用户名: 密码: 验证码:
拟南芥隐花色素相关基因功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隐花色素(CRYPTOCHROME,简称CRY)是与DNA光解酶氨基酸序列高度同源的黄素蛋白,但不具有光解酶活性。拟南芥的隐花色素家族有三个成员,其中隐花色素1(CRY1)主要抑制下胚轴伸长,而隐花色素2(CRY2)主要调节光周期开花,并且这两个光受体具有部分冗余的功能。为进一步阐明拟南芥隐花色素的生物学功能,本实验室采用酵母双杂交的方法,以GUS-CCT2为诱饵蛋白筛选拟南芥cDNA文库,筛选到与之相互作用的蛋白RAT1(Related to acyltransferase)。rat1单突变体在长日条件下(16 h光照/8 h黑暗)开花时间与其野生型一致。在sgs3-11突变体中过量表达RAT1的拟南芥转基因植株,在长日条件下开花时间与其野生型一致。共聚焦激光扫描显微镜结果表明GFP-RAT1在细胞质和核中均有表达。通过序列比对发现:RAT2与RAT1的氨基酸序列同源性达89.7%,与γ-型碳酸酐酶基因在同一个进化枝上。rat2单突变体在长日条件下开花时间与其野生型一致。我们试图构建rat1rat2双突变体,结果发现不能得到rat1/-rat2/-双纯合的突变体。亚历山大染色结果发现半杂合的rat1/+ rat2/-突变体的花粉正常。但其果荚中约有23.7%的胚是败育的。胚经透明之后,在微分干涉相差显微镜下观察发现rat1/+ rat2/-突变体的中胚发育推迟,最终不能发育成正常的胚,说明RAT1和RAT2基因可能参与胚发育的调节。我们又构建了RAT1-RNAi载体,转化rat2单突变体。转基因植株r2r1i(rat2/RAT1-RNAi)在长日条件下表现出晚开花表型。实时定量PCR研究结果表明,转基因植株r2r1i晚开花表型可能与开花基因FT的下调和FLC的上调有关。转基因植株r2r1i对光敏感,其下胚轴在不同的光下均比野生型变短,说明RAT1和RAT2基因可能以功能冗余的方式参与光形态建成。将RAT2与YFP融合转化拟南芥原生质体。共聚焦激光扫描显微镜结果表明RAT2-YFP定位于线粒体,说明RAT2也有可能在线粒体中起作用。
     cry1cry2双突变体在长日条件下比野生型晚开花。采用激活标签的方法,在cry1cry2双突变体背景下筛选到一个晚开花突变体ecc2 (enhencer of cry1cry2)。TAIL-PCR结果表明,ecc2突变体的T-DNA插入在第二条染色体上At2g45430开放阅读框附近。ecc2突变体晚开花的表型很可能是由于AHL22 (At2g45430)基因的过量表达引起的。凝胶电泳迁移率实验(EMSA)结果表明AHL22可以结合到富含AT碱基的DNA序列上,说明AHL22是一个AT-hook蛋白。采用荧光显微镜观察GFP-AHL22的亚细胞定位发现AHL22定位于细胞核。将野生型植株与GFP-AHL22转基因植株的细胞核纯化出来之后,采用免疫印迹(Western blot)的方法检测发现AHL22在细胞核中表达。进一步研究发现GFP-AHL22蛋白不受不同光的调节。我们的研究还发现AHL22蛋白丰度在根中较高,说明AHL22有可能在根中起作用。采用根特异性的启动子TobRB7驱动GFP-AHL22在根中表达,结果表明TobRB7:GFP-AHL22转基因植株开花时间比野生型略晚。共聚焦激光扫描显微镜结果表明只在TobRB7:GFP-AHL22转基因植株的根中观察到GFP荧光。
     此外,还筛选到另一个早花激活标签突变体,scc17-D (suppressor of cry1cry2#17-Dominant)。TAIL-PCR结果表明,scc17-D突变体的T-DNA插入在第一条染色体上的At1g25440和At1g25450两个基因之间。scc17-D突变体表现出植株矮化、叶片变小、果荚变小和子叶表皮细胞形状发生改变等性状。结果表明,scc17-D突变体对植物的发育具有广泛的调节功能。本研究为拟南芥隐花色素的功能研究提供了一个新的突变体。
Cryptochromes are flavoproteins that share similarity in the sequence of amino acids to DNA photolyase but lack the photolyase activity. There are three members of the cryptochromes gene family in Arabidopsis thaliana. Cryptochrome1 (CRY1) and CRY2 mediate primarily blue light inhibition of hypocotyl elongation and photoperiodic promotion of floral initiation, respectively, and they functions redundantly. In order to further study the biological functions of Arabidopsis thaliana cryptochromes, using GUS-CCT2 as a bait, we screened the cDNA library and found that RAT1 (Related to acyltransferase) can interact with GUS-CCT2. The rat1 single mutant flowered at nearly the same time as wild-type under long day conditions (16 h light/8 h dark). We overexpressed RAT1 in the sgs3-11 mutant and found that the RAT1-ox transgenic lines flowered at the similar time as the wild-type. A fusion protein consisting of the green fluorescent protein (GFP) and RAT1 was expressed in Arabidopsis and the localization of the fusion proteins was determined by confocal laser scanning microscopy. The results showed that GFP-RAT1 was localized to not only the cytoplasm and but also the nucleus. Sequences alignment showed that RAT2 shared 89.7% amino acids sequences similarity with RAT1, which were both in the same clade as carbonic anhydrases genes. The rat2 single mutant flowered also at the similar time as wild-type plants under long day conditions. We tried to construct rat1/-rat2/- double mutants and found that the double homozygous rat1/-rat2/- mutants were lethal. Alexander staining showed that the pollen’s activity was normal in the heterozygous rat1/+ rat2/- double mutants. About 23.7% of embryos of rat1/+ rat2/- double mutants showed defects. The aborted embryos were cleared and observed under differential interference contrast (DIC) microscopy, showing that they developed slower than those of normal embryos and were incapable of becoming fully developed. This indicated that RAT1 and RAT2 might involve in embryogenesis. We transformed rat2 with the RAT1-RNAi construct. The transgenic r2r1i (rat2/RAT1-RNAi) lines flowered later than that of wild type under long day conditions. Real time Q-PCR results showed that the late flowering phenotype of r2r1i lines might result from the downregulation of Flowering Locus T (FT) and upregulation of Flowering Locus C (FLC). The r2r1i lines were hypersensitive to light and their hypocotyls were shorter than those of wild type under different light conditions, which indicated that RAT1 and RAT2 might act redundantly in photomorphogenesis. We fused RAT2 to yellow fluorescent protein (YFP) and transformed Arabidopsis protoplasts with RAT2-YFP. The localization of RAT2-YFP was determined by confocal laser scanning microscopy, and it showed that RAT2-YFP was localized to the mitochondria. This indicated that RAT2 might play a role in mitochondria.
     The cry1cry2 double mutant flowered later than wild-type under long day conditions. Through activation tagging, we identified a late flowering mutant ecc2 (enhencer of cry1cry2). TAIL-PCR results showed that a T-DNA insertion located near the open reading frame of At2g45430 on the second chromosome, suggesting that the late flowering phenotype of ecc2 mutant might be caused by overexpression of AHL22 (At2g45430) gene. The electrophoretic mobility shift assay (EMSA) showed that AHL22 can bind specifically to AT-rich DNA sequence, indicating that AHL22 is a bona fide AT-hook protein. The subcellular localization of GFP-AHL22 was observed in the nucleus. The nuclear proteins were purified from seedlings of wild type plants and GFP-AHL22 transgenic lines, and the western blot results showed that AHL22 was expressed in the nucleus. Additionally, GFP-AHL22 was not regulated by light. We also found that AHL protein abundance was higher in roots, indicating that AHL22 might play a role in roots. Then we constructed a GFP-AHL22 fusion gene drived by a root specific promoter TobRB7. The TobRB7:GFP-AHL22 transgenic lines flowered slightly later than that of wild type plants. The GFP-AHL22 fluorescence signal was only observed in the roots of TobRB7:GFP-AHL22 transgenic lines through confocal laser scanning microscopy.
     Through activation tagging, we identified an early flowering mutant called scc17-D (suppressor of cry1cry2#17-Dominant). TAIL-PCR results showed that a T-DNA insertion located between At1g25440 and At1g25450 on the first chromosome. The scc17-D mutant displayed phenotypes of dwarfism, reduction in leaf size, reduced length of siliques, and the altered shape of cotyledon pavement cells, suggesting that scc17-D had extensive functions on plant development. The results provide a new mutant for genetic studies of cryptochrome functions in Arabidopsis thaliana.
引文
1. Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, et al. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 2005; 309: 1052-6.
    2. Aharoni A, Dixit S, Jetter R, Thoenes E, van AG, Pereira A. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 2004; 16: 2463-80.
    3. Ahmad M, Cashmore AR. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 1993; 366: 162-6.
    4. Ahmad M, Jarillo JA, Cashmore AR. Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability. Plant Cell 1998; 10: 197-207.
    5. Ahmad M, Jarillo JA, Smirnova O, Cashmore AR. The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol Cell 1998; 1: 939-48.
    6. Ahmad M, Lin C, Cashmore AR. Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. Plant J 1995; 8: 653-8.
    7. An H, Roussot C, Suarez-Lopez P, Corbesier L, Vincent C, Pineiro M, et al. CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 2004; 131: 3615-26.
    8. Aravind L, Landsman D. AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res 1998; 26: 4413-21.
    9. Babourina O, Newman I, Shabala S. Blue light-induced kinetics of H+ and Ca2+ fluxes in etiolated wild-type and phototropin-mutant Arabidopsis seedlings. Proc Natl Acad Sci U S A 2002; 99: 2433-8.
    10. Baum G, Long JC, Jenkins GI, Trewavas AJ. Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+. Proc Natl Acad Sci U S A 1999; 96: 13554-9.
    11. Baxevanis AD, Landsman D. The HMG-1 box protein family: classification and functional relationships. Nucleic Acids Res 1995; 23: 1604-13.
    12. Bohlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, et al. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 2006; 312: 1040-3.
    13. Bowler C, Neuhaus G, Yamagata H, Chua NH. Cyclic GMP and calcium mediate phytochrome phototransduction. Cell 1994; 77: 73-81.
    14. Brautigam CA, Smith BS, Ma Z, Palnitkar M, Tomchick DR, Machius M, et al. Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana. Proc Natl Acad Sci U S A 2004; 101: 12142-7.
    15. Briggs WR, Huala E. Blue-light photoreceptors in higher plants. Annu Rev Cell Dev Biol 1999; 15: 33-62.
    16. Bustin M, Trieschmann L, Postnikov YV. The HMG-14/-17 chromosomal protein family: architectural elements that enhance transcription from chromatin templates. Semin Cell Biol 1995; 6: 247-55.
    17. Casal JJ, Mazzella MA. Conditional synergism between cryptochrome 1 and phytochrome B is shown by the analysis of phyA, phyB, and hy4 simple, double, and triple mutants in Arabidopsis. Plant Physiol 1998; 118: 19-25.
    18. Cashmore AR, Jarillo JA, Wu YJ, Liu D. Cryptochromes: blue light receptors for plants and animals. Science 1999; 284: 760-5.
    19. Cheng XF, Wang ZY. Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana. Plant J 2005; 43: 758-68.
    20. Chory J, Peto C, Feinbaum R, Pratt L, Ausubel F. Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell 1989; 58: 991-9.
    21. Christie JM, Jenkins GI. Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells. Plant Cell 1996; 8: 1555-67.
    22. Chun L, Kawakami A, Christopher DA. Phytochrome A mediates blue light and UV-A-dependent chloroplast gene transcription in green leaves. Plant Physiol 2001; 125: 1957-66.
    23. Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 2007; 316: 1030-3.
    24. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 2005; 139: 5-17.
    25. Datta S, Hettiarachchi GH, Deng XW, Holm M. Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth. Plant Cell 2006; 18: 70-84.
    26. Deng XW, Caspar T, Quail PH. cop1: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev 1991; 5: 1172-82.
    27. Devlin PF, Kay SA. Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity. Plant Cell 2000; 12: 2499-2510.
    28. Djakovic S, Dyachok J, Burke M, Frank MJ, Smith LG. BRICK1/HSPC300 functions with SCAR and the ARP2/3 complex to regulate epidermal cell shape in Arabidopsis. Development 2006; 133: 1091-100.
    29. El-Din EA, Alonso-Blanco C, Peeters AJ, Raz V, Koornneef M. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet 2001; 29: 435-40.
    30. Endo M, Mochizuki N, Suzuki T, Nagatani A. CRYPTOCHROME2 in vascular bundles regulates flowering in Arabidopsis. Plant Cell 2007; 19: 84-93.
    31. Fankhauser C, Chory J. Light control of plant development. Annu Rev Cell Dev Biol 1997; 13: 203-29.
    32. Folta KM, Spalding EP. Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. Plant J 2001; 26: 471-8.
    33. Fujimoto S, Matsunaga S, Yonemura M, Uchiyama S, Azuma T, Fukui K. Identification of a novel plantMAR DNA binding protein localized on chromosomal surfaces. Plant Mol Biol 2004; 56: 225-39.
    34. Garner WW, Allard HA. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J. Agric. Res 1920; 18: 553-606.
    35. Griffiths S, Dunford RP, Coupland G, Laurie DA. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol 2003; 131: 1855-67.
    36. Guo H, Duong H, Ma N, Lin C. The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism. Plant J 1999; 19: 279-87.
    37. Guo H, Mockler T, Duong H, Lin C. SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction. Science 2001; 291: 487-90.
    38. Guo H, Yang H, Mockler TC, Lin C. Regulation of flowering time by Arabidopsis photoreceptors. Science 1998; 279: 1360-3.
    39. Hanzawa Y, Money T, Bradley D. A single amino acid converts a repressor to an activator of flowering. Proc Natl Acad Sci U S A 2005; 102: 7748-53.
    40. Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, et al. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 2000; 290: 2110-3.
    41. Harrer M, Luhrs H, Bustin M, Scheer U, Hock R. Dynamic interaction of HMGA1a proteins with chromatin. J Cell Sci 2004; 117: 3459-71.
    42. Hayama R, Agashe B, Luley E, King R, Coupland G. A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. Plant Cell 2007; 19: 2988-3000.
    43. Hayama R, Coupland G. The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol 2004; 135: 677-84.
    44. Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 2003; 422: 719-22.
    45. Hepworth SR, Valverde F, Ravenscroft D, Mouradov A, Coupland G. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J 2002; 21: 4327-37.
    46. Hsu CY, Liu Y, Luthe DS, Yuceer C. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell 2006; 18: 1846-61.
    47. Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA. FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 2003; 426: 302-6.
    48. Ishikawa M, Kiba T, Chua NH. The Arabidopsis SPA1 gene is required for circadian clock function and photoperiodic flowering. Plant J 2006; 46: 736-46.
    49. Jaeger KE, Wigge PA. FT protein acts as a long-range signal in Arabidopsis. Curr Biol 2007; 17: 1050-4.
    50. Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, et al. Activation tagging of the floral inducer FT. Science 1999; 286: 1962-5.
    51. Kim SJ, Moon J, Lee I, Maeng J, Kim SR. Molecular cloning and expression analysis of a CONSTANShomologue, PnCOL1, from Pharbitis nil. J Exp Bot 2003; 54: 1879-87.
    52. Kleine T, Lockhart P, Batschauer A. An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. Plant J 2003; 35: 93-103.
    53. Kleiner O, Kircher S, Harter K, Batschauer A. Nuclear localization of the Arabidopsis blue light receptor cryptochrome 2. Plant J 1999; 19: 289-96.
    54. Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T. A pair of related genes with antagonistic roles in mediating flowering signals. Science 1999; 286: 1960-2.
    55. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, et al. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 2002; 43: 1096-105.
    56. Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K. Hd3a and RFT1 are essential for flowering in rice. Development 2008; 135: 767-74.
    57. Koornneef M, Hanhart CJ, van VJ. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 1991; 229: 57-66.
    58. Koornneef M, Rolff E, Spruit C. Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.). Heynh. Z. Pflanzenphysiol. Bd. 1980; 100: 147-160.
    59. Kotake T, Takada S, Nakahigashi K, Ohto M, Goto K. Arabidopsis TERMINAL FLOWER 2 gene encodes a heterochromatin protein 1 homolog and represses both FLOWERING LOCUS T to regulate flowering time and several floral homeotic genes. Plant Cell Physiol 2003; 44: 555-64.
    60. Laubinger S, Marchal V, Le GJ, Wenkel S, Adrian J, Jang S, et al. Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development 2006; 133: 3213-22.
    61. Ledger S, Strayer C, Ashton F, Kay SA, Putterill J. Analysis of the function of two circadian-regulated CONSTANS-LIKE genes. Plant J 2001; 26: 15-22.
    62. Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, et al. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc Natl Acad Sci U S A 2006; 103: 6398-403.
    63. Lim PO, Kim Y, Breeze E, Koo JC, Woo HR, Ryu JS, et al. Overexpression of a chromatin architecture-controlling AT-hook protein extends leaf longevity and increases the post-harvest storage life of plants. Plant J 2007; 52: 1140-53.
    64. Lin C. Plant blue-light receptors. Trends Plant Sci 2000a; 5: 337-42.
    65. Lin C. Photoreceptors and regulation of flowering time. Plant Physiol 2000b; 123: 39-50.
    66. Lin C. Blue light receptors and signal transduction. Plant Cell 2002; 14 Suppl: S207-25.
    67. Lin C, Ahmad M, Cashmore AR. Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development. Plant J 1996; 10: 893-902.
    68. Lin C, Ahmad M, Gordon D, Cashmore AR. Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-A, and green light. Proc Natl Acad Sci U S A 1995; 92: 8423-7.
    69. Lin C, Shalitin D. Cryptochrome structure and signal transduction. Annu Rev Plant Biol 2003; 54: 469-96.
    70. Lin C, Yang H, Guo H, Mockler T, Chen J, Cashmore AR. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc Natl Acad Sci U S A 1998; 95: 2686-90.
    71. Lin MK, Belanger H, Lee YJ, Varkonyi-Gasic E, Taoka K, Miura E, et al. FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 2007; 19: 1488-506.
    72. Liscum E, Briggs WR. Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell 1995; 7: 473-85.
    73. Liu H, Yu X, Li K, Klejnot J, Yang H, Lisiero D, et al. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 2008; 322: 1535-9.
    74. Liu J, Yu J, McIntosh L, Kende H, Zeevaart JA. Isolation of a CONSTANS ortholog from Pharbitis nil and its role in flowering. Plant Physiol 2001; 125: 1821-30.
    75. Liu LJ, Zhang YC, Li QH, Sang Y, Mao J, Lian HL, et al. COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell 2008; 20: 292-306.
    76. Long JC, Jenkins GI. Involvement of plasma membrane redox activity and calcium homeostasis in the UV-B and UV-A/blue light induction of gene expression in Arabidopsis. Plant Cell 1998; 10: 2077-86.
    77. Lours C, Bardot O, Godt D, Laski FA, Couderc JL. The Drosophila melanogaster BTB proteins bric a brac bind DNA through a composite DNA binding domain containing a pipsqueak and an AT-Hook motif. Nucleic Acids Res 2003; 31: 5389-98.
    78. Ma L, Li J, Qu L, Hager J, Chen Z, Zhao H, et al. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 2001; 13: 2589-607.
    79. Maher JF, Nathans D. Multivalent DNA-binding properties of the HMG-1 proteins. Proc Natl Acad Sci U S A 1996; 93: 6716-20.
    80. Mao J, Zhang YC, Sang Y, Li QH, Yang HQ. From The Cover: A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci U S A 2005; 102: 12270-5.
    81. Martin J, Storgaard M, Andersen CH, Nielsen KK. Photoperiodic regulation of flowering in perennial ryegrass involving a CONSTANS -like homolog. Plant Mol Biol 2004; 56: 159-69.
    82. Martinez-Garcia JF, Huq E, Quail PH. Direct targeting of light signals to a promoter element-bound transcription factor. Science 2000; 288: 859-63.
    83. Martinez-Garcia JF, Quail PH. The HMG-I/Y protein PF1 stimulates binding of the transcriptional activator GT-2 to the PHYA gene promoter. Plant J 1999; 18: 173-83.
    84. Martinez-Garcia JF, Virgos-Soler A, Prat S. Control of photoperiod-regulated tuberization in potato by the Arabidopsis flowering-time gene CONSTANS. Proc Natl Acad Sci U S A 2002; 99: 15211-6.
    85. Mas P, Devlin PF, Panda S, Kay SA. Functional interaction of phytochrome B and cryptochrome 2. Nature 2000; 408: 207-11.
    86. Mathieu J, Warthmann N, Kuttner F, Schmid M. Export of FT protein from phloem companion cells issufficient for floral induction in Arabidopsis. Curr Biol 2007; 17: 1055-60.
    87. Matsushita A, Furumoto T, Ishida S, Takahashi Y. AGF1, an AT-hook protein, is necessary for the negative feedback of AtGA3ox1 encoding GA 3-oxidase. Plant Physiol 2007; 143: 1152-62.
    88. Mazzella MA, Cerdan PD, Staneloni RJ, Casal JJ. Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development. Development 2001; 128: 2291-9.
    89. Michaels SD, Amasino RM. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 1999; 11: 949-56.
    90. Mockler T, Yang H, Yu X, Parikh D, Cheng YC, Dolan S, et al. Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc Natl Acad Sci U S A 2003; 100: 2140-5.
    91. Mockler TC, Guo H, Yang H, Duong H, Lin C. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 1999; 126: 2073-82.
    92. Morisawa G, Han-Yama A, Moda I, Tamai A, Iwabuchi M, Meshi T. AHM1, a novel type of nuclear matrix-localized, MAR binding protein with a single AT hook and a J domain-homologous region. Plant Cell 2000; 12: 1903-16.
    93. Mouradov A, Cremer F, Coupland G. Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 2002; 14 Suppl: S111-30.
    94. Nagano Y, Furuhashi H, Inaba T, Sasaki Y. A novel class of plant-specific zinc-dependent DNA-binding protein that binds to A/T-rich DNA sequences. Nucleic Acids Res 2001; 29: 4097-105.
    95. Neff MM, Chory J. Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiol 1998; 118: 27-35.
    96. Neuhaus G, Bowler C, Kern R, Chua NH. Calcium/calmodulin-dependent and -independent phytochrome signal transduction pathways. Cell 1993; 73: 937-52.
    97. Ni M, Tepperman JM, Quail PH. PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 1998; 95: 657-67.
    98. Onouchi H, Igeno MI, Perilleux C, Graves K, Coupland G. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell 2000; 12: 885-900.
    99. Osterlund MT, Hardtke CS, Wei N, Deng XW. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 2000; 405: 462-6.
    100.Parisi G, Perales M, Fornasari MS, Colaneri A, Gonzalez-Schain N, Gomez-Casati D, et al. Gamma carbonic anhydrases in plant mitochondria. Plant Mol Biol 2004; 55: 193-207.
    101.Park HW, Kim ST, Sancar A, Deisenhofer J. Crystal structure of DNA photolyase from Escherichia coli. Science 1995; 268: 1866-72.
    102.Parks BM, Folta KM, Spalding EP. Photocontrol of stem growth. Curr Opin Plant Biol 2001; 4: 436-40.
    103.Perales M, Parisi G, Fornasari MS, Colaneri A, Villarreal F, Gonzalez-Schain N, et al. Gamma carbonic anhydrase like complex interact with plant mitochondrial complex I. Plant Mol Biol 2004; 56: 947-57.
    104.Putterill J, Robson F, Lee K, Simon R, Coupland G. The CONSTANS gene of Arabidopsis promotesflowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 1995; 80: 847-57.
    105.Reeves R, Nissen MS. The A.T-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. J Biol Chem 1990; 265: 8573-82.
    106.Robert LS, Robson F, Sharpe A, Lydiate D, Coupland G. Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus. Plant Mol Biol 1998; 37: 763-72.
    107.Robson F, Costa MM, Hepworth SR, Vizir I, Pineiro M, Reeves PH, et al. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J 2001; 28: 619-31.
    108.Rowland O, Zheng H, Hepworth SR, Lam P, Jetter R, Kunst L. CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiol 2006; 142: 866-77.
    109.Sakamoto K, Briggs WR. Cellular and subcellular localization of phototropin 1. Plant Cell 2002; 14: 1723-35.
    110.Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, et al. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 2000; 288: 1613-6.
    111.Sancar A. Structure and function of DNA photolyase. Biochemistry 1994; 33: 2-9.
    112.Sang Y, Li QH, Rubio V, Zhang YC, Mao J, Deng XW, et al. N-terminal domain-mediated homodimerization is required for photoreceptor activity of Arabidopsis CRYPTOCHROME 1. Plant Cell 2005; 17: 1569-84.
    113.Selby CP, Sancar A. A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity. Proc Natl Acad Sci U S A 2006; 103: 17696-700.
    114.Sgarra R, Lee J, Tessari MA, Altamura S, Spolaore B, Giancotti V, et al. The AT-hook of the chromatin architectural transcription factor high mobility group A1a is arginine-methylated by protein arginine methyltransferase 6. J Biol Chem 2006; 281: 3764-72.
    115.Shalitin D, Yang H, Mockler TC, Maymon M, Guo H, Whitelam GC, et al. Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Nature 2002; 417: 763-7.
    116.Shin BS, Lee JH, Lee JH, Jeong HJ, Yun CH, Kim JK. Circadian regulation of rice (Oryza sativa L.) CONSTANS-like gene transcripts. Mol Cells 2004; 17: 10-6.
    117.Somers DE, Devlin PF, Kay SA. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 1998; 282: 1488-90.
    118.Spalding EP. Ion channels and the transduction of light signals. Plant Cell Environ 2000; 23: 665-74.
    119.Street IH, Shah PK, Smith AM, Avery N, Neff MM. The AT-hook-containing proteins SOB3/AHL29 and ESC/AHL27 are negative modulators of hypocotyl growth in Arabidopsis. Plant J 2008; 54: 1-14.
    120.Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 2001; 410: 1116-20.
    121.Sunderhaus S, Dudkina NV, Jansch L, Klodmann J, Heinemeyer J, Perales M, et al. Carbonic anhydrasesubunits form a matrix-exposed domain attached to the membrane arm of mitochondrial complex I in plants. J Biol Chem 2006; 281: 6482-8.
    122.Takada S, Goto K. Terminal flower2, an Arabidopsis homolog of heterochromatin protein1, counteracts the activation of flowering locus T by constans in the vascular tissues of leaves to regulate flowering time. Plant Cell 2003; 15: 2856-65.
    123.Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K. Hd3a protein is a mobile flowering signal in rice. Science 2007; 316: 1033-6.
    124.Teper-Bamnolker P, Samach A. The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves. Plant Cell 2005; 17: 2661-75.
    125.Thanos D, Maniatis T. The high mobility group protein HMG I(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene. Cell 1992; 71: 777-89.
    126.Thanos D, Maniatis T. Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell 1995; 83: 1091-100.
    127.Thum KE, Kim M, Christopher DA, Mullet JE. Cryptochrome 1, cryptochrome 2, and phytochrome a co-activate the chloroplast psbD blue light-responsive promoter. Plant Cell 2001; 13: 2747-60.
    128.Todo T. Functional diversity of the DNA photolyase/blue light receptor family. Mutat Res 1999; 434: 89-97.
    129.Toth R, Kevei E, Hall A, Millar AJ, Nagy F, Kozma-Bognar L. Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol 2001; 127: 1607-16.
    130.Trenkamp S, Martin W, Tietjen K. Specific and differential inhibition of very-long-chain fatty acid elongases from Arabidopsis thaliana by different herbicides. Proc Natl Acad Sci U S A 2004; 101: 11903-8.
    131.Turck F, Fornara F, Coupland G. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 2008; 59: 573-94.
    132.Turner A, Beales J, Faure S, Dunford RP, Laurie DA. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 2005; 310: 1031-4.
    133.Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 2004; 303: 1003-6.
    134.Vom ED, Soares ESM, Kijne JW, Pasquali G, Memelink J. Identification of a bipartite jasmonate-responsive promoter element in the Catharanthus roseus ORCA3 transcription factor gene that interacts specifically with AT-Hook DNA-binding proteins. Plant Physiol 2007; 144: 1680-9.
    135.Von Arnim A, Deng XW. LIGHT CONTROL OF SEEDLING DEVELOPMENT. Annu Rev Plant Physiol Plant Mol Biol 1996; 47: 215-243.
    136.Wang H, Ma LG, Li JM, Zhao HY, Deng XW. Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 2001; 294: 154-8.
    137.Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK, Fankhauser C, et al. Activation tagging in Arabidopsis. Plant Physiol 2000; 122: 1003-13.
    138.Weigel D, Glazebrook J. ARABIDOPSIS, A Laboratory Manual. Cold Spring Harbor, NY,: Cold SpringHarbor Laboratory Press, 2002.
    139.Wenkel S, Turck F, Singer K, Gissot L, Le GJ, Samach A, et al. CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 2006; 18: 2971-84.
    140.Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, et al. Integration of spatial and temporal information during floral induction in Arabidopsis. Science 2005; 309: 1056-9.
    141.Wu G, Spalding EP. Separate functions for nuclear and cytoplasmic cryptochrome 1 during photomorphogenesis of Arabidopsis seedlings. Proc Natl Acad Sci U S A 2007; 104: 18813-8.
    142.Xiao C, Chen F, Yu X, FU Y, Lin C. Over-expression of an AT-hook gene, AHL22, delays flowering and inhibits the elongation of the hypocotyl in Arabidopsis thaliana. Plant Mol. Biol 2009.
    143.Yang HQ, Tang RH, Cashmore AR. The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell 2001; 13: 2573-87.
    144.Yang HQ, Wu YJ, Tang RH, Liu D, Liu Y, Cashmore AR. The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell 2000; 103: 815-27.
    145.Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 2000; 12: 2473-2484.
    146.Yanovsky MJ, Kay SA. Molecular basis of seasonal time measurement in Arabidopsis. Nature 2002; 419: 308-12.
    147.Yanovsky MJ, Kay SA. Living by the calendar: how plants know when to flower. Nat Rev Mol Cell Biol 2003; 4: 265-75.
    148.Yanovsky MJ, Mazzella MA, Casal JJ. A quadruple photoreceptor mutant still keeps track of time. Curr Biol 2000; 10: 1013-5.
    149.Yanovsky MJ, Mazzella MA, Whitelam GC, Casal JJ. Resetting of the circadian clock by phytochromes and cryptochromes in Arabidopsis. J Biol Rhythms 2001; 16: 523-30.
    150.Yeh KC, Lagarias JC. Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc Natl Acad Sci U S A 1998; 95: 13976-81.
    151.Yeung K, Seitz T, Li S, Janosch P, McFerran B, Kaiser C, et al. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 1999; 401: 173-7.
    152.Yoo SK, Chung KS, Kim J, Lee JH, Hong SM, Yoo SJ, et al. CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis. Plant Physiol 2005; 139: 770-8.
    153.Yu X, Klejnot J, Zhao X, Shalitin D, Maymon M, Yang H, et al. Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus. Plant Cell 2007; 19: 3146-56.
    154.Yu X, Sayegh R, Maymon M, Warpeha K, Klejnot J, Yang H, et al. Formation of nuclear bodies of Arabidopsis CRY2 in response to blue light is associated with its blue light-dependent degradation. Plant Cell 2009; 21: 118-30.
    155.Yu X, Shalitin D, Liu X, Maymon M, Klejnot J, Yang H, et al. Derepression of the NC80 motif iscritical for the photoactivation of Arabidopsis CRY2. Proc Natl Acad Sci U S A 2007; 104: 7289-94.
    156.Zhao X, Yu X, Foo E, Symons GM, Lopez J, Bendehakkalu KT, et al. A study of gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyl elongation. Plant Physiol 2007; 145: 106-18.
    157.Zhong HH, Resnick AS, Straume M, Robertson MC. Effects of synergistic signaling by phytochrome A and cryptochrome1 on circadian clock-regulated catalase expression. Plant Cell 1997; 9: 947-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700