Brain cancer stem cells display preferential sensitivity to AKT inhibition [J]. Stem Cells,2008,26(12):3027-3036.
    [1]Siclari V. A., Qin L. Targeting the osteosarcoma cancer stem cell [J]. J Orthop Surg Res, 2010,5:78.
    [2]Lapidot T., Sirard C., Vormoor J., et al. A cell initiating human acute myeloid leukaemia after transplantation into scid mice [J]. Nature,1994,367(6464):645-648.
    [3]Ignatova T. N., Kukekov V.G., Laywell E. D., et al. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro [J]. Glia, 2002,39(3):193-206.
    [4]Tang C., Ang B. T., Pervaiz S. Cancer stem cell:Target for anti-cancer therapy [J]. FASEB J,2007,21(14):3777-3785.
    [5]Ischenko I., Seeliger H., Schaffer M., et al. Cancer stem cells:How can we target them? [J]. Curr Med Chem,2008,15(30):3171-3184
    [6]Gibbs C. P., Kukekov V. G., Reith J. D., et al. Stem-like cells in bone sarcomas: Implications for tumorigenesis [J]. Neoplasia,2005,7(11):967-976.
    [7]Wilson H., Huelsmeyer M., Chun R., et al. Isolation and characterisation of cancer stem cells from canine osteosarcoma [J]. Vet J,2008,175(1):69-75.
    [8]Wang L., Park P., Lin C. Y. Characterization of stem cell attributes in human osteosarcoma cell lines [J]. Cancer Biol Ther,2009,8(6):543-552.
    [9]Huang Y., Dai H., Guo Q. N. TSSC3 overexpression reduces stemness and induces apoptosis of osteosarcoma tumor-initiating cells [J]. Apoptosis,2012,17(8):749-761.
    [10]欧阳振,王栓科,康学文,等.人骨肉瘤细胞株中类肿瘤干细胞的分离培养及鉴定[J].肿瘤,2008,28(1):36-39.
    [11]He A., Qi W., Huang Y, et al. CD133 expression predicts lung metastasis and poor prognosis in osteosarcoma patients:A clinical and experimental study [J]. Exp Ther Med, 2012,4(3):435-441.
    [12]Sheng X., Li Z., Wang D. L., et al. Isolation and enrichment of PC-3 prostate cancer stem-like cells using macs and serum-free medium [J]. Oncol Lett,2013,5(3):787-792.
    [13]Joo K. M., Nam D. H. Prospective identification of cancer stem cells with the surface antigen CD133 [J]. Methods Mol Biol,2009,568:57-71.
    [14]韩兴文,王栓科,康学文,等.Nanog mRNA在骨肉瘤类肿瘤干细胞中的表达和意义[J].第四军医大学学报,2009,30(6):513-516.
    [15]Himelstein B. P., Asada N., Carlton M. R., et al. Matrix metalloproteinase-9 (MMP-9) expression in childhood osseous osteosarcoma [J]. Med Pediatr Oncol, 1998,31(6):471-474.
    [16]Adhikari A. S., Agarwal N., Wood B. M., et al. CD117 and Stro-1 identify osteosarcoma tumor-initiating cells associated with metastasis and drug resistance [J]. Cancer Res,2010,70(11):4602-4612.
    [17]Romet-Lemonne J. L., Mills B., Fridman W. H., et al. Prospectively planned analysis of data from a phase iii study of liposomal muramyltripeptide phosphatidylethanolamine in the treatment of osteosarcoma [J]. J Clin Oncol,2005,23(26):6437-6438.
    [18]Reya T., Morrison S. J., Clarke M. F., et al. Stem cells, cancer, and cancer stem cells [J]. Nature,2001,414(6859):105-111.
    [19]Soltysova A., Altanerova V., Altaner C. Cancer stem cells [J]. Neoplasma, 2005,52(6):435-440.
    [20]Tang D. G. Understanding cancer stem cell heterogeneity and plasticity [J]. Cell Res. 2012,22(3):457-472.
    [21]Lou N., Wang Y, Sun D., et al. Isolation of stem-like cells from human mg-63 osteosarcoma cells using limiting dilution in combination with vincristine selection [J]. Indian J Biochem Biophys,2010,47(6):340-347.
    [22]Delude C. Tumorigenesis:Testing ground for cancer stem cells [J]. Nature, 2011,480(7377):S43-45.
    [23]Dave B., Landis M. D., Dobrolecki L. E., et al. Selective small molecule Stat3 inhibitor reduces breast cancer tumor-initiating cells and improves recurrence free survival in a human-xenograft model[J]. PLoS One.2012,7(8):e30207.
    [24]Sampieri K., Fodde R.. Cancer stem cells and metastasis [J]. Semin Cancer Biol.2012, 22(3):187-193.
    [25]Martins-Neves S. R., Lopes A. O., do Carmo A., et al. Therapeutic implications of an enriched cancer stem-like cell population in a human osteosarcoma cell line [J]. BMC Cancer,2012,12:139.
    [26]Zahreddine H., Borden K. L. Mechanisms and insights into drug resistance in cancer[J]. Front Pharmacol.2013,4:28.
    [27]Moitra K., Lou H., Dean M. Multidrug efflux pumps and cancer stem cells:Insights into multidrug resistance and therapeutic development [J]. Clin Pharmacol Ther, 2011,89(4):491-502.
    [28]Moore N., Lyle S. Quiescent, slow-cycling stem cell populations in cancer:A review of the evidence and discussion of significance [J]. J Oncol,2011,2011(
    [29]Gillette J., Nielsen-Preiss S. Cancer stem cells:Seeds of growth in osteosarcoma [J]. Cancer Biol Ther,2009,8(6):553-554.
    [30]Baccelli I., Trumpp A. The evolving concept of cancer and metastasis stem cells[J]. J Cell Biol.2012,198(3):281-293.
    [31]Misra S., Hascall V. C., Berger F. G, et al. Hyaluronan, CD44, and cyclooxygenase-2 in colon cancer [J]. Connect Tissue Res,2008,49(3):219-224.
    [32]Misra S., Toole B. P., Ghatak S. Hyaluronan constitutively.regulates activation of multiple receptor tyrosine kinases in epithelial and carcinoma cells [J]. J Biol Chem, 2006,281 (46):34936-34941.
    [33]Liu B., Ma W., Jha R. K., et al. Cancer stem cells in osteosarcoma:Recent progress and perspective [J]. Acta Oncol,2011,50(8):1142-1150.
    [34]Clevers H. The cancer stem cell:premises, promises and challenges[J]. Nat Med.2011, 17(3):313-319.
    [35]Reynolds B. A., Rietze R. L. Neural stem cells and neurospheres--re-evaluating the relationship [J]. Nat Methods,2005,2(5):333-336.
    [36]宫晨,郭风劲,秦亮,等.LY294002抑制PI3K/Akt通路对人骨肉瘤类肿瘤干细胞增殖的影响[J].中华实验外科杂志,2011,28(12):2215-2217.
    [37]Fujii H., Honoki K., Tsujiuchi T., et al. Sphere-forming stem-like cell populations with drug resistance in human sarcoma cell lines [J]. Int J Oncol,2009,34(5):1381-1386.
    [38]Chambers I., Colby D., Robertson M., et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells [J]. Cell,2003,113(5):643-655.
    [39]Mitsui K., Tokuzawa Y, Itoh H:;et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells [J]. Cell,2003,113(5):631-642.
    [40]Yu J., Vodyanik M. A., Smuga-Otto K., et al. Induced pluripotent stem cell lines derived from human somatic cells [J]. Science,2007,318(5858):1917-1920.
    [41]Baltus G A., Kowalski M. P., Tutter A. V., et al. A positive regulatory role for the mSin3A-HDAC complex in-pluripotency through nanog and Sox2 [J]. J Biol Chem, 2009,284(11):6998-7006.
    [42]Ambady S., Malcuit C., Kashpur O., et al. Expression of NANOG and NANOGP8 in a variety of undifferentiated and differentiated human cells[J]. Int J Dev Biol.2010, 54(11-12):1743-1754.
    [43]Uchino K., Hirano G., Hirahashi M., et al. Human Nanog pseudogene8 promotes the proliferation of gastrointestinal cancer cells[J]. Exp Cell Res.2012,318(15):1799-1807.
    [44]Zhao R., Daley G Q. From fibroblasts to ips cells:Induced pluripotency by defined factors [J]. J Cell Biochem,2008,105(4):949-955.
    [45]Greco S. J., Liu K., Rameshwar P. Functional similarities among genes regulated by Oct4 in human mesenchymal and embryonic stem cells [J]. Stem Cells, 2007,25(12):3143-3154.
    [46]Gao F., Wei Z., An W., et al. The interactomes of POU5F1 and SOX2 enhancers in human embryonic stem cells[J]. Sci Rep.2013,3:1588.
    [47]Park S. W., Lim H. Y., Do H. J., et al. Regulation of human growth and differentiation factor 3 gene expression by NANOG in human embryonic carcinoma NCCIT cells[J]. FEBS Lett.2012,586(19):3529-3535.
    [48]Ben-Porath I., Thomson M. W., Carey V. J., et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors [J]. Nat Genet, 2008,40(5):499-507.
    [49]Liu A., Cheng L., Du J., et al. Diagnostic utility of novel stem cell markers SALL4, OCT4, NANOG, SOX2, UTF1, and TCL1 in primary mediastinal germ cell tumors[J]. Am J Surg Pathol.2010,34(5):697-706.
    [50]Gillis A. J., Stoop H., Biermann K., et al. Expression and interdependencies of pluripotency factors LIN28, OCT3/4, NANOG and SOX2 in human testicular germ cells and tumours of the testis[J]. Int J Androl.2011,34(4 Pt 2):e160-e174.
    [51]Xu C. X., Xu M., Tan L., et al. MicroRNA miR-214 regulates ovarian cancer cell stemness by targeting p53/Nanog[J]. J Biol Chem.2012,287(42):34970-34978.
    [52]Tanaka Y., Era T., Nishikawa S., et al. Forced expression of nanog in hematopoietic stem cells results in a gammadeltat-cell disorder [J]. Blood,2007,110(1):107-115.
    [53]Tsai L. L., Yu C. C., Chang Y. C., et al. Markedly increased Oct4 and Nanog expression correlates with cisplatin resistance in oral squamous cell carcinoma[J], J Oral Pathol Med.2011,40(8):621-628.
    [54]Guzman-Ramirez N., Voller M., Wetterwald A., et al. In vitro propagation and characterization of neoplastic stem/progenitor-like cells from human prostate cancer tissue [J]. Prostate,2009,69(15):1683-1693.
    [55]Ibrahim E. E., Babaei-Jadidi R., Saadeddin A., et al. Embryonic nanog activity defines colorectal cancer stem cells and modulates through API-and TCF-dependent mechanisms [J]. Stem Cells,2012,30(10):2076-2087.
    [56]Tomuleasa C., Soritau O., Rus-Ciuca D., et al. Functional and molecular characterization of glioblastoma multiforme-derived cancer stem cells [J]. J BUON, 2010,15(3):583-591.
    [57]Watanabe K., Meyer M. J., Strizzi L., et al. Cripto-1 is a cell surface marker for a tumorigenic, undifferentiated subpopulation in human embryonal carcinoma cells [J]. Stem Cells,2010,28(8):1303-1314.
    [58]Yin B. B., Wu S. J., Zong H. J., et al. Preliminary screening and identification of stem cell-like sphere clones in a gallbladder cancer cell line GBC-SD [J]. J Zhejiang Univ Sci B, 2011,12(4):256-263.
    [59]Zhang G, Ma L., Xie Y. K., et al. Esophageal cancer tumorspheres involve cancer stem-like populations with elevated aldehyde dehydrogenase enzymatic activity [J]. Mol Med Rep,2012,6(3):519-524.
    [60]Li Y, Higashiyama S., Shimakage M., et al. Involvement of nanog upregulation in malignant progression of human cells [J]. DNA Cell Biol,2013,32(3):104-110.
    [61]Tirino V., Desiderio V., Paino F., et al. Human primary bone sarcomas contain CD133+ cancer stem cells displaying high tumorigenicity in vivo [J]. FASEB J, 2011,25(6):2022-2030.
    [1]Herzog C. E. Overview of sarcomas in the adolescent and young adult population [J]. J Pediatr Hematol Oncol,2005,27(4):215-218.
    [2]Rosen G, Murphy M. L., Huvos A. G, et al. Chemotherapy, en bloc resection, and prosthetic bone replacement in the treatment of osteogenic sarcoma [J]. Cancer, 1976,37(1):1-11.
    [3]Sasaki T., Sasaki J., Sakai T., et al. The physiology of phosphoinositides [J]. Biol Pharm Bull,2007,30(9):1599-1604.
    [4]Cantley L. C. The phosphoinositide 3-kinase pathway [J]. Science, 2002,296(5573):1655-1657.
    [5]Vanhaesebroeck B., Leevers S. J., Ahmadi K., et al. Synthesis and function of 3-phosphorylated inositol lipids [J]. Annu Rev Biochem,2001,70:535-602.
    [6]Poh T. W., Pervaiz S. LY294002 and LY303511 sensitize tumor cells to drug-induced apoptosis via intracellular hydrogen peroxide production independent of the phosphoinositide 3-kinase-Akt pathway [J]. Cancer Res,2005,65(14):6264-6274.
    [7]Liu B., Qu L., Yang Z., et al. Cyclooxygenase-2 inhibitors induce anoikis in osteosarcoma via PI3k/AKT pathway [J]. Med Hypotheses,2012,79(1):98-100.
    [8]Ruoslahti E., Reed J. C. Anchorage dependence, integrins, and apoptosis [J]. Cell, 1994,77(4):477-478.
    [9]Walker E. H., Pacold M. E., Perisic O., et al. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine [J]. Mol Cell,2000,6(4):909-919.
    [10]Teranishi F., Takahashi N., Gao N., et al. Phosphoinositide 3-kinase inhibitor (wortmannin) inhibits pancreatic cancer cell motility and migration induced by hyaluronan in vitro and peritoneal metastasis in vivo [J]. Cancer Sci,2009,100(4):770-777.
    [11]宫晨,郭风劲,秦亮,等.LY294002抑制PI3K/AKT通路对人骨肉瘤类肿瘤干细胞增殖的影响[J].中华实验外科杂志,2011,28(12):2215-2217.
    [12]Gong C, Liao H., Wang J., et al. LY294002 induces G0/G1 cell cycle arrest and apoptosis of cancer stem-like cells from human osteosarcoma via down-regulation of PI3K activity [J]. Asian Pac J Cancer Prev,2012,13(7):3103-3107.
    [13]Lee C. M., Fuhrman C. B., Planelles V., et al. Phosphatidylinositol 3-kinase inhibition by LY294002 radiosensitizes human cervical cancer cell lines [J]. Clin Cancer Res, 2006,12(1):250-256.
    [14]Rosen J. M., Jordan C. T. The increasing complexity of the cancer stem cell paradigm [J]. Science,2009,324(5935):1670-1673.
    [15]Carnero A. The PKB/AKT pathway in cancer [J]. Curr Pharm Des,2010,16(1):34-44.
    [16]Altomare D. A., Testa J. R. Perturbations of the AKT signaling pathway in human cancer [J]. Oncogene,2005,24(50):7455-7464.
    [17]Bozulic L., Hemmings B. A. PIKKing on PKB:regulation of PKB activity by phosphorylation[J]. Curr Opin Cell Biol.2009,21(2):256-261.
    [18]Benter I. F., Al-Rashdan I., Juggi J. S., et al. Chronic treatment with LY294002, an inhibitor of phosphatidylinositol 3-kinase, attenuates ischemia/reperfusion-induced cardiac dysfunction in normotensive and hypertensive diabetic animals [J]. Mol Cell Biochem. 2013,373(1-2):259-264.
    [19]Mahajan K., Mahajan N. P. PI3K-independent AKT activation in cancers:a treasure trove for novel therapeutics [J]. J Cell Physiol.2012,227(9):3178-3184.
    [20]Roche S., Koegl M., Courtneidge S. A. The phosphatidylinositol 3-kinase alpha is required for DNA synthesis induced by some, but not all, growth factors [J]. Proc Natl Acad Sci U S A,1994,91(19):9185-9189.
    [21]Shivakrupa R., Bernstein A., Watring N., et al. Phosphatidylinositol 3'-kinase is required for growth of mast cells expressing the kit catalytic domain mutant [J]. Cancer Res, 2003,63(15):4412-4419.
    [22]Semba S., Itoh N., Ito M., et al. The in vitro and in vivo effects of 2-(4-morpholinyl)-8-phenyl-chromone (LY294002), a specific inhibitor of phosphatidylinositol 3'-kinase, in human colon cancer cells [J]. Clin Cancer Res,2002,8(6):1957-1963.
    [23]Bondar V. M., Sweeney-Gotsch B., Andreeff M., et al. Inhibition of the phosphatidylinositol 3'-kinase-akt pathway induces apoptosis in pancreatic carcinoma cells in vitro and in vivo [J]. Mol Cancer Ther,2002,1(12):989-997.
    [24]Hu H., Jiang C., Li G, et al. PKB/AKT and ERK regulation of caspase-mediated apoptosis by methylseleninic acid in lncap prostate cancer cells [J]. Carcinogenesis, 2005,26(8):1374-1381.
    [25]Hemmings B. A., Restuccia D. F. PI3K-PKB/AKT pathway [J]. Cold Spring Harb Perspect Biol,2012,4(9):a011189.
    [26]Alessi D. R., James S. R., Downes C. P., et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase balpha [J]. Curr Biol,1997,7(4):261-269.
    [27]Feng J., Park J., Cron P., et al. Identification of a PKB/AKT hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase [J]. J Biol Chem,2004,279(39): 41189-41196.
    [28]Sarbassov D. D., Guertin D. A., Ali S. M., et al. Phosphorylation and regulation of AKT/PKB by the rictor-mTOR complex [J]. Science,2005,307(5712):1098-1101.
    [29]Hu L., Hofinann J., Lu Y., et al. Inhibition of phosphatidylinositol 3'-kinase increases efficacy of paclitaxel in in vitro and in vivo ovarian cancer models [J]. Cancer Res, 2002,62(4):1087-1092.
    [30]Hu L., Zaloudek C., Mills G. B., et al. In vivo and in vitro ovarian carcinoma growth inhibition by a phosphatidylinositol 3-kinase inhibitor (LY294002) [J]. Clin Cancer Res, 2000,6(3):880-886.
    [31]Fujiwara M., Izuishi K., Sano T., et al. Modulating effect of the PI3-kinase inhibitor LY294002 on cisplatin in human pancreatic cancer cells [J]. J Exp Clin Cancer Res, 2008,27:76.
    [32]Liang J., Slingerland J. M. Multiple roles of the PI3K/PKB (AKT) pathway in cell cycle progression [J]. Cell Cycle,2003,2(4):339-345.
    [33]Yoshioka T., Yogosawa S., Yamada T., et al. Combination of a novel hdac inhibitor OBP-801/YM753 and a PI3K inhibitor LY294002 synergistically induces apoptosis in human endometrial carcinoma cells due to increase of bim with accumulation of ros [J]. Gynecol Oncol,2013.
    [34]Li C., Liu V. W., Chan D. W., et al. LY294002 and metformin cooperatively enhance the inhibition of growth and the induction of apoptosis of ovarian cancer cells [J]. Int J Gynecol Cancer,2012,22(1):15-22.
    [35]Mikami I., Zhang F., Hirata T., et al. Inhibition of activated phosphatidylinositol 3-kinase/AKT pathway in malignant pleural mesothelioma leads to G1 cell cycle arrest [J]. Oncol Rep,2010,24(6):1677-1681.
    [36]Casagrande F., Bacqueville D., Pillaire M. J., et al. G1 phase arrest by the phosphatidylinositol 3-kinase inhibitor LY 294002 is correlated to up-regulation of p27kipl and inhibition of G1 CDKs in choroidal melanoma cells [J]. FEBS Lett, 1998,422(3):385-390.
    [37]Shin J. Y., Kim J. O., Lee S. K., et al. LY294002 may overcome 5-FU resistance via down-regulation of activated p-AKT in Epstein-Barr virus-positive gastric cancer cells[J]. BMC Cancer.2010,10:425.
    [1]Green D. R. Apoptotic pathways:Paper wraps stone blunts scissors [J]. Cell, 2000,102(1):1-4.
    [2]Poh T. W., Pervaiz S. LY294002 and LY303511 sensitize tumor cells to drug-induced apoptosis via intracellular hydrogen peroxide production independent of the phosphoinositide 3-kinase-Akt pathway [J]. Cancer Res,2005,65(14):6264-6274.
    [3]Cantley L. C. The phosphoinositide 3-kinase pathway [J]. Science, 2002,296(5573):1655-1657.
    [4]Jiang B. H., Liu L. Z. PI3K/PTEN signaling in tumorigenesis and angiogenesis [J]. Biochim Biophys Acta,2008,1784(1):150-158.
    [5]Lee S. H., Kim H. S., Park W. S., et al. Non-small cell lung cancers frequently express phosphorylated AKT; an immunohistochemical study [J]. APMIS,2002,110(7-8):587-592.
    [6]Sun M., Wang G, Paciga J. E., et al. AKT1/PKBalpha kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 cells [J]. Am J Pathol,2001,159(2):431-437.
    [7]Coffey J. C., Wang J. H., Smith M. J., et al. Phosphoinositide 3-kinase accelerates postoperative tumor growth by inhibiting apoptosis and enhancing resistance to chemotherapy-induced apoptosis. Novel role for an old enemy [J]. J Biol Chem, 2005,280(22):20968-20977.
    [8]Jiang H., Fan D., Zhou G, et al. Phosphatidylinositol 3-kinase inhibitor(LY294002) induces apoptosis of human nasopharyngeal carcinoma in vitro and in vivo [J]. J Exp Clin Cancer Res,2010,29:34.
    [9]Gong C., Liao H., Wang J., et al. LY294002 induces G0/G1 cell cycle arrest and apoptosis of cancer stem-like cells from human osteosarcoma via down-regulation of PI3K activity [J]. Asian Pac J Cancer Prev,2012,13(7):3103-3107.
    [10]Fujiwara M., Izuishi K., Sano T., et al. Modulating effect of the PI3-kinase inhibitor LY294002 on cisplatin in human pancreatic cancer cells [J]. J Exp Clin Cancer Res, 2008,27:76.
    [11]Franke T. F., Kaplan D. R., Cantley L. C. PI3K:Downstream Aktion blocks apoptosis [JJ. Cell,1997,88(4):435-437.
    [12]Casagrande F., Bacqueville D., Pillaire M. J., et al. G1 phase arrest by the phosphatidylinositol 3-kinase inhibitor LY 294002 is correlated to up-regulation of p27kip1 and inhibition of G1 CDKs in choroidal melanoma cells [J]. FEBS Lett, 1998,422(3):385-390.
    [13]Hu L., Zaloudek C., Mills G. B., et al. In vivo and in vitro ovarian carcinoma growth inhibition by a phosphatidylinositol 3-kinase inhibitor (LY294002) [J]. Clin Cancer Res, 2000,6(3):880-886.
    [14]Budihardjo I., Oliver H., Lutter M., et al. Biochemical pathways of caspase activation during apoptosis [J]. Annu Rev Cell Dev Biol,1999,15:269-290.
    [15]Semba S., Itoh N., Ito M., et al. The in vitro and in vivo effects of 2-(4-morpholinyl)-8-phenyl-chromone (LY294002), a specific inhibitor of phosphatidylinositol 3'-kinase, in human colon cancer cells [J]. Clin Cancer Res, 2002,8(6):1957-1963.
    [16]Xing C., Zhu B., Liu H., et al. Class I phosphatidylinositol 3-kinase inhibitor LY294002 activates autophagy and induces apoptosis through p53 pathway in gastric cancer cell line SGC7901 [J]. Acta Biochim Biophys Sin (Shanghai),2008,40(3):194-201.
    [17]Ng S. S., Tsao M. S., Nicklee T., et al. Wortmannin inhibits PKB/AKT phosphorylation and promotes gemcitabine antitumor activity in orthotopic human pancreatic cancer xenografts in immunodeficient mice [J]. Clin Cancer Res,2001,7(10):3269-3275.
    [18]Toretsky J. A., Thakar M., Eskenazi A. E., et al. Phosphoinositide 3-hydroxide kinase blockade enhances apoptosis in the Ewing's sarcoma family of tumors [J]. Cancer Res, 1999,59(22):5745-5750.
    [19]黄秀兰,崔国辉,周克元.PI3K-AKT信号通路与肿瘤细胞凋亡关系的研究进展[J].癌症,2008,27(3):331-336.
    [20]Martelli A. M., Faenza I., Billi A. M., et al. Intranuclear 3'-phosphoinositide metabolism and AKT signaling:New mechanisms for tumorigenesis and protection against apoptosis? [J]. Cell Signal,2006,18(8):1101-1107.
    [21]Duronio V. The life of a cell:Apoptosis regulation by the PI3K/PKB pathway [J]. Biochem J,2008,415(3):333-344.
    [22]Parcellier A., Tintignac L. A., Zhuravleva E., et al. PKB and the mitochondria:Akting on apoptosis [J]. Cell Signal,2008,20(1):21-30.
    [23]Datta S. R., Dudek H., Tao X., et al. AKT phosphorylation of bad couples survival signals to the cell-intrinsic death machinery [J]. Cell,1997,91(2):231-241.
    [24]Scheid M. P., Duronio V. Dissociation of cytokine-induced phosphorylation of bad and activation of PKB/AKT:Involvement of mek upstream of bad phosphorylation [J]. Proc Natl Acad Sci U S A,1998,95(13):7439-7444.
    [25]Craddock B. L., Orchiston E. A., Hinton H. J., et al. Dissociation of apoptosis from proliferation, protein kinase B activation, and bad phosphorylation in interleukin-3-mediated phosphoinositide 3-kinase signaling [J]. J Biol Chem, 1999,274(15):10633-10640.
    [26]Hinton H. J., Welham M. J. Cytokine-induced protein kinase B activation and bad phosphorylation do not correlate with cell survival of hemopoietic cells [J]. J Immunol, 1999,162(12):7002-7009.
    [27]Gardai S. J., Hildeman D. A., Frankel S. K., et al. Phosphorylation of Bax Ser184 by AKT regulates its activity and apoptosis in neutrophils [J]. J Biol Chem, 2004,279(20):21085-21095.
    [28]Linseman D. A., Butts B. D., Precht T. A., et al. Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis [J]. J Neurosci,2004,24(44):9993-10002.
    [29]Xin M., Deng X. Nicotine inactivation of the proapoptotic function of Bax through phosphorylation [J]. J Biol Chem,2005,280(11):10781-10789.
    [30]Yu J., Zhang L. Puma, a potent killer with or without p53 [J]. Oncogene,2008,27 Supp11(S71-83.
    [31]Yang Y, Zhao Y, Liao W., et al. Acetylation of FOXO1 activates Bim expression to induce apoptosis in response to histone deacetylase inhibitor depsipeptide treatment [J]. Neoplasia,2009,11(4):313-324.
    [32]Burgering B. M., Medema R. H. Decisions on life and death:FOXO forkhead transcription factors are in command when PKB/AKT is off duty [J]. J Leukoc Biol, 2003,73(6):689-701.
    [33]Cardone M. H., Roy N., Stennicke H. R., et al. Regulation of cell death protease caspase-9 by phosphorylation [J]. Science,1998,282(5392):1318-1321.
    [34]Yang L., Sun M., Sun X. M., et al. AKT attenuation of the serine protease activity of HTRA2/OMI through phosphorylation of serine 212 [J]. J Biol Chem, 2007,282(15):10981-10987.
    [35]Brunet A., Bonni A., Zigmond M. J., et al. AKT promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor [J]. Cell, 1999,96(6):857-868.
    [36]Konishi T., Sasaki S., Watanabe T., et al. Overexpression of hRFI inhibits 5-fluorouracil-induced apoptosis in colorectal cancer cells via activation of NF-kappaB and upregulation of Bcl-2 and Bcl-xl [J]. Oncogene,2006,25(22):3160-3169.
    [37]Karin M. and Ben-Neriah Y. Phosphorylation meets ubiquitination:The control of NF-[kappa]B activity [J]. Annu Rev Immunol,2000,18:621-663.
    [38]Lauder A., Castellanos A., Weston K. C-myb transcription is activated by protein kinase B (PKB) following interleukin 2 stimulation of tcells and is required for pkb-mediated protection from apoptosis [J]. Mol Cell Biol,2001,21(17):5797-5805.
    [39]Barkett M., Gihnore T. D. Control of apoptosis by Rel/NF-kappaB transcription factors [J]. Oncogene,1999,18(49):6910-6924.
    [40]Luan Y., Yang Q., Xie Y., et al. A sensitive near-infrared fluorescent probe for caspase-mediated apoptosis:Synthesis and application in cell imaging [J]. Drug Discov Ther,2011,5(5):220-226.
    [41]Zhang Y, Johansson E., Miller M. L., et al. Identification of a conserved anti-apoptotic protein that modulates the mitochondrial apoptosis pathway [J]. PLoS One, 2011,6(9):e25284.
    [1]Jemal A., Siegel R., Ward E., et al. Cancer statistics,2009 [J]. CA Cancer J Clin, 2009,59(4):225-249.
    [2]Gaikwad S. M., Ray P. Non-invasive imaging of PI3K/AKT/mTOR signalling in cancer [J]. Am J Nucl Med Mol Imaging,2012,2(4):418-431.
    [3]Falasca M. PI3K/AKT signalling pathway specific inhibitors:A novel strategy to sensitize cancer cells to anti-cancer drugs [J]. Curr Pharm Des,2010,16(12):1410-1416.
    [4]DeVita V. T., Jr., Chu E. A history of cancer chemotherapy [J]. Cancer Res, 2008,68(21):8643-8653.
    [5]Ma W. W., Adjei A. A. Novel agents on the horizon for cancer therapy [J]. CA Cancer J Clin,2009,59(2):111-137.
    [6]Pauwels E. K., Erba P., Mariani G, et al. Multidrug resistance in cancer:Its mechanism and its modulation [J]. Drug News Perspect,2007,20(6):371-377.
    [7]Fallica B., Makin G, Zaman M. H. Bioengineering approaches to study multidrug resistance in tumor cells [J]. Integr Biol (Camb),2011,3(5):529-539.
    [8]Kelland L. The resurgence of platinum-based cancer chemotherapy [J]. Nat Rev Cancer,2007,7(8):573-584.
    [9]Kamb A., Wee S., Lengauer C. Why is cancer drug discovery so difficult? [J]. Nat Rev Drug Discov,2007,6(2):115-120.
    [10]Wu P., Hu Y. Z. PI3K/AKT/mTOR pathway inhibitors in cancer:A perspective on clinical progress [J]. Curr Med Chem,2010,17(35):4326-4341.
    [11]Manning G, Whyte D. B., Martinez R., et al. The protein kinase complement of the human genome [J]. Science,2002,298(5600):1912-1934.
    [12]Vivanco I., Sawyers C. L. The phosphatidylinositol 3-kinase akt pathway in human cancer [J]. Nat Rev Cancer,2002,2(7):489-501.
    [13]Yuan T. L., Cantley L. C. PI3K pathway alterations in cancer:Variations on a theme [J]. Oncogene,2008,27(41):5497-5510.
    [14]Garcia-Echeverria C., Sellers W. R. Drug discovery approaches targeting the PI3K/AKT pathway in cancer [J]. Oncogene,2008,27(41):5511-5526.
    [15]Engelman J. A., Luo J., Cantley L. C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism [J]. Nat Rev Genet,2006,7(8):606-619.
    [16]Isakoff S. J., Engelman J. A., Irie H. Y., et al. Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells [J]. Cancer Res, 2005,65(23):10992-11000.
    [17]Zhang H., Liu G, Dziubinski M., et al. Comprehensive analysis of oncogenic effects of PIK3CA mutations in human mammary epithelial cells [J]. Breast Cancer Res Treat, 2008,112(2):217-227.
    [18]Bader A. G., Kang S., Vogt P. K. Cancer-specific mutations in PIK3CA are oncogenic in vivo [J]. Proc Natl Acad Sci U S A,2006,103(5):1475-1479.
    [19]Tao W. The mitotic checkpoint in cancer therapy [J]. Cell Cycle, 2005,4(11):1495-1499.
    [20]Backer J. M. The regulation and function of class Ⅲ PI3Ks:Novel roles for Vps34 [J]. Biochem J,2008,410(1):1-17.
    [21]Davies M. A. The role of the PI3K-AKT pathway in melanoma [J]. Cancer J, 2012,18(2):142-147.
    [22]Murthy S. S., Tosolini A., Taguchi T., et al. Mapping of AKT3, encoding a member of the AKT/protein kinase B family, to human and rodent chromosomes by fluorescence in situ hybridization [J]. Cytogenet Cell Genet,2000,88(1-2):38-40.
    [23]Jones P. F., Jakubowicz T. and Hemmings B. A. Molecular cloning of a second form of rac protein kinase [J]. Cell Regul,1991,2(12):1001-1009.
    [24]Yang J., Cron P., Thompson V., et al. Molecular mechanism for the regulation of protein kinase B/AKT by hydrophobic motif phosphorylation [J]. Mol Cell, 2002,9(6):1227-1240.
    [25]Fresno Vara J. A., Casado E., de Castro J., et al. PI3K/AKT signalling pathway and cancer [J]. Cancer Treat Rev,2004,30(2):193-204.
    [26]Alessi D. R., Andjelkovic M., Caudwell B., et al. Mechanism of activation of protein kinase B by insulin and IGF-1 [J]. EMBO J,1996,15(23):6541-6551.
    [27]Vander Haar E., Lee S. I., Bandhakavi S., et al. Insulin signalling to mtor mediated by the AKT/PKB substrate PRAS40 [J]. Nat Cell Biol,2007,9(3):316-323.
    [28]Hemmings B. A., Restuccia D. F. PI3K-PKB/AKT pathway [J]. Cold Spring Harb Perspect Biol,2012,4(9):a011189.
    [29]Rodrik-Outmezguine V. S., Chandarlapaty S., Pagano N. C., et al. Mtor kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling [J]. Cancer Discov,2011,1(3):248-259.
    [30]Sarbassov D. D., Guertin D. A., Ali S. M., et al. Phosphorylation and regulation of AKT/PKB by the rictor-mtor complex [J]. Science,2005,307(5712):1098-1101.
    [31]Jacinto E., Facchinetti V., Liu D., et al. SIN1/MIP1 maintains rictor-mtor complex integrity and regulates AKT phosphorylation and substrate specificity [J]. Cell, 2006,127(1):125-137.
    [32]Feng J., Park J., Cron P., et al. Identification of a PKB/AKT hydrophobic motif ser-473 kinase as DNA-dependent protein kinase [J]. J Biol Chem,2004,279(39):41189-41196.
    [33]Bozulic L., Surucu B., Hynx D., et al. PKBalpha/AKT1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival [J]. Mol Cell, 2008,30(2):203-213.
    [34]Rane M. J., Coxon P. Y., Powell D. W., et al. P38 kinase-dependent mapkapk-2 activation functions as 3-phosphoinositide-dependent kinase-2 for akt in human neutrophils [J]. J Biol Chem,2001,276(5):3517-3523.
    [35]Delcommenne M., Tan C., Gray V, et al. Phosphoinositide-3-oh kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase [J]. Proc Natl Acad Sci U S A,1998,95(19):11211-11216.
    [36]Persad S., Attwell S., Gray V., et al. Regulation of protein kinase B/AKT-serine 473 phosphorylation by integrin-linked kinase:Critical roles for kinase activity and amino acids arginine 211 and serine 343 [J]. J Biol Chem,2001,276(29):27462-27469.
    [37]Guertin D. A., Stevens D. M., Thoreen C. C., et al. Ablation in mice of the mtorc components raptor, rictor, or MLST8 reveals that mTORC2 is required for signaling to AKT-FOXO and PKCalpha, but not S6K1 [J]. Dev Cell,2006,11(6):859-871.
    [38]Dowling R. J., Topisirovic I., Fonseca B. D., et al. Dissecting the role of mfor:Lessons from mtor inhibitors [J]. Biochim Biophys Acta,2010,1804(3):433-439.
    [39]Sugimoto Y., Whitman M., Cantley L. C., et al. Evidence that the rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglycerol [J]. Proc Natl Acad Sci U S A,1984,81(7):2117-2121.
    [40]Huang C. H., Mandelker D., Schmidt-Kittler O., et al. The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations [J]. Science,2007,318(5857):1744-1748.
    [41]Zhao T. T., Trinh D., Addison C. L., et al. Lovastatin inhibits VEGFR and AKT activation:Synergistic cytotoxicity in combination with VEGFR inhibitors [J]. PLoS One, 2010,5(9):e12563.
    [42]Zhang X., Vadas O., Perisic O., et al. Structure of lipid kinase p110beta/p85beta elucidates an unusual SH2-domain-mediated inhibitory mechanism [J]. Mol Cell, 2011,41(5):567-578.
    [43]Chen Y., Wang B. C., Xiao Y. PI3K:A potential therapeutic target for cancer [J]. J Cell Physiol,2012,227(7):2818-2821.
    [44]Markman B., Atzori F., Perez-Garcia J., et al. Status of PI3K inhibition and biomarker development in cancer therapeutics [J]. Ann Oncol,2010,21(4):683-691.
    [45]Yap T. A., Garrett M. D., Walton M. I., et al. Targeting the PI3K-AKT-mTOR pathway: Progress, pitfalls, and promises [J]. Curr Opin Pharmacol,2008,8(4):393-412.
    [46]Kang S., Bader A. G, Vogt P. K. Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic [J]. Proc Natl Acad Sci U S A,2005,102(3):802-807.
    [47]Samuels Y., Diaz L. A., Jr., Schmidt-Kittler O., et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells [J]. Cancer Cell,2005,7(6):561-573.
    [48]Zhao J. J., Liu Z., Wang L., et al. The oncogenic properties of mutant p110alpha and p110beta phosphatidylinositol 3-kinases in human mammary epithelial cells [J]. Proc Natl Acad Sci U S A,2005,102(51):18443-18448.
    [49]Jucker M., Sudel K., Horn S., et al. Expression of a mutated form of the p85alpha regulatory subunit of phosphatidylinositol 3-kinase in a Hodgkin's lymphoma-derived cell line (co) [J]. Leukemia,2002,16(5):894-901.
    [50]Liu P., Cheng H., Roberts T. M., et al. Targeting the phosphoinositide 3-kinase pathway in cancer [J]. Nat Rev Drug Discov,2009,8(8):627-644.
    [51]Sheppard K., Kinross K. M., Solomon B., et al. Targeting PI3 kinase/AKT/mTOR signaling in cancer [J]. Crit Rev Oncog,2012,17(1):69-95.
    [52]Sale E. M., Hodgkinson C. P., Jones N. P., et al. A new strategy for studying protein kinase B and its three isoforms. Role of protein kinase B in phosphorylating glycogen synthase kinase-3, tuberin, WNK1, and ATP citrate lyase [J]. Biochemistry, 2006,45(1):213-223.
    [53]Kim D., Dan H. C, Park S., et al. AKT/PKB signaling mechanisms in cancer and chemoresistance [J]. Front Biosci,2005,10(975-987.
    [54]Carpten J. D., Faber A. L., Horn C., et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer [J]. Nature,2007,448(7152):439-444.
    [55]Lee R. S., House C. M., Cristiano B. E., et al. Relative expression levels rather than specific activity plays the major role in determining in vivo AKT isoform substrate specificity [J]. Enzyme Res,2011,2011(720985.
    [56]Fraser M., Leung B. M., Yan X., et al. P53 is a determinant of X-linked inhibitor of apoptosis protein/AKT-mediated chemoresistance in human ovarian cancer cells [J]. Cancer Res,2003,63(21):7081-7088.
    [57]Wymann M. P., Bulgarelli-Leva G, Zvelebil M. J., et al. Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of lys-802, a residue involved in the phosphate transfer reaction [J]. Mol Cell Biol,1996,16(4):1722-1733.
    [58]Walker E. H., Pacold M. E., Perisic O., et al. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine [J]. Mol Cell,2000,6(4):909-919.
    [59]Vlahos C. J., Matter W. F., Hui K. Y., et al. A specific inhibitor of phosphatidylinositol 3-kinase,2-(4-morpholinyl)-8-phenyl-4h-l-benzopyran-4-one (LY294002) [J]. J Biol Chem,1994,269(7):5241-5248.
    [60]Davies S. P., Reddy H., Caivano M., et al. Specificity and mechanism of action of some commonly used protein kinase inhibitors [J]. Biochem J,2000,351(Pt 1):95-105.
    [61]Hu L., Zaloudek C., Mills G B., et al. In vivo and in vitro ovarian carcinoma growth inhibition by a phosphatidylinositol 3-kinase inhibitor (LY294002) [J]. Clin Cancer Res, 2000,6(3):880-886.
    [62]Garlich J. R., De P., Dey N., et al. A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity [J]. Cancer Res, 2008,68(1):206-215.
    [63]Mahadevan D., Chiorean E. G, Harris W. B., et al. Phase I pharmacokinetic and pharmacodynamic study of the pan-PI3K/mTORC vascular targeted pro-drug SF1126 in-patients with advanced solid tumours and B-cell malignancies [J]. Eur J Cancer, 2012,48(18):3319-3327.
    [64]Carnero A. Novel inhibitors of the PI3K family [J]. Expert Opin Investig Drugs, 2009,18(9):1265-1277.
    [65]Markman B., Tao J. J., Scaltriti M. PI3K pathway inhibitors:Better not left alone [J]. Curr Pharm Des,2013,19(5):895-906.
    [66]Ihle N. T., Williams R., Chow S., et al. Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinositide-3-kinase signaling [J]. Mol Cancer Ther, 2004,3(7):763-772.
    [67]Howes A. L., Chiang G G, Lang E. S., et al. The phosphatidylinositol 3-kinase inhibitor, PX-866, is a potent inhibitor of cancer cell motility and growth in three-dimensional cultures [J]. Mol Cancer Ther,2007,6(9):2505-2514.
    [68]Maira S. M., Pecchi S., Huang A., et al. Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor [J]. Mol Cancer Ther, 2012,11(2):317-328.
    [69]Brachmann S. M., Kleylein-Sohn J., Gaulis S., et al. Characterization of the mechanism of action of the pan class I PI3K inhibitor NVP-BKM120 across a broad range of concentrations [J]. Mol Cancer Ther,2012,11(8):1747-1757.
    [70]Bendell J. C., Rodon J., Burris H. A., et al. Phase I, dose-escalation study of BKM120, an oral pan-class IPI3K inhibitor, in patients with advanced solid tumors [J]. J Clin Oncol, 2012,30(3):282-290.
    [71]Folkes A. J., Ahmadi K., Alderton W. K., et al. The identification of 2-(1 h-indazol-4-y l)-6-(4-methanesulfony 1-piperazin-1-ylmethy l)-4-morpholin-4-y1-t hieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class IPI3 kinase for the treatment of cancer [J]. J Med Chem,2008,51(18):5522-5532.
    [72]Kang S., Bader A. G, Zhao L., et al. Mutated PI 3-kinases:Cancer targets on a silver platter [J]. Cell Cycle,2005,4(4):578-581.
    [73]Raynaud F. I., Eccles S. A., Patel S., et al. Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases:From PI-103 through PI-540, PI-620 to the oral agent GDC-0941 [J]. Mol Cancer Ther,2009,8(7):1725-1738.
    [74]Ihle N. T., Powis G. Take your PIK:Phosphatidylinositol 3-kinase inhibitors race through the clinic and toward cancer therapy [J]. Mol Cancer Ther,2009,8(1):1-9.
    [75]Maira S. M., Furet P., Stauffer F. Discovery of novel anticancer therapeutics targeting the PI3K/AKT/mTORpathway [J]. Future Med Chem,2009,1(1):137-155.
    [76]O'Reilly K. E., Rojo F., She Q. B., et al. MTOR inhibition induces upstream receptor tyrosine kinase signaling and activates akt [J]. Cancer Res,2006,66(3):1500-1508.
    [77]Torbett N. E., Luna-Moran A., Knight Z. A., et al. A chemical screen in diverse breast cancer cell lines reveals genetic enhancers and suppressors of sensitivity to PI3K isoform-selective inhibition [J]. Biochem J,2008,415(1):97-110.
    [78]Guerreiro A. S., Fattet S., Fischer B., et al. Targeting the PI3K p110alpha isoform inhibits medulloblastoma proliferation, chemoresistance, and migration [J]. Clin Cancer Res,2008,14(21):6761-6769.
    [79]Jia S., Liu Z., Zhang S., et al. Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis [J]. Nature,2008,454(7205):776-779.
    [80]Wee S., Wiederschain D., Maira S. M., et al. PTEN-deficient cancers depend on PIK3CB [J]. Proc Natl Acad Sci U S A,2008,105(35):13057-13062.
    [81]Engelman J. A. Targeting PI3K signalling in cancer:Opportunities, challenges and limitations [J]. Nat Rev Cancer,2009,9(8):550-562.
    [82]Vanhaesebroeck B., Welham M. J., Kotani K., et al. P11Odelta, a novel phosphoinositide 3-kinase in leukocytes [J]. Proc Natl Acad Sci U S A, 1997,94(9):4330-4335.
    [83]Meadows S. A., Vega F., Kashishian A., et al. PK3Kdelta inhibitor, GS-1101 (CAL-101), attenuates pathway signaling, induces apoptosis, and overcomes signals from the microenvironment in cellular models of Hodgkin lymphoma [J]. Blood, 2012,119(8):1897-1900.
    [84]Hoellenriegel J., Meadows S. A., Sivina M., et al. The phosphoinositide 3'-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia [J]. Blood,2011,118(13):3603-3612.
    [85]Lannutti B. J., Meadows S. A., Herman S. E., et al. CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability [J]. Blood,2011,117(2):591-594.
    [86]Sadhu C., Masinovsky B., Dick K., et al. Essential role of phosphoinositide 3-kinase delta in neutrophil directional movement [J]. J Immunol,2003,170(5):2647-2654.
    [87]Lindsley C. W. The AKT/PKB family of protein kinases:A review of small molecule inhibitors and progress towards target validation:A 2009 update [J]. Curr Top Med Chem, 2010,10(4):458-477.
    [88]van Blitterswijk W. J., Verheij M. Anticancer alkylphospholipids:Mechanisms of action, cellular sensitivity and resistance, and clinical prospects [J]. Curr Pharm Des, 2008,14(21):2061-2074.
    [89]Hideshima T., Catley L., Yasui H., et al. Perifosine, an oral bioactive novel alkylphospholipid, inhibits AKT and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells [J]. Blood,2006,107(10):4053-4062.
    [90]Argiris A., Cohen E., Karrison T., et al. A phase II trial of perifosine, an oral alkylphospholipid, in recurrent or metastatic head and neck cancer [J]. Cancer Biol Ther, 2006,5(7):766-770.
    [91]Ernst D. S., Eisenhauer E., Wainman N., et al. Phase II study of perifosine in previously untreated patients with metastatic melanoma [J]. Invest New Drugs, 2005,23(6):569-575.
    [92]Leighl N. B., Dent S., Clemons M., et al. A phase 2 study of perifosine in advanced or metastatic breast cancer [J]. Breast Cancer Res Treat,2008,108(1):87-92.
    [93]Posadas E. M.,.Gulley J., Arlen P. M., et al. A phase II study of perifosine in androgen independent prostate cancer [J]. Cancer Biol Ther,2005,4(10):1133-1137.
    [94]Heerding D. A., Rhodes N., Leber J. D., et al. Identification of 4-(2-(4-amino-l,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3s)-3-piperidinylmethyl]oxy}-1h- imidazo[4,5-c]pyridin-4-yl)-2-methyl-3-butyn-2-ol (GSK690693), a novel inhibitor of AKT kinase [J]. J Med Chem,2008,51(18):5663-5679.
    [95]Levy D. S., Kahana J. A., Kumar R. Akt inhibitor, GSK690693, induces growth inhibition and apoptosis in acute lymphoblastic leukemia cell lines [J]. Blood, 2009,113(8):1723-1729.
    [96]Liu R., Liu D., Trink E., et al. The AKT-specific inhibitor MK2206 selectively inhibits thyroid cancer cells harboring mutations that can activate the PI3K/AKT pathway [J]. J Clin Endocrinol Metab,2011,96(4):E577-585.
    [97]Hirai H., Sootome H., Nakatsuru Y, et al. MK-2206, an allosteric AKT inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo [J]. Mol Cancer Ther,2010,9(7):1956-1967.
    [98]Meng J., Dai B., Fang B., et al. Combination treatment with MEK and AKT inhibitors is more effective than each drug alone in human non-small cell lung cancer in vitro and in vivo [J]. PLoS One,2010,5(11):e14124.
    [99]Yap T. A., Yan L., Patnaik A., et al. First-in-man clinical trial of the oral pan-AKT inhibitor MK-2206 in patients with advanced solid tumors [J]. J Clin Oncol, 2011,29(35):4688-4695.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700