用户名: 密码: 验证码:
转植酸酶基因玉米在蛋鸡上的饲用安全性和有效性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过3个试验系统研究了转植酸酶基因玉米(Phytase transgenic corn, PTC)对蛋鸡产蛋性能、蛋品质、血清生化、免疫反应、组织发育、肠道微生物区系和肠道消化能力的影响,并对饲喂PTC产蛋鸡消化道内食糜、血液、组织和鸡蛋中外源植酸酶基因phyA2及其表达蛋白进行了检测;同时,还对比了PTC和外源商业微生物植酸酶在低磷蛋鸡日粮上的饲喂效果,以评价PTC作为蛋鸡饲料原料的安全性和有效性。
     试验一本试验分析对比了PTC及其亲本玉米(Isogenic conventional corn, CC)的营养成分,并评定了两种玉米在公鸡上的真代谢能、氨基酸和磷的真消化率。在公鸡绝食48h后,每只公鸡通过插管强饲法分别强饲50g CC、PTC、无氮日粮或无磷日粮,随后收集强饲后48h排泄物。无氮日粮和无磷日粮,分别用来测定公鸡内源氨基酸和内源磷的排泄量。结果表明,PTC的概略养分、氨基酸和脂肪酸含量与CC相比均无显著性差异(P>0.05)。PTC中植酸酶活性极显著高于CC,植酸磷含量极显著低于CC(P<0.001)。两种玉米在公鸡上的真代谢能、氨基酸真消化率均无显著性差异(P>0.05)。PTC在鸡上磷的真消化率,极显著高于CC(37.92vs.55.85%;P<0.001)。结果提示,PTC的营养成分含量及其在鸡上的能量和氨基酸利用率与CC无显著差异,PTC在鸡上的有效磷含量极显著高于其CC。
     试验二本试验旨在研究长期饲喂PTC日粮对蛋鸡产蛋性能、蛋品质、血清生化指标、组织发育、肠道微生物区系和组织病理结构的影响,并对外源基因片段phyA2及其表达蛋白在产蛋鸡肠道内容物、血液、组织及鸡蛋中的存在情况进行了检测。选取50周龄的健康海兰褐产蛋鸡144只,随机分为2个处理,分别饲喂含62.4%的PTC或CC日粮。每个处理8个重复,每个重复9只鸡。预饲期2周,试验期16周。结果表明,与CC组相比,PTC日粮未对动物的产蛋性能和鸡蛋品质产生不利影响(P>0.05),但会降低蛋黄颜色(P<0.05)。长期饲喂转基因玉米日粮未对产蛋鸡血清生化指标、组织器官重量、免疫机能、组织病理结构及肠道微生物区系等指标产生不利影响。玉米外源植酸酶基因phyA2及其表达蛋白均可在动物肠道内被完全降解,未在产蛋鸡直肠食糜、血液、心脏、肝脏、脾脏、肾脏、胸肌和鸡蛋中检测到玉米外源基因片段phyA2及其表达蛋白。结果提示,与CC组相比,给蛋鸡长期饲喂含62.4%PTC日粮,未见对产蛋鸡的健康造成不利影响;外源转基因片段 phyA2不会迁移到蛋鸡组织和鸡蛋中。在本试验条件下,PTC作为饲料原料与其CC相比,在蛋鸡上有同等的饲用安全性。
     试验三本试验通过转基因玉米来源植酸酶与两种商业微生物来源植酸酶(PA和PB)的对比试验,研究了转基因玉米来源植酸酶在低磷日粮中对蛋鸡产蛋性能、蛋品质、肠道食糜植酸酶残留酶活和植酸磷残留量、胫骨发育及营养物质回肠表观利用率的影响。将576只50周龄海兰褐产蛋鸡随机分为8个处理。分别为:正对照组(PC,0.32%NPP)、负对照组(NC,0.10%NPP),然后在NC基础上分别添加3种不同来源植酸酶,每种植酸酶分为两个添加水平(500和5,000(?)TU/kg)。每个处理8个重复,每个重复9只鸡。预饲期2周,试验期16周。结果表明,给蛋鸡长期饲喂低磷日粮(NC,0.10%NPP)会显著降低蛋鸡的产蛋率、产蛋量、采食量、体增重、蛋壳厚度和蛋壳强度,并提高料蛋比和破畸形蛋率(p<0.05)。在NC基础上分别添加3种不同来源的植酸酶,均可显著改善蛋鸡的产蛋性能和蛋品质(P<0.05),并可达到PC组相同的水平。蛋鸡各肠段内容物中植酸酶的残留活性,随着日粮植酸酶添加水平的增加而显著增加(P<0.01)。转基因玉米来源植酸酶在蛋鸡嗉囊、腺胃和肌胃、空肠和回肠食糜中的残留活性显著高于相同剂量的PA和PB添加组(P<0.05)。与NC组相比,日粮添加500~5,000FTU/kg任一来源的植酸酶,均可显著降低各肠段内容物中的植酸磷的含量(P<0.01)。各肠段中的植酸磷含量,随着肠道消化时间的延长逐渐降低。与NC组相比,日粮分别添加3种不同来源的植酸酶均可显著提高蛋鸡回肠磷的表观消化率、胫骨灰分含量和胫骨强度(P<0.05)。日粮磷在蛋鸡上的回肠表观消化率均随着3种植酸酶添加量的增加而显著增加(P<0.05)。结果提示,在低磷日粮中添加转基因玉米来源植酸酶可显著改善蛋鸡的产蛋性能和蛋品质,并显著提高蛋鸡各肠段中的植酸酶活性和植酸磷的降解率,改善蛋鸡骨骼质量。转基因玉米来源植酸酶与两种商业微生物植酸酶(PA和PB)相比,在低磷蛋鸡日粮中的饲喂效果相当。
     总之,本研究通过一系列试验研究表明,以PTC作为饲料原料未对产蛋鸡的健康造成不利影响。外源植酸酶基因片段phyA2及其表达蛋白可在产蛋鸡消化道内被完全降解,未发现外源植酸酶基因phyA2及其表达蛋白在产蛋鸡血液、组织和鸡蛋中发生迁移和残留。与CC相比,PTC在蛋鸡上有同等的饲用安全性。与相同剂量的外源商业微生物植酸酶相比,转基因玉米来源植酸酶在低磷蛋鸡日粮上同等有效。
Three experiments were conducted to evaluate safety and efficiency of phytase transgenic corn (PTC) used as a feed ingredient in laying hens. The effect of PTC on the laying performance, egg quality, organ development, serum parameters, immune response and intestinal microflora of laying hens were studied and transgenic corn DNA fragments and proteins were detected in digesta, blood, tissues, and eggs of laying hens. Furthermore, we compared the effect of transgenic corn derived-phytase and two microbial phytases on the laying performance, egg quality, ileum nutrient digestibility, and bone mineralization in laying hens fed a low-P corn-soybean diet.
     Exp.l was conducted to evaluate the compositional and nutritional equivalence of PTC and isogenic conventional corn (CC) in roosters. Following a48h fasting period, sixteen roosters were given50g of each sample via crop intubation and excreta were collected for48h. N-free and P-free diets were used to evaluate endogenous amino acid and endogenous P losses, respectively. Chemical composition was not different between PTC and CC, whereas the phytase activity for PTC was greater than CC(P<0.001). No difference was observed in the true metabolizable energy (TME) and true amino acid availability (TAAA) values between the PTC and CC in roosters. The true P utilization for PTC was greater than CC (37.92vs.55.85%;P<0.001), and CC and PTC contained0.13and0.18%available P (AP, DM basis,P<0.001), respectively. The results of this study indicated that the chemical composition, TME and TAAA in PTC are essentially equivalent to that in CC, and the true P utilization for roosters is higher in PTC than in CC.
     Exp.2was conducted to assess the effects of long-term feeding with PTC to hens on laying performance, egg quality, organ development, serum parameters, immune response and intestinal microflora, and investigate the fate of transgenic DNA and protein in digesta, blood, tissues, and eggs. Fifty-week old laying hens (n=144) were fed with a diet containing62.4%PTC or CC for16weeks. We observed that feeding PTC to laying hens had no adverse effect on laying performance or egg quality (P>0.05) except on yolk color (P<0.05). There were no observed adverse effects of the PTC on the serum parmeters, organ development, immune response, intestinal microbial community in laying hens (P>0.05). Transgenic phyA2gene and protein were rapidly degraded in the digestive tract and were not detected in blood, heart, liver, spleen, kidney, breast muscle, and eggs of laying hens fed with diet containing PTC. It was concluded that performance of hens fed diets containing PTC, as measured by egg production and egg quality, was similar to that of hens fed diets formulated with CC. There was no evidence of phyA2gene or protein translocation to the blood, tissues, and eggs of laying hens.
     Exp.3was compared the efficacy of transgenic corn-derived phytase (TCDP) and two other commercial microbial phytases (PA and PB) in a long-term feeding study of laying hens. The treatments consisted of a positive control (PC) diet adequate in P (0.32%NPP); a negative control (NC) diet low in P (0.10%NPP); and an NC supplemented diet containing three phytase sources (TCDP, PA and PB) at two supplemental levels (500and5,000FTU/kg of diet). Eight diets were fed to Hy-line hens (n=576) from50to66weeks of age. We found that with a reduction in dietary P in the NC diet, egg production, egg mass, feed intake, final BW, BW gain, shell thickness, and eggshell strength of laying hens decreased (P<0.05). In addition, the number of soft-shelled, cracked and broken eggs increased (P<0.05) in the NC group. The addition of TCDP, PA or PB significantly increased laying production and egg quality (P<0.05), and performed similarly in hens fed the PC diet. Hens fed each source of phytase had greater ileal P digestibility, tibia ash, and bone breaking strength than hens fed the NC diet (P<0.05). The residual phytase activities along the GIT had increased (P<0.01) with the addition of TCDP, PA and PB to the NC diets. The TCDP had higher residual activity (P<0.05) in the crop, proventriculus and gizzard, jejunum, and ileum as compared to the PA and PB activity. There was a decrease (P<0.01) in the phytate P content of the digesta from all sources of phytase supplementation in the NC diets. Residual phytate P content decreased caudally along the GIT of hens. The ileum P digestibility increased as phytase level increased from500to5,000FTU/kg of diet (P<0.05). Results from this study indicate that the addition of a novel TCDP to a P-deficient diet improves laying performance, egg quality, ileum P utilization, and bone mineralization, and TCDP is as efficacious as two commercial microbial phytases when P-deficient diets for laying hens were supplemented with it.
     In conclusion, no adverse effect was found when the phytase transgenic corn was used in laying hens diet in the series of experiments. There was no evidence of phyA2gene or protein translocation to the blood, tissues, and eggs of laying hens. TCDP is as efficacious as two commercial microbial phytases in P-deficient diets for laying hens.
引文
何欣,马秋刚,梁福广,计成.2009.低蛋白日粮不同磷水平及添加植酸酶对生长猪生产性能及部分血清生化指标的影响.北京农学院学报.24:21-23.
    马秋刚.2007.不同非淀粉多糖和磷来源对生长猪氨基酸和微量元素消化吸收的影响:[博士学位论文].北京:中国农业大学.
    Adeola O. and J. S. Sands.2003. Does supplemental dietary microbial phytase improve amino acid utilization? A perspective that it does not. J. Anim. Sci.8:E78-E85.
    Adeola, O., J. S. Sands, P. H. Simmins, and H. Schulze.2004. The efficacy of an Escherichia coli-derived phytase preparation. J. Anim. Sci.82:2657-2666.
    Adeola, O., O. A. Olukosi, J. A. Jendza, R.N. Dilger, and M. R. Bedford.2006. Response of growing pigs to Peniophora lycii and Escherichia coli derived phytases or varying ratios of calcium to total phosphorus. Anim. Sci.82:637-644.
    Aeschbacher, K., R. Messikommer, L. Meile, and C. Wenk.2005. Bt176 corn in poultry nutrition: physiological characteristics and fate of recombinant plant DNA in chickens. Poult. Sci.84: 385-394.
    Agbede, J. O., H. Kluth, and M. Rodehutscord.2009. Amino acid digestibility and energy metabolisability as affected by dietary calcium and supplemented phytase in caecectomised laying hens. Arch. Geflugelkd.73:73-79.
    Ahmadi, H., and M. Rodehutscord.2012. A meta-analysis of responses to dietary nonphytate phosphorus and phytase in laying hens. Poult. Sci.91:2072-2078.
    Alexander, T. W., R. Sharma, M. Y. Deng, A. J. Whetsell, J. C. Jennings, Y. Wang, E. Okine, D. Damgaard, and T. A. McAllister.2004. Use of quantitative real-time and conventional PCR to assess the stability of the cp4 epsps transgene from Roundup Ready canola in the intestinal, ruminal, and fecal contents of sheep. J. Biotechnol.112:255-266.
    Alexander, T.W., T. Reuter, E. Okine, R. Sharma, and T. A. McAllister.2006. Conventional and real-time polymerase chain reaction assessment of the fate of transgenic DNA in sheep fed Roundup Ready rapeseed meal. Br. J. Nutr.966:997-1005.
    AOAC.2000. Official Methods of Analysis.17th ed. AOAC Int., Gaithersburg, M. D.
    AOCS.1997. Fatty acid composition by gas chromatography Official methods and recommended practices of the American oil chemists society,5th ed.; Association of Official Chemists International. pp 1-4.
    Appenzeller, L. M., S. M. Munley, D. Hoban, G. P. Sykes, L. A. Malley, and B. Delaney.2008. Subchronic feeding study of herbicide-tolerant soybean DP-356043-5 in Sprague-Dawley rats. Food Chem. Toxicol.46:2201-2213.
    Appenzeller, L. M., S. M. Munley, D. Hoban, G. P. Sykes, L. A. Malley, and B. Delaney.2009. Subchronic feeding study of grain from herbicide-tolerant maize DP-098140-6 in Sprague-Dawley rats. Food Chem. Toxicol.47:2269-2280.
    Ash, J. A., S. E. Scheideler, and C. L. Novak.2003. The fate of genetically modified protein from Roundup Ready soybeans in laying hens. J. Appl. Poult. Res.12:242-245.
    Augspurger, N. R., and D. H. Baker.2004. High dietary phytase levels maximize phytate-phosphorus utilization but do not affect protein utilization in chicks fed phosphorusor amino acid-deficient diets. J. Anim. Sci.82:1100-1107
    Augspurger, N. R., D. M. Webel, and D. H. Baker.2007. An Escherichia coli phytase expressed in yeast effectively replaces inorganic phosphorus for finishing pigs and laying hens. J. Anim. Sci.85: 1192-1211.
    Augspurger, N. R., D. M. Webel, and D.H. Baker.2007. An Escherichia coli phytase expressed in yeast effectively replaces inorganic phosphorus for finishing pigs and laying hens. J. Anim. Sci.85: 1192-1198.
    Augspurger, N. R., D. M.Webel, X. G. Lei, and D. H. Baker.2003. Efficacy of an E. coli phytase expressed in yeast for releasing phytate-bound phosphorus in young chicks and pigs. J. Anim. Sci. 81:474-483.
    Augspurger, N. R., J. D. Spencer, D. M. Webel, and D. H. Baker.2004. Pharmacological zinc levels reduce the phosphorus-releasing efficacy of phytase in young pigs and chickens. J. Anim. Sci.82: 1732-1739.
    Augspurger, N. R., J. D. Spencer, D. M. Webel, B. F. Wolter, and T. S. Torrance.2009. An Escherichia coli-derived phytase can fully replace inorganic phosphorus in maize-soybean meal diets for growing-finishing pigs. Anim. Feed Sci. Tech.154:254-259.
    Aulrich, K., H. Bohme, R. Daenicke, I. Halle, and G. Flachowsky.2001. Genetically modified feeds in animal nutrition.1st communication:Bacillus thuringiensis (Bt) corn in poultry, pig and ruminant nutrition. Arch. Anim. Nutr.54:183-195.
    Aulrich, K., T. Reuter, and G. Flachowsky.2002. The fate of foreign DNA in farm animals fed with geneticallymodified plants. Proc. Soc. Nutr. Physiol.11:187-188.
    Aureli, R., M. Umar Faruk, I. Cechova, P. B. Pedersen, S. G. Elvig-Joergensen, F. Fru, and J. Broz. 2011. The efficacy of a novel microbial 6-phytase expressed in Aspergillus oryzae on the performance and phosphorus utilization in broiler chickens. Int. J. Poult. Sci.10:160-168.
    AW-Yong, L. M., J. S. Sim, and D. B. Bragg.1982. Mineral availability of corn, barley, wheat, and triticale for the chick. Poult. Sci.62:659-664.
    Bartosch S., A. Fite, G. T. Macfarlane, and M. E. McMurdo.2004. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl. Environ. Microbiol. 70:3575-3581.
    Beagle, J. M., G. A. Apgar, K. L. Jones, K. E. Griswold, J. S. Radcliffe, X. Qiu, D. A. Lightfoot, and M. J. Iqbal.2006. The digestive fate of Escherichia coli glutamate dehydrogenase deoxyribonucleic acid from transgenic corn in diets fed to weanling pigs. J. Anim. Sci.84:597-607.
    Beaulieu, A. D., M. R. Bedford, and J. F. Patience.2007. Supplementing corn or corn-barley diets with an E. coli derived phytase decreases total and soluble P output by weanling and growing pigs. Can. J. Anim. Sci.87:353-364.
    Berka R. M., M. W. Rey, K. M. Brown, B. Tony, and A. V. Klotz.1998. Molecular charterization and expression of phytase gene from thermomyces lanuginosus. Appl. Environ. Microbiol,64: 4423-4427.
    Bohme, H., K. Aulrich, R. Daenicke, and G. Flachowsky.2001 Genetically modified feeds in animal nutrition.2nd communication:glufosinate tolerant sugar beets (roots and silage) and maize grains for ruminants and pigs. Arch. Anim. Nutr.54:197-207.
    Brake, J., M. A. Faust, and J. Stein.2003. Evaluation of transgenic event Btll hybrid corn in broiler chickens. Poult. Sci.82:551-559.
    Brake, J., M. A. Faust, and J. Stein.2005. Evaluation of transgenic hybrid corn (VIP3A) in broiler chickens. Poult. Sci.84:503-512.
    Brinch-Pedersen, H., A. Olesen, S. K. Rasmussen, and P. B. Holm.2000. Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol. Breeding.6:195-206
    Broil, H., J. Zagon, A. Butschke, A. Leffke, A. Spiegelberg, H. Bohme, and G. Flachowsky.2005. The fate of DNA of transgenic inulin synthesizing potatoes in pigs. J. Anim. Feed Sci.14 (Suppl.1): 337-340.
    Brown, P. B., K. A. Wilson, Y. Jonker, and T. E. Nickson.2003. Glyphosate tolerant canola meal is equivalent to the parental line in diets fed to rainbow trout. J. Agric. Food Chem.51:4268-4272.
    Buzoianu, S. G., M. C. Walsh, M. C. Rea, O. O'Sullivan, F. Crispie, P. D. Cotter, R. P. Ross, G. E. Gardiner, and P. G. Lawlor.2012b. The Effect of Feeding Bt MON810 Maize to Pigs for 110 Days on Intestinal Microbiota. PLoS ONE 7:e33668.
    Buzoianu, S. G., M. C. Walsh, M. C. Rea, O. O'Sullivan, P. D. Cotter, R. P. Ross, G. E. Gardinerb, and P. G. Lawlora.2012a. High throughput sequence-based analysis of the intestinal microbiota of weanling pigs fed genetically modified Bt MON810 maize for 31 days. Appl. Environ. Microbiol. 78:4217-4224.
    Cadogan, D. J., P. H. Selle, G. G. Partridge, and V. Ravindran.2009. Supplementation of wheat-based broiler diets with xylanase and phytase, individually and in combination. Proc. Aust. Poult. Sci. Symp.20:40-43.
    Castillo, A. R., M. R. Gallardo, M. Maciel, J. M. Giordano, G. A. Conti, M.C. Gaggiotti, O. Quaino, C. Gianni, and G. F. Hartnell.2004. Effects of feeding rations with genetically modified whole cottonseed to Lactating Holstein cows. J Dairy Sci.87:1778-1785.
    Chambers, P. A., P. S. Duggan, J. Heritage, and J. M. Forbes.2002. The fate of antibiotic resistance marker genes in transgenic plant feed material fed to chickens. J Antimicrob Chemother.49: 161-164.
    Chami, D. B., P. Vohra, and F. H.Kratzer.1980. Evaluation of a method for determination of true metabolisable energy of feed ingredients. Poult. Sci.59:569-571.
    Chen, R. M., G. X. Xue, P. Chen, B. Yao, W. Z. Yang, Q. L. Ma, Y. L. Fan, Z. Y. Zhao, M. C. Tarczynski, and J. R. Shi.2008. Transgenic maize plants expressing a fungal phytase gene. Transgenic Res.17: 633-643.
    Chen, X., C. M. Parsons, and N. Bajjalieh.2013. Nutritional evaluation of new reduced oligosaccharide soybean meal in poultry. Poult Sci.92:1830-1836
    Chowdhury, E. H., H. Kuribara, A. Hino, P. Sultana, O. Mikami, N. Shimada, K. S. Guruge, M. Saito, and Y. Nakajima.2003. Detection of corn intrinsic and recombinant DNA fragments and CrylAb protein in the gastrointestinal contents of pigs fed genetically modified corn Btl 1. J. Anim. Sci.81: 2546-2551.
    Chrenkova, M., A. Sommer, Z. Ceresnakova, S. Nitrayova, and M. Prostredna.2002. Nutritional evaluation of genetically modified maize corn performed on rats. Arch Tierernahr.56:229-235.
    Clark, J. H., and H. Lehman.2001. Assessment of GM crops in commercial agriculture. J. Agric. Environm Ethics 14:3-28.
    Cowieson, A. J., and M. R. Bedford.2009. The effect of phytase and carbohydrase on ileal amino acid digestibility in monogastric diets:complementary mode of action? World's Poultry Sci. J.65: 609-624.
    Cowieson, A. J., T. Acamovic, and M. Bedford.2006. Supplementation of corn-soy-based diets with an Escherichia coli-derived phytase:Effects on broiler chick performance and the digestibility of amino acids and metabolizability of minerals and energy. Poult. Sci.85:1389-1397
    Cowieson, A. J., V. Ravindran, and P. H. Selle.2008. Influence of dietary phytic acid and source of microbial phytase on ileal endogenous amino acid flows in broiler chickens. Poult. Sci.87: 2287-2299.
    Cromwell, G. L., M. D. Lindemann, J. H. Randolph, G. R. Parker, R. D. Coffey, K. M. Laurent, C. L. Armstrong, W. B. Mikel, E. P. Stanisiewski, and G. F. Hartnell.2002. Soybean meal from roundup ready or conventional soybeans in diets for growing-finishing swine. J. Anim. Sci.80:708-715.
    Custodio, M. G., W. J Powers, E. Huff-Lonergan, M. A. Faust, and J. Stein.2006. Growth, pork quality, and excretion characteristics of pigs fed Bt corn or non-transgenic corn. Can. J. Anim. Sci.86: 461-469
    Deaville, E. R., and B. C. Maddison.2005. Detection of transgenic and endogenous plant DNA fragments in the blood, tissues, and digesta of broilers. J. Agric. Food Chem.53:10268-10275.
    Denbow, D. M.2000. Gastrointestinal anatomy and physiology.5th ed. Pages 299-325 in G. C. Whittow, ed. Sturkie's Avian physiology. Academic press, San Diego, CA.
    Denbow, D. M., E. A. Grabau, G. H. Lacy, E. T. Kornegay, D. R. Russell, and P. F. Umbeck.1998. Soybeans transformed with a fungal phytase gene improve phosphorus availability for broilers. Poult Sci.77:878-881.
    Dersjant-Li, Y., J. W. Schrama, M. J. W. Heetkamp, J. A. Verreth, and M. W. A. Verstegen.2002. Effect of dietary electrolyte balance on metabolic rate and energy balance in pigs. Anim. Sci.74: 299-305.
    Dilger, R. N., E. M. Onyango, J. S. Sands, and O. Adeola.2004. Evaluation of microbial phytase in broiler diets. Poult. Sci.83:962-970.
    Dowd, P. F.2000. Indirect reduction of ear melds and associated mycotoxins in Bacillus thuringiensis corn under controlled and open field conditions:Utility and limitations. J. Econ. Entomol.93:1669-1679.
    Driver, J. P., A. Atencio, H. M. Edwards Jr., and G. M. Pesti.2006. Improvements in nitrogen-corrected apparent metabolizable energy of peanut meal in response to phytase supplementation. Poult. Sci. 85:96-99.
    Drury, S. M., T. L. Reynolds, W. P. Ridley, N. Bogdanova, S. Riordan, M. A. Nemeth, R. Sorbet, W. A. Trujillo, and M. L. Breeze.2008. Composition of Forage and Grain from Second-Generation Insect-Protected Corn MON89034 Is Equivalent to That of Conventional Corn (Zea mays L.). J. Agrc. Food Chem.56:4623-4630
    Einspanier, R., A. Klotz, J. Kraft, K. Aulrich, R. Poser, F. Schwagele, G. Jahreis, and G. Flachowsky. 2001. The fate of forage plant DNA in farm animals:a collaborative case-study investigating cattle and chicken fedrecombinant plant material. Eur. Food Res. Technol.212,129-134.
    Einspanier, R., B. Lutz, S. Rief, O. Berezina, V. Zverlov, W. Schwarz, and J. Mayer.2004. Tracing residual recombinant feed molecules during digestion and rumen bacterial diversity in cattle fed transgene maize. Eur. Food Res. Technol.218:269-273.
    Elkhalil, E. A., K. Manner, R. Borriss, and O. Simon.2007. In vitro and in vivo characteristics of bacterial phytases and their efficacy in broiler chickens. Br. Poult. Sci.48:64-70.
    Engelen, A. J., F. C. van der Heeft, P. H. G. Randsdorp, W. A. C. Somers, J. Schaefer, and B. J. C. van der Blat.2001. Determination of phytase activity in feed by a colorometric enzymatic method: Collaborative interlaboratory study. J. AOAC Int.84:629-633.
    Erickson, G. E., N. D. Robbins, J. J. Simon, L. L. Berger, T. J. Klopfenstein, E. P. Stanisiewski, and G. F. Hartnell.2003. Effect of feeding glyphosate-tolerant (Roundup-Ready events GA21 or nk603) corn compared with reference hybrids on feedlot steer performance and carcass characteristics. J.Anim. Sci.81:2600-2608.
    FAO/WHO.2002. Report of the third session of the Codex Ad Hoc Intergovernmental Task Force on Foods Derived from Biotechnology (ALINORM 01/34). Rome, Italy:Codex Ad Hoc Intergovernmental Task Force on Foods Derived from Biotechnology, Food and Agriculture Organization of the United Nations. Available from:ftp://ftp.fao.org/codex/alinorm03/A103 34e.pdf. Accessed 2003 Jul 22
    Finamore, A., M. Roselli, S. Britti, G. Monastra, R. Ambra, A. Turrini, and E. Mengheri.2008. Intestinal and peripheral immune response to MON810 maize ingestion in weaning and old mice. J. Agri. Food Chem.56:11533-11539.
    Flachowsky, G., A. Chesson, and K. Aulrich.2005a. Animal nutrition with feeds from genetically modified plants. Arch. Anim. Nutr.59:1-40.
    Flachowsky, G., I. Halle, and K. Aulrich.2005b. Long term feeding of Bt-corn-a 10 generation study with quails. Arch. Anim. Nutr.59:449-451.
    Flachowskya, G., K. Aulrichb, H. Bohme, and I. Halle.2007. Studies on feeds from genetically modified plants (GMP)-Contributions to nutritional and safety assessment. Anim. Feed Sci. Tech. 133:2-30.
    Forsberg, C. W., J. P. Phillips, S. P. Golovan, M. Z. Fan, R. G. Meidinger, A. Ajakaiye, D. Hilborn, and R. R. Hacker.2003. The Enviropig physiology, performance, and contribution to nutrient management advances in a regulated environment:the leading edge of change in the pork industry. J.Anim. Sci.81:E68-E77.
    Francesch, M., J. Broz, and J. Brufau.2005. Effects of an experimental phytase on performance, egg quality, tibia ash content and phosphorus bioavailability in laying hens fed on maize- or barley-based diets. Br. Poult. Sci.46:340-348.
    Frost, T. J., and D. A. Roland Sr..1991. The influence of various calcium and phosphorus concentrations on tibia strength and eggshell quality of pullets during peak production. Poult. Sci. 70:963-969.
    Fu, D., H. Q. Huang, H. Y. Luo, Y. R. Wang, P. L. Yang, K. Meng, Y. G. Bai, N. F. Wu, and B. Yao. 2008. A highly pH stable phytase from Yersinia kristeensenii:cloning, expression, and characterization. Enzyme Microb. Technol.42:499-505.
    Gao, X. R., G.K. Wang, Q. Su, Y. Wang, and L.J. An.2007. Phytase expression in transgenic soybeans: stable transformation with a vector-less construct. Biotechnol. Lett.29:1781-1787.
    Godoy, S., Chicco, C., Meschy, F. and Requena, F.2005. Phytic phosphorus and phytase activity of animal feed ingredients. Interciencia.30:24-28.
    Golovan, S. P., R. G. Meidinger, A. Ajakaiye, M. Cottrill, M. Z. Wiederkehr, D. J. Barney, C. Plante, J. W. Pollard, M. Z. Fan, M. A. Hayes, J. Laursen, J. P. Hjorth, R. R. Hacker, J. P. Phillips, and C. W. Forsberg.2001b. Pigs expressing salivary phytase produce low-phosphorus manure. Nat. Biotechnol.19:741-745.
    Golovan, S., M. Hayes, J. Phillips, and C. Forsberg.2001a. Transgenic mice expressing bacterial phytase as a model for phosphorus pollution control. Nat. Biotechnol.19:429-433.
    Greiner, R.2004. Purification and properties of a phytate-degrading enzyme from Pantoea agglomerans, Protein J.23:567-576
    Gu, W., H. Huang, K. Meng, P. Yang, D. Fu, H. Luo, Y. Wang, B.Yao, and Z. Zhan.2009. Gene cloning, expression, and characterization of a novel phytase from Dickeya paradisiaca. Appl. Biochem. Biotechnol.157:113-123.
    Guertler, P., V. Paul, K. Steinke, S. Wiedemann, W. Preiβinger, C. Albrecht, H. Spiekers, F. J. Schwarz, and H. H. D. Meyer.2010. Long-term feeding of genetically modified corn (MON810)-Fate of crylAb DNA and recombinant protein during the metabolism of the dairy cow. Livest. Sci.131: 250-259.
    Guggenbuhl, P., Y. Wache, C. S. Nunes, and F. Fru.2012. Effects of a 6-phytase on the apparent ileal digestibility of minerals and amino acids in ileorectal anastomosed pigs fed on a corn-soybean meal-barley diet. J. Anim. Sci.90:182-184.
    Hammond, B., J. Lemen, R. Dudek, D. Ward, C. Jiang, M. Nemeth, and J. Burns.2006. Results of a 90-day safety assurance study with rats fed grain from corn rootworm-protected corn. Food Chem. Toxicol.44:147-160.
    Harlander, S. K.2002. The evolution of modern agriculture and its future with biotechnology. J. Amer. Coll.Nutr.21:161S-165S.
    Harrison, L. A., M. R. Bailey, M. W. Naylor, J. E. Ream, B. G. Hammond, D. L. Nida, B. L. Burnette, T. E. Nickson, T. A. Mitsky, M. L. Taylor, R. L. Fuchs, and S. R. Padgette.1996. The expressed protein in glyphosate-tolerant soybean,5-enolypyruvylshikimate-3-phosphate synthase from Agrobacterium sp. Strain CP4, is rapidly digested in vitro and is not toxic to acutely gavaged mice. J.Nutr.126:728-740.
    Healy, C., B. Hammond, and J. Kirkpatrick.2008. Results of a 13-week safety assurance study with rats fed grain from corn rootworm-protected, glyphosate-tolerant MON 88017 corn. Food Chem. Toxicol.46:2517-2524.
    Herman, L.2004. Species identification of poultry egg products. Poult. Sci.83:2083-2085.
    Hong, Y. F., C. Y. Liu, K. J. Cheng, A. L.Hour, M. T. Chan, T. H. Tseng, K. Y. Chen, J. F. Shaw, S. M. Yu.2008. The sweet potato sporamin promoter confers high-level phytase expression and improves organic phosphorus acquisition and tuber yield of transgenic potato. Plant Mol Biol 67: 347-361.
    Huang, H., H. Luo, Y. Wang, D. Fu, N. Shao, P. Yang, K. Meng, and B. Yao.2009. Novel low-temperature-active phytase from Erwinia carotovora var.carotovota ACCC 10276. J Microbiol Biotechnol.19:1085-1091.
    Huang, H., N. Shao, Y. Wang, H. Luo, P. Yang, Z. Zhou, Z. Zhan, and B. Yao.2009. A novel beta-propeller phytase from Pedobacter nyackensis MJ11 CGMCC 2503 with potential as an aquatic feed additive. Appl. Microbiol Biotechnol.83:249-259.
    Hughes, A. L., J. Dahiya, C. Wyatt, and H. Classen.2008. The efficacy of quantum phytase in a forty-week production trial using white leghorn laying hens fed corn-soybean meal-based diets. Poult. Sci.87:1156-1161.
    Hughes, A. L., J. P. Dahiya, C. L. Wyatt, and H. L. Classen.2009. Effect of Quantum phytase on nutrient digestibility and bone ash in White Leghorn laying hens fed corn-soybean meal-based diets. Poult. Sci.88:1191-1198.
    Hurst, C. D., A. Knight, and I. Bruce.1999. PCR detection of genetically modified soya and corn in foodstuffs. Mol. Breed.5:579-586.
    IFBC.1990. Biotechnologies and food:Assuring the safety of foods produced by genetic modification. Regul. Toxicol. Pharmacol 12:S1-S196.
    Igbasan, F. A., K. Manner, G. Miksch, R. Borriss, A. Farouk, and O. Simon.2000. Comparative studies on the in vitro properties of phytases from various microbial origins. Arch. Anim. Nutr.53: 353-373.
    ILSI.2003. Crop composition database. Available from:www.cropcomposition.org. Accessed 2003 Oct 13.
    Jacobs, C. M., P. L. Utterback, C. M. Parsons, D. Rice, B. Smith, M. Hinds, M. Liebergesell, and T. Sauber.2008. Performance of laying hens fed diets containing DAS-59122-7 maize grain compared with diets containing non-transgenic maize grain. Poult. Sci.87:475-479.
    Jalal, M. A., and S. E. Scheideler.2001. Effect of supplementation of two different sources of phytase on egg production parameters in laying hens and nutrient digestiblity. Poult. Sci.80:1463-1471.
    James, C.2011. Global status of commercialized biotech/GM crops:2011. ISAAA Brief No 43 ISAAA: Ithaca, NY.
    James, C.2012. Global status of commercialized biotech/GM crops:2012. ISAAA Briefs No.44. ISAAA:Ithaca, NY.
    Jennings JC, Kolwyck DC, Kays SB, Whetsell AJ, Surber JB, Cromwell GL, Lirette RP, Glenn KC. 2003b. Determining whether transgenic and endogenous plant DNA and transgenic protein are detectable in muscle from swine fed Roundup Ready soybean meal. J. Anim. Sci.81:1447-1455.
    Jennings, J. C., L. D. Albee, D. C. Kolwyck, J. B. Surber, M. L. Taylor, G. F. Hartnell, R. P. Lirette, K. C. Glenn.2003a. Attempts to detect transgenic and endogenous plant DNA and transgenic protein in muscle from broilers fed YieldGard Corn Borer Corn. Poult. Sci.82:371-380.
    Johnston, S. L., S. B. Williams, L. L. Southern, T. D. Bidner, L.D. Bunting, J. O. Matthews, and B. M. Olcott.2004. Effect of phytase addition and dietary calcium and phosphorus levels on plasma metabolites and ileal and total-tract nutrient digestibility in pigs. J. Anim. Sci.82:705-714.
    Karimi, A., Y. Min, C. Lu, C. Coto, M. R. Bedford, and P. W. Waldroup.2013. Assessment of potential enhancing effects of a carbohydrase mixture on phytase efficacy in male broiler chicks fed phosphorus-deficient diets from 1 to 18 days of age. Poult. Sci.92:192-198.
    Kerr, B. J., T. E. Weber, P. S. Miller, and L. L.Southern.2010. Effect of phytase on apparent total tract digestibility of phosphorus in corn-soybean meal diets fed to finishing pigs. J. Anim. Sci.88: 238-247.
    Kessler, J. W., T. H. Nguyen, and O. P. Thomas.1981. The amino acid excretion values in intact and cecectomized negative control roosters used for determining metabolic plus endogenous urinary losses. Poult. Sci.60:1576-1577.
    Kies, A. K., P. A. Kemme, L. B. Sebek, J. T. van Diepen, and A.W. Jongbloed.2006. Effect of graded doses and a high dose of microbial phytase on the digestibility of various minerals in weaner pigs. J. Anim. Sci.84:1169-1175.
    Kies, A. K., W. J. J. Gerrits, J. W. Schrama, M. J. W. Heetkamp, K. L. van der Linden, T. Zandstra, and M. W. A. Verstegen.2005. Mineral absorption and excretion as affected by microbial phytase, and their effect on energy metabolism in young piglets. J. Nutr.135:1131-1138.
    Kim, E. J., C. M. Amezcua, P. L. Utterback, and C. M. Parsons.2008. Phosphorus bioavailability, true metabolizable energy, and amino acid digestibilities of high protein corn distillers dried grains and dehydrated corn germ. Poult. Sci.87:700-705.
    Konietzny, U., and R. Greiner.2002. Molecular and catalytic properties of phytate-degrading enzymes (phytases). Int. J. Food Sci. Technol.37:791-812.
    Kumar V., A. K. Sinha, H. P. S. Makkar, G. De Boeck and K. Becker.2012. Phytate and phytase in fish nutrition. J. Anim. Physiol. Anim. Nutri.96:335-364.
    Lei, X. G., P. K. Ku, E. R. Miller, M. T. Yokoyama, and D. E. Ullrey.1994. Calcium level affects the efficacy of supplemental microbial phytase in corn-soybean meal diets of weanling pigs. J. Anim. Sci.72:139-143.
    Leytem, A. B., G. P. Widyaratne, and P. A. Thacker.2008. Phosphorus utilization and characterization of ileal digesta and excreta from broiler chickens fed diets varying in cereal grain, phosphorus level, and phytase addition. Poult. Sci.87:2466-2476.
    Li, G., Yang, S., Li, M., Qiao, Y. and Wang, J.2009a. Functional analysis of an Aspergillus ficuum phytase gene in Saccharomyces cerevisiae and its root-specific, secretory expression in transgenic soybean plants. Biotechnol Lett 31:1297-1303.
    Li, J., C. E. Hegeman, R. W. Hanlon, G. H. Lacy, D. M. Denbow, and E. A. Grabau.1997. Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant Physiol.114:1103-1111.
    Li, M. H., G. F. Hartnell, E. H. Robinson, J. M. Kronenberg, C. E. Healy, D. F. Oberle, and J. R. Hoberg. 2008. Evaluation of cottonseed meal derived from genetically modified cotton as feed ingredients for channel catfish, Ictalurus punctatus. Aquacult. Nutri.14:490-498.
    Li, S. F., Y. B. Niu, J. S. Liu, L. Lu, L. Y. Zhang, C. Y. Ran, M. S. Feng, B. Du, J. L. Deng, and X. G. Luo.2013. Energy, amino acid, and phosphorus digestibility of phytase transgenic corn for growing pigs. J. Anim. Sci.91:298-308.
    Li, X., Z. Liu, Z. Chi, J. Li, and X.Wang 2009. Molecular cloning, characterization, and expression of the phytase gene from marine yeast Kodamaea ohmeri BG3. Mycol. Res.113:24-32.
    Liao, S. F., A. K. Kies, W. C. Sauer, Y. C. Zhang, M. Cervantes, and J. M. He.2005. Effect of phytase supplementation to a low- and a high-phytate diet for growing pigs on the digestibilities of crude protein, Amino acids and energy. J. Anim. Sci.83:2130-2136.
    Liebert, F., J. K. Htoo, and A. Sunder.2005. Performance and nutrient utilization of laying hens fed low-phosphorus corn-soybean and wheat-soybean diets supplemented with microbial phytase. Poult. Sci.84:1576-1583.
    Lim, H.S., H. Namkung, and I. K. Paik.2003. Effects of phytase supplementation on the performance, egg quality, and phosphorus excretion of laying hens fed different levels of dietary calcium and nonphytate phosphorus. Poult. Sci.82,92-99.
    Lin, B., Z. L. Tan, G. Y. Xiao, M. Wang, Z. H. Cong, S. P. Wang, S. X. Tang, C. S. Zhou, Z. H. Sun, and W. J. Wang.2009. Evaluation of compositional and nutritional equivalence of genetically modified rice to conventional rice using in situ and in vitro techniques. J. Sci. Food Agr.89:1490-1947.
    Liu, N., G. H. Liu, F. D. Li, J. S. Sands, S. Zhang, A. J. Zheng, and Y. J. Ru.2007b. Efficacy of phytases on egg production and nutrient digestibility in layers fed reduced phosphorus diets. Poult Sci.86:2337-2342.
    Liu, Y., S. Wu, J. Wang, L. Yang, and W. Sun.2007a. Cloning, expression, purification, and characterization of a novel epoxide hydrolase from Aspergillus niger SQ-6. Protein Expr. Purif.53: 239-246.
    Losey, J. E., L. S. Rayor, and M. E. Carter.1999. Transgenic pollen harms monarch larvae. Nature,399: 214.
    Lucca P., R. Hurrell, I. Potrykus.2001. Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains, Theor. Appl. Genet.102:392-397.
    Lucca, P., R, Hurrell, and I. Potrykus. Fighting iron deficiency anemia with iron-rich rice.2002. J. Am. Coll. Nutr.21:184S-190S.
    Ma, Q. G., B. U. Metzler, M. Eklund, C. Ji, and R. Mosenthin.2008. The effects of cellulose, pectin and starch on standardized ileal and apparent total tract amino acid digestibilities and bacterial contribution of amino acids in feces of growing pigs. Asian-Aust. J. Anim. Sci.21:873-882.
    Maenz, D. D.2001. Enzymatic characteristics of phytases as they relate to their use in animal feeds. Pages 61-84 in Enzymes in Farm Animal Nutrition. M. R. Bedford and G. G. Partridge, ed. CABI Publishing, New York, NY.
    Malatesta, M., F. Boraldi, G. Annovi, B. Baldelli, S. Battistelli, M. Biggiogera, and D. Quaglino.2008. A long-term study on female mice fed on a genetically modified soybean:effects on liver ageing. Histochem. Cell Biol.130:967-977.
    Martinez-Amezcua, C., C. M. Parsons, and D. H. Baker.2006. Effect of microbial phytase and citric acid on phosphorus bioavailability, apparent metabolizable energy, and amino acid digestibility in distillers dried grains with solubles in chicks. Poult. Sci.85:470-475.
    McDowell, L. R.1992. Pages 49-50 in:Minerals in Animal and Human Nutrition. Academic Press Inc., San Diego, CA.
    McNaughton, J., M. Roberts, B. Smith, D. Rice, M. Hinds, T. Rood, R. Layton,1. Lamb, and B. Delaney. 2008. Comparison of broiler performance and carcass yields when fed diets containing transgenic maize grains from event DP-098140-6 (Optimum GAT), near-Isogenic control maize grain, or commercial reference maize grains. Poult. Sci.87:2562-2572.
    McNaughton, J., M. Roberts, D. Rice, B. Smith, M. Hinds, B. Delaney, C. Iiams, and T. Sauber.2011. Nutritional equivalency evaluation of transgenic maize grain from event DP-09814O-6 and transgenic soybeans containing event DP-356O43-5:laying hen performance and egg quality measures. Poult Sci 90:377-389.
    Myers, W. D., P. A. Ludden, V. Nayigihugu, and B. W. Hess.2004. Technical note:A procedure for the preparation and quantitative analysis of samples for titanium dioxide. J. Anim. Sci.82:179-183.
    Nagashima, T., T. Tange, and H. Anazwa.1999. Dephosphorytation of phytate by using Aspergillus niger phytase with a high affinity for phytate. Appl. Environ. Microbiol.10:4682-4684.
    National Research Council (NRC).1994. Nutrient Requirements of Poultry,9th revised ed. National Academy Press, Washington D.C.
    Nemeth, A., and A. Wurz.2004. Sensitive PCR analysis of animal tissue samples for fragments of endogenous and transgenic plant DNA. J. Agric. Food Chem.52:6129-6135.
    Netherwood, T., S. M. Martin-Orue, A. G. O'Donnell, S. Gockling, J. Graham, J. C. Mathers, and H. J. Gilbert.2004. Assessing the survival of transgenic plant DNA in the human gastrointestinal tract. Nat. Biotechnol.22:204-209.
    Nolan, K. B., P. A. Duffin, and D. J. McWeeny.1987. Effects of phytate on mineral bioavailability. In vitro studies on Mg, Ca, Fe, Cu, and Zn (also CD) solubilities in the presence of phytate. J. Sci. Food Agric.40:79-85.
    Nwanna, L. C.2007. Effect of dietary phytase on growth, enzyme activities and phosphorus load of nile tilapia (oreochromis niloticus). Journal of Engineering and App.2:972-976.
    Nyannor, E. K. D., and O. Adeola.2008. Corn expressing an Escherichia coli-derived phytase gene: comparative evaluation study in broiler chicks. Poult. Sci.87:2015-2022.
    Nyannor, E. K. D., P. Williams, M. R. Bedford, and O. Adeola.2007. Corn expressing an Escherichia coli-derived phytase gene:A proof-of-concept nutritional study in pigs. J. Anim. Sci.85: 1946-1952.
    Nyannor, E. K., M. R. Bedford, and O. Adeola.2009. Corn expressing an Escherichia coli-derived phytase gene:Residual phytase activity and microstructure of digesta in broiler chicks. Poult. Sci. 88:1413-1420.
    NZRC.2001. Report of the Royal Commission on Genetic Modification. New Zealand Royal Commision on Genetic Modification. Available from:http://www.gmcommission.govt.nz/index. html. Accessed 2003 Nov 24.
    Oberdoerfer, R. B., R. D. Shillito, M. de Beuckeleer, D. H. Mitten.2005. Rice (Oryza sativa L.) containing the bar gene is compositionally equivalent to the nontransgenic counterpart. J. Agric. Food Chem.53:1457-1465.
    OECD.1993. Safety Evaluation of Foods Derived by Modern Biotechnology:Concepts and Principles. Paris, France:Organization for Economic Co-Operation and Development.
    Okunuki, H., R. Teshima, T. Shigeta, J. Sakushima, H. Akiyama, Y. Goda, M. Toyoda, and J. Sawada. 2002. Increased digestibility of two products in genetically modified food (CP4-EPSPS and Cry1Ab) after preheating. J. Food Hyg. Soc. Japan.43:68-73.
    Olukosi, O. A., A. J. Cowieson, and O. Adeola.2008. Influence of enzyme supplementation of maize-soyabean meal diets on carcase composition, whole-body nutrient accretion and total tract nutrient retention of broilers. Br. Poult. Sci.49:436-45.
    Olukosi, O. A., C. Kong, F. Fru-Nji, K. M. Ajuwon, and O. Adeola.2013. Assessment of a bacterial 6-phytase in the diets of broiler chickens. Poult. Sci.92:2101-2108.
    Onyango, E. M., M. R. Bedford, and O. Adeola.2005. Efficacy of an Escherichia coli-derived phytase. Poult. Sci.84:248-255.
    Onyango, E. M., M. R. Bedford, and O. Adeola.2005. Phytase activity along the digestive tract of the broiler chick:A comparative study of an Escherichia coli-derived and Peniophora lycii phytase. Can. J. Anim. Sci.85:61-68.
    Pallauf, J., and G. Rimbach.1997. Nutritional significance of phytic acid and phytase. Arch. Anim. Nutr. 50:301-319.
    Panalolip, P., Y. C. Hung, L. R. Beuchat, C. H. King, and Z. H. Zhao.2009. Reduction of Escherichia coli O157:H7 on produce by use of electrolyzed water under simulated food service operation conditions. J. Food Prot.72:1854-1861.
    Pandee, P., P. Summpunn, S. Wiyakrutta, D. Isarangkul, and V. A. Meevootisom 2011. Thermostable phytase from Neosartorya spinosa BCC 41923 and its expression in Pichia pastoris. J. Microbiol. 49:257-264.
    Parmer, T.G., L. B. Carew, F. A. Alster, and C. G. Scanes,1987. Thyroid function, growth hormone, and organ growth in broilers deficient in phosphorus. Poult. Sci.66:1995-2004.
    Pasamontes, L., M. Haiker, M. Wyss, M. Tessier, and A. P. van Loon.1997. Gene cloning, purificat ion, and charact erization of a heat stable phytase from the fungus:Aspergillus fumigatus. Appl. Environ. Microbiol.63:1696-1700.
    Peeler, H. T.1972. Biological availability of nutrients in feeds:Availability of major mineral ions. J. Anim. Sci.77:83-89.
    Pen, J., T. C. Verwoerd, P. A. van Paridon, R. F. Beudeker, P.J.M. van den Elzen, K. Geerse, J. D. van der Klis, H.A.J. Versteegh, A.J.J. van Ooyen, and A. Hoekema,1993. Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Nat. Biotechnol.11: 811-814.
    Peng, R. H., Q. H. Yao, A. S. Xiong, Z. M. Cheng, and Y. Li.2006. Codon-modifications and an endoplasmic reticulum-targeting sequence additively enhance expression of an Aspergillus phytase gene in transgenic canola. Plant Cell Rep.25:124-132.
    Perney, K. M., A. H. Cantor, M. L. Straw, and K. L. Herkelman.1993. The effect of dietary phytase on growth performance and phosphorus utilization of broiler chicks. Poult. Sci.72:2106-2114.
    Peter, C. M., and D. H. Baker.2001. Microbial phytase does not improve protein-amino acid utilization in soybean meal fed to young chickens. J. Nutr.131:1792-1797.
    Petersen, G. I., and H. H. Stein.2006. Novel procedure for estimating endogenous losses and measurement of apparent and true digestibility of phosphorus by growing pigs. J. Anim. Sci.84: 2126-2132.
    Phipps, R. H., and D. E. Beever.2000. New technology:Issues relating to the use of genetically modified crops. J. Anim. Feed Sci.9:543-561
    Phipps, R. H., E. R. Deaville, and B. C. Maddison.2003. Detection of transgenic DNA and protein in rumen fluid, duodenal digesta, milk, blood and faeces of lactating dairy cows. Am. J. Dairy Sci.86: 4070-4078.
    Pirgozliev, V., O. Oduguwa, T. Acamovic, and M. R. Bedford.2007. Diets containing Escherichia coli-derived phytase on young chickens and turkeys:effects on performance, metabolizable energy, endogenous secretions, and intestinal morphology. Poult. Sci.86:705-713.
    Pointillart, A., N. Fontaine, and M. Thomasset.1984. Phytate phosphorus utilization and intestinal phosphatases in pigs fed low phosphorus:wheat or corndiets. Nutr. Rep. Int.29:473-483.
    Powell, S., T. D. Bidner, and L. L. Southern.2011. Phytase supplementation improved growth performance and bone characteristics in broilers fed varying levels of dietary calcium. Poult. Sci. 90:604-608.
    Prescott, V. E., P. M. Campbell, A. Moore, J. Mattes, M. E. Rothenberg, P. S. Foster, T. J. V. Higgins, and S. P. Hogan.2005. Transgenic expression of bean a-Amylase inhibitor in peas results in altered structure and immunogenicity. J. Agric. Food Chem.53:9023-9030.
    Qian, H., E. M. Gregory, and E. T. Kornegay.1996. Characterization if Aspergillus niger phytase and investigation of the inhibitory effect of cations on the phytase activity. J. Anim. Sci.74 (Suppl.1), 8 (Abstr.).
    Qian, H., E. T. Kornegay, and D. M. Denbow.1997. Utilization of phytate phosphorus and calcium as influenced by microbial phytase, cholecalciferol, and the calcium:total phosphorus ratio in broiler diets. Poult. Sci.76:37-46.
    Rao, D.E., K. V. Rao, and V. D. Reddy.2008. Cloning and expression of Bacillus phytase gene (phy) in Escherichia coli and recovery of active enzyme from the inclusion bodies. J. Appl. Microbiol.105: 1128-1137.
    Ravindran, V., E. T. Kornegay, L. M. Potter, B. O. Ogunabameru, M. K. Welten, J. H. Wilson, and M. Potchanakorn.1995. An evaluation of various response criteria in assessing biological availability of phosphorus for broilers. Poult. Sci.74:1820-1830.
    Ravindran, V., P. C. H. Morel, G. G. Partridge, M. Hruby, and J. S. Sands.2006. Influence of an Escherichia coli derived phytase on nutrient utilization in broiler starters fed diets containing varying concentrations of phytic acid. Poult. Sci.85:82-89.
    Ravindran, V., P. H. Selle, G. Ravindran, P. C. H. Morel, A. K. Kies, and W. L. Bryden.2001. Microbial phytase improves performance, apparent metabolizable energy, and ileal amino acid digestibility of broilers fed a lysine-deficient diet. Poult. Sci.80:338-344.
    Reuter, T., and K. Aulrich.2003. Investigations on genetically modified maize (Bt-maize) in pig nutrition:fate of feedingested foreign DNA in pig bodies. Eur. Food. Res. Technol.216:185-192.
    Reuter, T., K. Aulrich, A. Berk, and G. Flachowsky.2002. Investigations on genetically modified maize (Bt-maize) in pig nutrition:chemical composition and nutritional evaluation. Arch. Anim. Nutr.56: 23-31.
    Ridley, W. P., R. S. Sidhu, P. D. Pyla, M. A. Nemeth, M. L. Breeze, and J. D. Astwood.2002. Comparison of the nutritional profile of glyphosate-tolerant corn event NK603 with that of conventional corn(Zea mays L.). J. Agric. Food Chem.50:7235-7243.
    Rodriguez, E., Y. Han, and X. G. Lei.1999. Cloning, sequencing, and expression of an Escherichia coli acid phosphatase/phytase gene (appA2) isolated from pig colon. Biochem. Biophys. Res. Commun. 257:117-123.
    Rossi, F., M. Morlacchini, G. Fusconi, A. Pietri, R. Mazza, and G. Piva.2005. Effect of Bt corn on broiler growth performance and fate of feed-derived DNA in the digestive tract. Poult Sci:84: 1022-1030.
    Rounds, M. A., and S. A. Nielsen.1994. Anion exchange high-performance liquid chromatography with postcolumn detection forthe analysis of phytic acid and other inositol phosphates. J. Chromatogr. A. 653:148-152.
    Rutherfurd, S. M., T. K. Chung, and P. J. Moughan.2002. The effect of microbial phytase on ileal phosphorus and amino acid digestibility in broiler chickens. Br. Poult. Sci.44:598-606.
    Rutherfurd, S. M., T. K. Chung, D. V. Thomas, M. L. Zou, and P. J. Moughan.2012. Effect of a novel phytase on growth performance, apparent metabolizable energy, and the availability of minerals and amino acids in a low-phosphorus corn-soybean meal diet for broilers. Poult. Sci.91: 1118-1127.
    Rutherfurd, S. M., T. K. Chung, P. C. H. Morel, and P. J. Moughan.2004. Effect of microbial phytase on ileal digestibility of phytate phosphorus, total phosphorus, and amino acids in a low-phosphorus diet for broilers. Poult. Sci.83:61-68.
    Sands, J. S., D. Ragland, C. Baxter, B.C. Joern, T. E. Sauber, and O. Adeola.2001. Phosphorus bioavailability, growth performance, and nutrient balance in pigs fed high available phosphorus corn and phytase. J. Anim. Sci.79:2134-2142.
    Sands, J. S., D. Ragland, R. N. Dilger, and O. Adeola.2009. Responses of pigs to Aspergillus niger phytase supplementation of low-protein or high-phytin diets. J. Anim. Sci.87:2581-2589.
    Scheideler, S. E., D. Rice, B. Smith, G. Dana, and T. Sauber.2008. Evaluation of nutritional equivalency of corn grain from DAS01507-1 (Herculex* I) in the diets of laying hens. J. Appl. Poult. Res.17:383-389.
    Scheideler, S. E., R. E. Hileman, T. Weber, L. Robeson, and G. F. Hartnell.2008. The in vivo digestive fate of the Cry3Bbl protein in laying hens fed diets containing MON 863 corn. Poult. Sci.87: 1089-1097.
    Schroder, M., M. Poulsen, A. Wilcks, S. Kroghsbo, A. Miller, T. Frenzel, J. Danier, M. Rychlik, K. Emami, A. Gatehouse, Q. Shu, K. H. Engel, I. Altosaar, and I. Knudsen.2007. A 90-day safety study of genetically modified rice expressing CrylAb protein(Bacillus thuringiensis toxin) in Wistar rats. Food Chem Toxicol.45:339-349.
    Schubbert, R., D. Renz, B. Schmitz, and W. Doerfler.1997. Foreign (M13) DNA ingested by mice reaches peripheral leukocytes, spleen, and liver via the intestinal wall mucosa and can be covalently linked to mouse DNA. Proc. Natl. Acad. Sci. USA.94:961-966.
    Scott, T. A., R. Kampen, and F. G. Silversides.2001. The effect of adding phosphorus, phytase enzyme, and calcium on the performance of layers fed corn-based diets. Poult. Sci.80:183-190.
    Selle, P. H., A. J. Cowieson, and V. Ravindran.2009. Consequences of calcium interactions with phytate and phytase for poultry and swine. Livest. Sci.124:126-141.
    Selle, P. H., A. R. Walker, and W. L. Bryden.2003. Total and phytate-phosphorus contents and phytase activity of Australian-sourced feed ingredients for swine and poultry. Aust. J. Exp. Agric.43: 475-479.
    Selle, P. H., and V. Ravindran.2007. Microbial phytase in poultry nutrition. Anim. Feed Sci. Technol. 135:1-41.
    Selle, P. H., V. Ravindran, R. A. Caldwell, and W. L. Bryden.2000. Phytate and phytase:consequences for protein utilisation. Nutr. Res. Rev.13:255-278.
    Shao, N., H. Huang, K. Meng, H. Luo, Y. Wang, P. Yang, and B. Yao.2008. Cloning, expression, and characterization of a new phytase from the phytopathogenic bacterium Pectobacterium wasabiae DSMZ 18074. J. Microbiol Biotechnol.18:1221-1226.
    Sharma, R., D. Damgaard, T. W. Alexander, M. E. Dugan, J. L. Aalhus, K. Stanford, and T. A. McAllister.2006. Detection of transgenic and endogenous plant DNA in digesta and tissues of sheep and pigs fed Roundup Ready canola meal. J. Agric. Food Chem.54:1699-1709.
    Shelton, A. M., J. Z. Zhao, and R. T. Roush.2002. Economic, ecological, food safety, and social consequences of the deployment of bt transgenic plants. Annu. Rev. Entomol.47:845-881.
    Shelton, J. L., and L. L. Southern.2006. Effect of phytase addition with or without the trace mineral premix on growth performance, bone response variables, and tissue mineral concentrations in commercial broilers. J. Appl. Poultry Res.15:94-102.
    Shelton, J. L., F. M. LeMieux, L. L. Southern, and T. D. Bidner.2005. Effect of microbial phytase addition with or without the trace mineral premix in nursery, growing, and finishing pig diets. J. Anim. Sci.83:376-385.
    Shimada, N., H. Murata, O. Mikami, M. Yoshioka, K. S. Guruge, N. Yamanaka, Y. Nakajima, and S. Miyazaki.2006. Effects of feeding calves genetically modified corn btll:a clinico-biochemical study. J. Vet. Med. Sci.68:1113-1115.
    Shirley, R. B., and H. M. Edwards Jr.2003. Graded levels of phytase past industry standards improves broiler performance. Poult. Sci.82:671-680.
    Sibbald, I. R.1979a. A bioassay for available amino acids and true metabolizable energy in feedstuffs. Poult. Sci.58:668-673.
    Sibbald, I. R.1979b. Bioavailable amino acids and true metabolizable energy of cereal grains. Poult. Sci. 58:934-939.
    Sibbald,I. R.1979c. Passage of feed through the adult rooster. Poult. Sci.58:446-459.
    Simon, O. and F. A.Igbasan.2002. In vitro properties of phytases from various microbial origins. Int. J. Food Sci. Technol.37:813-822.
    Simons, P. C. M., H. A.J. Versteegh, A. W. Jongbloed, P. A. Kemme, M. G. E. Wolters, R. F. Beudeker, and G. J. Verschoor.1990. Improvement of phosphorus availability by microbial phytase in broilers and pigs. Br. J. Nutr.64:525-540.
    Snow, J. L., M. W. Douglas, K. W. Koelkebeck, A. B. Batal, M. E. Persia, P. E. Biggs, and C. M. Parsons.2004. Minimum phosphorus requirement of one-cycle and two-cycle (molted) hens. Poult. Sci.83:917-924.
    Song, G. L., D. F. Li, X. S. Piao, F. Chi, and J. T. Wang.2003. Comparisons of amino acid availability by different methods and metabolizable energy determination of a Chinese variety of high oil corn. Poult. Sci.82:1017-1023
    Stein, H. H., D. W. Rice, B. L. Smith, M. A. Hinds, T. E. Sauber, C. Pedersen, D. M. Wulf, and D. N. Peters.2009. Evaluation of corn grain with the genetically modified input trait DAS-59122-7 fed to growing-finishing pigs. J. Anim. Sci.87:1254-1260.
    Stein, H. H., M. L. Gibson, C. Pedersen, and M. G. Boersma.2006. Amino acid and energy digestibility in ten samples of distillers dried grain with solubles fed to growing pigs. J. Anim. Sci.84: 853-860.
    Steiner, T., R, Mosenthin, B. Zimmermann, R. Greiner, and S. Roth.2007. Distribution of phytase activity, total phosphorus and phytate phosphorus in legume seeds, cereals and cereal by-products as influenced by harvest year and cultivar. Anim. Feed Sci. Technol.133:320-334.
    Steinke, K., P. Guertler, V. Paul, S. Wiedemann, T. Ettle, C. Albrecht, H. H. Meyer, H. Spiekers, and F. J. Schwarz.2010. Effects of long-term feeding of genetically modified corn (event MON810) on the performance of lactating dairy cows. J. Anim. Physiol. Anim. Nutr (Berl).94:e185-93.
    Surai, P. F., R. M. McDevitt, B. K. Speake, N. H. C. Spark.1999. Carotenoid distribution in tissues of the laying hen depending on their dietary supplementation. Proc. Nutr. Soc.58:30A.
    Tahir, M., M. Y. Shim, N. E. Ward, C. Smith, E. Foster, A. C. Guney, and G. M. Pesti.2012. Phytate and other nutrient components of feed ingredients for poultry. Poult. Sci.91:928-935.
    Tao, R., M. Liu, L. Wang, A. H. Liu, R. He, J. Sun.2009. Detection of transgenic DNA in tilapias (Oreochromis niloticus, GIFT strain) fed genetically modified soybeans (Roundup Ready). Aquac. Res.40:1350-1357.
    Taylor, M. L., G. Hartnell, M. Nemeth, K. Karunanandaa, and B. George.2005. Comparison of broiler performance when fed diets containing corn grain with insect-protected (corn rootworm and European corn borer) and herbicide-tolerant (glyphosate) traits, control corn, or commercial reference corn. Poult. Sci.84:587-593.
    Tony, M. A., A. Butschke, H. Broll, L. Grohmann, J. Zagon, I. Halle, S. Danicke, M. Schauzu, H. M. Hafez, and G. Flachowsky.2003. Safety assessement of Bt 176 maize in broiler nutrition: Degradation of maize-DNA and its metabolic fate. Arch. Anim. Nutr.,57:235-252.
    Trabalza-Marinucci, M., G. Brandi, C. Rondini, L. Avellini, C. Giammarini, S. Costarelli, G. Acuti, C. Orlandi, G. Filippini, E. Chiaradia, M. Malatesta, S. Crotti, C. Antonini, G. Amagliani, E. Manuali, A. R. Mastrogiacomo, L. Moscati, M. N. Haouet, A. Gaiti, and M. Magnani.2008. A three-year longitudinal study on the effects of a diet containing genetically modified Bt176 maize on the health status and performance of sheep. Liv. Sci.113:178-190.
    Trabalza-Marinucci, M., G. Brandi, C. Rondini, L. Avellini, C. Giammarini, S. Costarelli, G. Acuti, C. Orlandi, G. Filippini, E. Chiaradia, M. Malatesta, S. Crotti, C. Antonini, G. Amagliani, E. Manuali, A. R. Mastrogiacomo, L. Moscati, M. N. Haouet, A. Gaiti, and M. Magnani.2008. A three-year longitudinal study on the effects of a diet containing genetically modified Bt176 maize on the health status and performance of sheep. Livest. Sci.113:178-190.
    Tudisco, R., P. Lombardi, F. Bovera, D. dAngelo, M. I. Cutrignelli, V. Mastellone, V. Terzi, L. Avallone and F. Infascelli.2006. Genetically modified soya bean in rabbit feeding:detection of dna fragments and evaluation of metabolic effects by enzymatic analysis. Anim. Sci.82:193-199.
    Ullah AH, Sethumadhavan K, Mullaney EJ, Ziegelhoffer T, Austin-Phillips S.2003. Fungal phyA gene expressed in potato leaves produces active and stable phytase. Biochem Biophys Res Commun. 306(2):603-609.
    Ullah AH, Sethumadhavan K, Mullaney EJ.2005. Monitoring of unfolding and refolding in fungal phytase (phyA) by dynamic light scattering. Biochem Biophys Res Commun.327:993-998.
    USDA.2011. Adoption of Genetically Engineered Crops in the U.S.. United States Department of Agriculture, Washington, DC. http://www.ers.usda.gov/Data/BiotechCrops/
    Van Hartingsveldt, W., C. M. van Zeijl, G. M. Harteveld, R. J. Gouka, M. E. Suykerbuyk, R. G. Luiten, P. A. van Paridon, G. C. Selten, A. E. Venstra, and R. F. van Gorcom.1993. Cloning, characterization and overexpression of phytase encoding gene (phyA) of a Aspergillus niger. Gene. 127:87-94.
    Vendomois, J. S., F. Roullier, D. Cellier, and G. E. Seralini.2009. A comparison of the effects of three GM corn varieties on mammalian health. Int. J. Biol. Sci.5:706-726.
    Venneria, E., S. Fanasca, G. Monastra, E. Finotti, R. Ambra, E. Azzini, A. Durazzo, M. S. Foddai, and G. Maiani.2008. Assessment of the nutritional values of genetically modified wheat, corn, and tomato crops. J. Agric. Food Chem.56:9206-9214.
    Veum, T. L, and M. R. Ellersieck.2008. Effect of low doses of Aspergillus niger phytase on growth performance, bone strength, and nutrient absorption and excretion by growing and finishing swine fed corn-soybean meal diets deficient in available phosphorus and calcium. J. Anim. Sci.86: 858-870.
    Veum, T. L., D. W. Bollinger, C. E. Buff, and M. R. Bedford.2006. A genetically engineered Escherichia coli phytase improves nutrient utilization, growth performance, and bone strength of young swine fed diets deficient in available phosphorus. J. Anim. Sci.84:1147-1158
    Vielma, J., K. Ruohonen, J. Gabaudan, and K. Vogel.2004. Top-spraying soybean meal-based diets with phytase improves protein and mineral digestibilities but not lysine utilization in rainbow trout, Oncorhynchus mykiss (Walbaum). Aquac. Res.35:955-964.
    Walk, C. L., M. R. Bedford, T. S. Santos, D. Paiva, J. R. Bradley, H. Wladecki, C. Honaker, and A. P. McElroy.2013. Extra-phosphoric effects of superdoses of a novel microbial phytase. Poult. Sci.92: 719-725.
    Walsh, M. C., S. G. Buzoianu, G. E. Gardiner, M. C. Rea, E. Gelencser, A. Janosi, M. M. Epstein, R. P. Ross, and P. G. Lawlor.2011. Fate of transgenic DNA from orally administered Bt MON810 maize and effects on immune response and growth in pigs. PLoS ONE.6:e27177.
    Walsh, M. C., S. G. Buzoianu, G. E. Gardiner, M. C. Rea, R. P. Ross, J. P. Cassidy, and P. G. Lawlor. 2012. Effects of short-term feeding of Bt MON810 maize on growth performance, organ morphology and function in pigs. Br. J. Nutr.107:364-371.
    Walsh, M. C., S. G. Buzoianu, M. C. Rea, O. O'Donovan, E. Gelencser, G. Ujhelyi, R. P. Ross, G. E. Gardiner, and P. G. Lawlor.2012. Effects of feeding Bt MON810 maize to pigs for 110 days on peripheral immune response and digestive fate of the cry1Ab gene and truncated Bt toxin. PLoS One.7:e36141.
    Walter, J., C. Hertel, G. W. Tannock, C. M. Lis, K. Munro, and W. P. Hammes.2001. Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 67:2578-2585.
    Wang, Y., X. Gao, Q. Su, W. Wu, and L. An.2007. Expression of a heat stable phytase from Aspergillus fumigatus in tobacco (Nicotiana tabacum L. cv. NC89). Indian J. Biochem. Biophys. 44:26-30.
    Watanabe, T., H. Ikeda, K. Masaki, T. Fujii, and H. Iefuji.2009. Cloning and characterization of a novel phytase from wastewater treatment yeast Hansenula fabianii J640 and expression in Pichia pastoris. J. Biosci. Bioeng.108:225-230.
    Webb, K. E.1990. Intestinal absorption of protein hydrolysis products:A review. J Anim Sci.68: 3011-3022.
    Wehrmann, A., A. Van Vliet, C. Opsomer, J. Botternan, and A. Schulz.1996. The similarities of bar and pat gene products make them equally applicable for plant engineers. Nat. Biotechnol.14: 1274-1278.
    Widmer, M. R., L. M. McGinnis, and H. H. Stein.2007. Energy, phosphorus, and amino acid digestibility of high-protein distillers dried grains and corn germ fed to growing pigs. J. Anim. Sci. 85:2994-3003.
    Wiedemann, S., B. Lutz, C. Albrecht, R. Kuehn, B. Killermann, R. Einspanier, and H. H. D. Meyer. 2009. Fate of genetically modified maize and conventional rapeseed, and endozoochory in wild boar (Sus scrofa). Mamm. Biol.74:191-197.
    Wiedemann, S., B. Lutz, H. Kurtz, F. J. Schwarz, and C. Albrecht.2006. In situ studies on the time-dependent degradation of recombinant corn DNA and protein in the bovine rumen. J. Anim. Sci.84:135-144.
    Withers, P. J., I. A. Davidson., and R. H. Foy.1995. The contribution of agricultural phosphorus to eutrophication. The fertilizer society. Proc. No.365. Greenhill House, Thorpe Wood, Peterborough, UK.
    Wodzinski, R. J., and A. H. J. Ullah.1996. Phytases. Adv. Appl. Microbiol.42:263-303.
    Woyengo, T. A., B. A. Slominski, and R. O. Jones.2010. Growth performance and nutrient utilization of broiler chickens fed diets supplemented with phytase alone or in combination with citric acid and multicarbohydrase. Poult. Sci.89:2221-2229.
    Woyengo, T. A., J. S. Sands, W. Guenter, and C. M. Nyachoti.2008. Nutrient digestibility and performance responses of growing pigs fed phytase- and xylanase-supplemented wheat-based diets. J. Anim. Sci.86:848-857.
    Wu, G., Z. Liu, M. Bryant, and D. Roland.2006. Comparison of Natuphos and Phyzyme as phytase sources for commercial layers fed corn-soy diet. Poult. Sci.85:64-69.
    Xiong, A. S., Q. H. Yao, R. H. Peng, X. Li, H. Q. Fan, M. J. Guo, and S. L. Zhang.2004. Isolation, characterization, and molecular cloning of the cDNA encoding a novel phytase from Aspergillus niger 113 and high expression in Pichia pastoris. J. Biochem. Mol. Biol.37:282-291.
    Yao, B., C. Y. Zhang, J. H. Wang, and Y. L. Fan.1998. Recombinant Pichia pastoris overexpressing bioactive phytase. Sci. China C.41:330-336.
    Yin, H. F., B. L. Fan, B. Yang, Y. F. Liu, J. Luo, X. H. Tian, and N. Li.2006. Cloning of pig parotid secretory protein gene upstream promoter and the establishment of a transgenic mouse model expressing bacterial phytase for agricultural phosphorus pollution control. J. Anim. Sci.84: 513-519.
    Yip, W., L. Wang, C. Cheng, W. Wu, S. Lung, and B. L. Lim,2003. The introduction of a phytase gene from Bacillus subtilis improved the growth performance of transgenic tobacco, Biochem. Biophys. Res. Commun.310:1148-1154.
    Yonemochi, C., K. Suga, C. Harada, and M. Hanazumi.2010. Evaluation of transgenic event CBH 351 (StarLink) corn in pig. Anim. Sci. J.81:94-101.
    Zhang, G., X. Dong, Z. Wang, Q. Zhang, H. Wang, and J. Tong.2010. Purification, characterization, and cloning of a novel phytase with low pH optimum and strong proteolysis resistance from Aspergillus ficuum NTG-23. Bioresour. Technol.101:4125-4131.
    Zhang, X., D. A. Roland, G. R. McDaniel, and S. K. Rao.1999. Effect of Natuphos phytase supplementation to feed on performance on ileal digestibility of protein and amino acids of broilers. Poult. Sci.78:1567-1572.
    Zhang, Z. B., E. T. Kornegay, J. S. Radcliffe, D. M. Denbow, H. P. Veit, and C. T. Larsen.2000b. Comparison of genetically engineered microbial and plant phytase for young broilers. Poult. Sci. 79:709-917.
    Zhang, Z. B., E. T. Kornegay, J. S. Radcliffe, D. M. Denbow, H. P. Veit, and C. T. Larsen.2000. Comparison of genetically engineered microbial and plant phytase for young broilers. Poult. Sci. 79:709-717.
    Zhang, Z. B., E. T. Kornegay, J. S. Radcliffe, J. H. Wilson, and H. P. Veit.2000a. Comparison of phytase from genetically engineered Aspergillus and canola in weanling pig diets. J. Anim. Sci.78: 2868-2878.
    Zhao, W., A. Xiong, X. Fu, F. Gao, Y. Tian, and R. Peng.2010. High level expression of an acid-stable phytase from Citrobacter freundii in Pichia pastoris. Appl. Biochem. Biotechnol.162:2157-2165.
    Zuo, R., J. Chang, Q. Yin, L. Chen, Q. Chen, X. Yang, Q. Zheng, G. Ren, and H. Feng.2010. Phytase gene expression in Lactobacillus and analysis of its biochemical characteristics. Microbiol Res. 165:329-335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700