用户名: 密码: 验证码:
葡萄花发育相关基因的克隆与表达特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,运用传统的育种手段对多年生木本果树进行遗传改良时,由于受到童期较长等因素的影响,育种进程较为缓慢。基因工程技术的迅猛发展使其成为育种的一种重要的有巨大发展潜力的手段。花的发育是果树产量和品质的重要基础,近年来对模式植物的研究为果树花发育的研究提供了难得的机遇。
     葡萄是世界上最重要的果树之一,其种植面积和总产量居世界前列。和多年生木本果树不同,葡萄具有童期较短、一年可多次开花等特点使得对葡萄花发育的研究有着重要的意义。
     本文结合模式植物花发育的研究热点,对几个葡萄花发育相关的重要基因和启动子进行了研究,克隆了AGAMOUS(AG)、APATALLA3(AP3)、FLOWERING LOCUSC(FLC)、FLOWERING LOCUS T(FT)等四个同源基因的全长cDNA和LEAFY(LFY)同源基因启动子序列。对四个基因在葡萄中的表达特性进行了初步研究,以期为利用这些基因进行葡萄或其它果树的基因工程改良或表达调控提供理论依据。主要研究结果如下:
     1.MADS-box转录因子在多种植物的发育过程特别是花器官和果实发育过程中发挥重要的作用.为了从葡萄中克隆出新的MADS-box基因,研究在葡萄花及果实发育中的作用,根据多种植物MADS-box基因保守区序列,设计简并引物,应用RT-PCR技术从红富士葡萄花序中分离出34条MADS-box基因cDNA片段。序列分析表明,这些片段长度在138-152 bp之间,包含基因起始密码子.推导的氨基酸序列与已登录的葡萄及其它物种的MADS-box基因同源性高达83%以上.用推导的氨基酸序列与已知的葡萄和拟南芥MADS-box家族基因进行系统发育分析,可将这些基因片段分别归入拟南芥MADS-box基因不同亚家族中。证明了葡萄中存在多种MADS-box家族基因,克隆的片段包含ABCDE模型中的各类花发育基因。
     2.为探明葡萄LEAFY基因的表达调控规律,应用PCR技术从藤稔葡萄中克隆了一个长约1.8kb的DNA片段,序列全长1833bp,含有两个内含子区域,编码402个氨基酸,与葡萄VFL基因有99%的同源性。应用基因组步移法克隆了LEAFY基因的5′侧翼序列925bp,拼接后的LEAFY基因及启动子序列共2692bp(GenBank登录号EF222286)。用PLACE、PlantCARE在线启动子预测工具分析表明:该序列含有启动子的特定结构,如TATA-box,CAAT-box等,另外有一些顺式作用元件如MYB结合位点、ABA响应元件和光响应元件和一些其他的调控序列,说明葡萄LEAFY基因的表达可能受MYB、ABA和光调控.用FootPrinter在线工具对葡萄和拟南芥等其它四种植物LEAFY同源基因启动子比较,发现不同植物的启动子既有保守性,又有多样性,转录因子结合位点的分布相似,但也有区别,暗示了LEAFY基因表达调控的精确性或多样性.
     3.根据获得的MADS-box基因片段设计一条特异引物,通过3'RACE的方法获得了全长cDNA,命名为VvAG(GenBank登录号:EF209334)。该片段全长978bp,包含一个681 bp的开放阅读框,编码226个氨基酸残基。通过设计特异引物RT-PCR扩增得到了编码区全长cDNA。推导的氨基酸序列与拟南芥的AGAMOUS类MADS-box基因AG、SHP1/SHP2均有较高的同源性(同源性分别为77.9%、71.2%、69.9%)。系统发育分析将VvAG基因归入MADS-box基因家族AG亚家族的euAG进化系。半定量RT-PCR分析显示,该基因在葡萄的叶片、卷须、休眠芽、花序、果实中均表达,在花器官的萼片、花瓣、雄蕊、雌蕊中也均检测到VvAG的表达,而且在这些组织中的表达丰度均较高。通过将VvAG与葡萄的一个shotgun基因组序列(AM478968)比对发现其基因组从起始密码子到终止密码子全长7534bp,由7个外显子和6个内含子组成.构建了VvAG植物双元表达载体,通过农杆菌介导法转化烟草,共获得8株hyg阳性苗.PCR检测发现8个hyg阳性株系均检测到目的条带,初步说明VvAG基因已整合到烟草基因组中;对其中5个PCR阳性株系进行RT-PCR分析,结果表明VvAG基因在5个转基因烟草株系中均发生了转录。
     4.应用电子克隆技术从葡萄EST数据库中拼接到一个APETALA3(AP3)类MADS-box同源基因的全长序列,用RT-PCR的方法在红富士葡萄花序cDNA中扩增得到了该基因的编码区全长序列,命名为VvAP3(GenBank登录号EF211123).该序列编码区全长681 bp,编码226个氨基酸残基,与PMADS1、NTDEF、AP3分别有71.2%、70.4%和59.7%的同源性.该序列具有MADS-box基因典型的MADS-box和K-box结构域。系统发育分析同样将VvAP3基因归入MADS-box基因家族中AP3/PI亚家族的euAP3进化系。半定量RT-PCR分析显示,该基因在葡萄的花序及果实中表达,在叶片、卷须、休眠芽中不表达;在葡萄花器官的花瓣和雄蕊中表达,在萼片和雌蕊中不表达.通过将VvAP3与葡萄的一个shotgun基因组序列(GenBank登录号AM469149)比对发现其基因组从起始密码子到终止密码子全长7534 bp,由7个外显子和6个内含子组成,且外显子数目和每个外显子长度和拟南芥AP3基因完全相同.构建了VvAP3植物双元表达裁体,通过农杆菌介导法转化烟草,共获得7株hyg阳性苗.PCR检测发现7个hyg阳性株系均检测到目的条带,初步说明VvAP3已整合到烟草基因组中;对其中5个PCR阳性株系进行RT-PCR分析,结果表明VvAP3在这些转基因烟草株系中均发生了转录。
     5.通过生物信息学在葡萄EST数据库中获得了一个FLOWERING LOCUS C(FLC)类基因全长序列,RT-PCR确认得到葡萄FLC-like MADS-box基因cDNA全长序列,命名为VvFLC(GenBank登录号EF520739)。该序列编码区全长948 bp,编码210个氨基酸残基,氨基酸序列与拟南芥的FLC、甜菜的BvFLC1-1、BVFLC1-4基因的同源性分别为43%、49%和49%。该基因具有MADS-box基因典型的MADS-box和K-box结构域。系统发育分析将VvFLC基因归入拟南芥MADS-box基因家族的FLC亚家族中。半定量RT-PCR分析结果显示,该基因在葡萄的叶片、卷须、休眠芽、花序及果实中都有表达.通过将VvFLC与葡萄基因组比对发现其由7个外显子和6个内含子组成。构建了VvFLC植物双元表达载体,通过农杆菌介导法转化烟草,共获得7株hyg阳性苗。PCR检测发现7个hyg阳性株系均检测到目的条带,初步说明VvFLC已整合到烟草基因组中;对其中4个PCR阳性株系进行RT-PCR分析,结果显示VvFLC基因在这些转基因烟草株系中均发生了转录。
     6.通过生物信息学在葡萄EST数据库中获得了Flower Locus T(FT)同源基因的全长序列,RT-PCR确认得到葡萄Flower Locus T(FT)基因cDNA编码区全长序列(GenBank登录号EF203918)。该序列编码区全长525 bp,编码174个氨基酸残基,其推导的氨基酸与PnFT、FT、MdFT的同源性分别为89%、75%和74%。该序列具有FT基因典型的RKIP结构域.系统发育分析同样将VvFT聚在FT/TFL基因家族的FT组中。通过PCR从葡萄基因组中扩增得到了该基因的基因组全长(GenBank登录号EF203919),与mRNA比对结果显示该基因由4个外显子与3个内含子构成,与白杨、拟南芥的FT基因结构相同,内含子区有(TCC)_(10)、(CA)_(10)等重复序列。半定量RT-PCR分析结果表明,VvFT在葡萄花序和果实中表达,说明其不仅与开花相关,而且与果实的发育有着密切的关系。构建了VvFT植物双元表达载体,通过农杆菌介导法转化烟草,共获得8株hyg阳性苗。PCR检测发现在其中7个hyg阳性株系检测到目的条带,初步说明VvFT已整合到烟草基因组中。对其中4个PCR阳性株进行RT-PCR检测,结果表明VvFT在这些转基因烟草中均发生了转录。对转基因烟草的表型观察发现VvFT能够促进烟草开花,转基因植株出现矮化现象,但花器官形态没有发生改变.
For a long time,with traditional breeding methods,we met with many difficultics such as the long breeding period,leading to the breeding process become slowly.Genetic engineering technique has been becomeing the important potential breeding method.The floral development is the important foundation of fruit yield and qualitiy.The research of model plant flower development in recent years provided an opportunity for fruit trees.
     Grape is one of the most important fruit trees in the world,its culture area and total yields are advanced in the world.Different from perennial woody fruit crops,grape has advantages of short juvenile period,multiple flowering in a year and so on.Therefore,it is of great importance to research on flower development of grape.
     According to the research hotspot of the model plant flower development,we studied on several flowering related genes and the promoter from grape(Vitis vinifera×V. labrusca),cloned the full length of AGAMOUS(AG),APATALLA3(AP3),FLOWERING LOCUS C(FLC),FLOWERING LOCUS T(FT) homolog and the promoter of LEAFY gene. We studied the expression characterization of these genes,we expect that it will be used in the genetic engineering breeding or regulate gene expression.The main results are as follows:
     1.As a kind of transcription factors,MADS-box genes play an important role in various plant development processes,especially in the development of floral organs and fruit.In order to isolate new MADS-box genes and find out the function of these genes in the development of grape floral organs and fruit,we designed degenerate primers according to the conservative area sequences of MADS-box family gene from various plants, obtained 34 MADS- box gene cDNA fragments amplified by RT-PCR from the inflorescence of Vitis vinifera×V.labrusca 'Red Fuji'.Sequence analysis indicated the size of these fragments is among 138-152 bp,including the initiation codon of genes,deduced amino acid sequences have a higher identify of more than 83%with MADS-box genes of grapevine and other species.By analysis of phylogeny construction,all of these gene fragments have been divided into the Arabidopsis MADS-box gene subfamily.These results showed that there are many MADS-box genes in grape,these gene fragments cover all type floral development genes of ABCDE model.
     2.In order to study the rule of grape LEAFY gene expression and regulation,we amplified a 1.8kb fragment from Vitis Vinifera×V.Labrusca 'Fujiminori' by PCR.The fragment is 1833bp,deduced 402 amino acids,has two introns,which is 99%identity with VFL gene.Nine hundred and twenty five bp promoter region sequence was cloned by genome walking method.The gene and promoter are 2692bp in length(GenBank accession is EF222286).Promoter sequence analyzed by PLACE and PlantCARE showed that it has TATA-box,CAAT-box and some cis-acting element such as MYB binding site,cis-acting regulatory element involved in ABA response,some light-induced responsive elements and other transcription factor-binding sites.Compared the promoter of grape LEAFY homologue with 4 plants,by FootPrinter analysis we found that these promoter has conservatism and diversity and the distributing of transcription factor-binding sites has similarity and difference.It implied the accuracy and diversity of LEAFY gene expression and regulation.
     3.As a kind of transcription factors,MADS-box genes play an important role in plant various development processes,especially in the development of floral organs.According to a MADS fragment sequence obtained by degenerate primer RT-PCR,an AG-like MADS-box gene was cloned from inflorescene by the method of 3'RACE PCR,named VvAG(GeneBank accession number EF209334),This gene is 978 bp and contained an open reading frame of 681bp coding a polypeptide of 226 amino acids.Homology analysis showed that the deduced VvAG protein was highly homologous to AG,SHP1/SHP2 of Arabidopsis thaliana,the identity is 77.9%,71.2%and 69.9%,respectively.Phylogenetic analysis also indicated that VvAG belongs to the euAG lineage of AG subfamily in MADS-box gene family.RT-PCR analysis showed that VvAG expresses at high levels in leaves,tendrils,inflorescenes,young fruits and mature fruits,and also expressed in all of 4 wheel floral organ.By blast of VvAG with a shotgun genome sequence,the result indicated that VvAG genome is consist of 7 exons and 6 introns.We constructed a overexpression vector of VvAG and transferred it into tobacco,obtained 8 hyg positive tobacco plants.PCR analysis showed that these lines are all PCR positive.Analysis of 5 PCR positive lines by RT-PCR revealed VvAG expressed in all these lines.
     4.An APETALA3(AP3) homologue was isolated from grape(Vitis vinifera×V. labrusca 'Red Fuji') inflorescence by bioformatic analysis and RT-PCR.It is 681 bp, coding a polypeptide of 226 amino acids,named as VvAP3(GenBaak accession number EF211123).Homology analysis showed that the deduced VvAP3 protein was highly homologous to the MADS-box genes,PMADS1,NTDEF and AP3,the identity are 71.2%, 70.4%and 59.7%,respectively.Phylogenetic analysis also indicated that VvAP3 belongs to the euAP3 lineage of AP3 subfamily in MADS-box gene family.RT-PCR analysis showed that VvAP3 expressed in inflorescenes,young and mature fruits,and in petal and stamen, but not expressed in sepal and carpel.Blast of VvAP3 with a shotgun genome sequence indicated that VvAP3 genome is consist of 7 exons and 6 introns,the number and length of exon is the same as AP3.We constructed a overexpression vector of VvAP3 and transferred it into tobacco,obtained 7 hyg positive tobacco plants.PCR analysis showed that these lines are all PCR positive.Analysis of 5 PCR positive lines by RT-PCR revealed VvAP3 expressed in all these lines.
     5.An putative FLC homologue full length cDNA was isolated from grape(Vitis vinifera×V.labrusca 'Red Fuji') inflorescence by bioformatic analysis and RT-PCR.It is 948bp in length,coding a polypeptide of 210 amino acids,named as VvFLC(GenBank accession number is EF520739).The predicted protein sequence shows homology to FLC (43%identity) and to BvFLC1-1 and BvFLC1-4(49%and 49%identity,respectively). Phylogenetic analysis also indicated that VvFLC belonged to the FLC subfamily of MADS-box gene family.VvFLC expresses in leaves,tendrils,inflorescenes,young and mature fruits.Blast of VvFLC with a genome shotgun sequence indicated that VvFLC genome is consist of 7 exons and 6 introns.We constructed a overexpression vector of VvFLC and transferred it into tobacco,obtained 7 hyg positive tobacco plants.PCR analysis showed that these lines are all PCR positive.Analysis of 4 PCR positive lines by RT-PCR revealed VvFLC expressed in all these lines.
     6.An Flowering Locus T(FT) homologue was isolated from grape(Vitis vinifera×V. labrusca 'Red Fuji') inflorescence by bioformatic analysis and RT-PCR.It is 525bp in length,coding a polypeptide of 174 amino acids,named as VvFT(GenBank accession is EF203918).The deduced amino acid sequence shows a high degree of homology to PnFT1a(89%identity) and to FT and MdFT(75%and 74%identity respectively).VvFT protein has a typical RKIP domain.Phylogenetic analysis showed VvFT belongs to FT homologues of the FT/TFLl gene family.Cloning VvFT genome sequence by PCR(GenBank accession is EF203919),blast of it with VvFT mRNA showed the structure of VvFT gene is consist of 4 exons and 3 introns,the structure is the same as Arabidopsis and poplar.There has some sequence repeat in the intron of VvFT gene,such as(TCC)_(10) and(CA)_(10).VvFT is expressed in the developing inflorescene,young and mature berry showed VvFT is related with flower and fruit development.We constructed a overexpression vector of VvFT and transferred it into tobacco,obtained 8 hyg positive tobacco plants.PCR analysis showed that 7 of them are PCR positive.Analysis of 4 PCR positive lines by RT-PCR revealed VvFT expressed in all these lines.Overexpression of VvFT in tobacco hastened flowering showed that VvFT function as promoters of flowering when ectopically expressed in a heterologous plant,and the flower number of transgene plant is more than untransgene plant.A transgene plant showed a dwarfism phenotype,and no change in flower organ shape.
引文
1.Abe M,Kobayashi Y,Yamamoto S,et al.FD,a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex[J].Science,2005,309(5737):1052-1056
    2.Alvarez-Buylla E R,Liljegren S J,Pelaz S,et al.MADS-box gene evolution beyond flowers:expression in pollen,endosperm,guard cells,roots and trichomes[J].Plant J.,2000,24(4):457-466
    3.Alvarez-Buylla E R,Pelaz S,Liljegren S J,et al.An ancestral MADS-box gene duplication occurred before the divergence of plants and animals[J].Proc.Natl.Acad.Sci.USA.,2000,97(10):5328-5333
    4.Amasino R M.Control of flowering time in plants[J].Curr.Opin.Genet.Dev.,1996,6(4):480-487
    5.Angenent G C,Franken J,Busscber M,et al.A novel class of MADS box genes is involved in ovule development in petunia[J].Plant Cell,1995,7(10):1569-1582
    6.Aoki S,Uehara K,Imafuku M,et al.Phylogeny and divergence of basal angiosperms inferred from APETALA3- and PISTILLATA-like MADS-box genes[J].J.Plant Res.,2004,117(3):229-244
    7.Becket A,Theissen G.The major clades of MADS-box genes and their role in the development and evolution of flowering plants[J].Mol.Phylogenet Evol.,2003,29(3):464-489
    8.Blanchette M,Tompa M.FootPrinter:A program designed for phylogenetic footprinting[J].Nucleic Acids Res.,2003,31(13):3840-3842
    9.Blazquez M A,Green R,Nilsson O,et al.Gibbereilins promote flowering of Arabidopsis by activating the LEAFY promoter[J].Plant Cell,1998,10(5):791-800
    10.Blazquez M A,Weigel D.Integration of floral inductive signals in Arabidopsis[J].Nature,2000,404(6780):889-892
    11.Blazquez M.Flower development pathways[J].J.Cell Sci.,2000,113(20):3547-3548
    12.Boss P K,Sensi E,Hua C,et al.Cloning and characterisation of grapevine(Vitis vinifera L.)MADS-box genes expressed during inflorescence and berry development[J].Plant Science,2002,162(6):887-895
    13.Boss P K,Sreekantan L,Thomas M R.A grapevine TFL1 homologue can delay flowering and alter floral development when overexpressed in heterologous species[J].Functional Plant Biology,2006,33(1):31-41
    14.Boss P K,Thomas M R.Association of dwarfism and floral induction with a grape 'green revolution' mutation[J].Nature,2002,416(6883):847-850
    15.Boss P K,Thomas M R.Tendrils,inflorescences and fruitfulness:A molecular perspective[J].Australian Journal of Grape and Wine Research,2000,6(2):168-174
    16.Boss P K,Vivier M,Matsumoto S,et al.A cDNA from grapevine(Vitis vinifera L.),which shows homology to AGAMOUS and SHATTERPROOF,is not only expressed in flowers but also throughout berry development[J].Plant Mol.Biol.,2001,45(5):541-553
    17.Bowman J L,Alvarez J,Weigel D,et al.Control of flower development in Arabidopsis thaliana by APETALAl and interacting genes[J].Development,1993,119(3):721-743
    18.Bowman J L,Drews G N,Meyerowitz E M.Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development[J].Plant Cell,1991,3(8):749-758
    19.Bowman J L,Meyerowitz E M.Genetic control of pattern formation during flower development in Arabidopsis[J].Symp.Soc.Exp.Biol.,1991,45:89-115
    20.Bowman J L,Smyth D R,Meyerowitz E M.Genes directing flower development in Arabidopsis[J].Plant Cell,1989,1(1):37-52
    21.Bowman J L,Smyth D R,Meyerowitz E M.Genetic interactions among floral homeotic genes of Arabidopsis[J].Development,1991,112(1):1-20
    22.Bradley D,Carpenter R,Sommer H,et al.Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of antirrhinum[J].Cell,1993,72(1):85-95
    23.Bradley D,Ratcliffe O,Vincent C,et al.Inflorescence Commitment and Architecture in Arabidopsis[J].Science,1997,275(5296):80-83
    24.Carmona M J,Cubas P,Martinez-Zapater J M.VFL,the grapevine FLORICAULA/LEAFY ortholog,is expressed in meristematic regions independently of their fate[J].Plant Physiol.,2002,130(1):68-77
    25.Carpenter R,Coen E S.Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus[J].Genes.Dev.,1990,4(9):1483-1493
    26.Causier B,Castillo R,Zhou J,et al.Evolution in action:following function in duplicated floral homeotic genes[J].Curr.Biol.,2005,15(16):1508-1512
    27.Chandler J,Dean C.Factors influencing the vernalization response and flowering time of late flowering mutants of Arabidopsis thaliana(L.) Heynh[J].Journal of Experimental Botany,1994,45(9):1279-1288
    28.Chang S,Puryear J,Cairney J.A simple and efficient method for isolating RNA from pine trees[J].Plant Molecular Biology Reporter,1993,11:113-116
    29.Chen L,Cheng J C,Castle L,et al.EMF genes regulate Arabidopsis inflorescence development[J].Plant Cell,1997,9(11):2011-2024
    30.Coen E S,Meyerowitz E M.The war of the whorls:genetic interactions controlling flower development[J].Nature,1991,353(6339):31-37
    31.Coen E S,Romero J M,Doyle S,et al.floricaula:a homeotic gene required for flower development in Antirrhinum majus[J].Cell,1990,63(6):1311-1322
    32.Colombo L,Franken J,Koetje E,et ai.The petunia MADS box gene FBP11 determines ovule identity[J].Plant Cell,1995,7(11):1859-1868
    33.Colombo L,Franken J,Van K A,et al.Downregulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development[J].Plant Cell,1997,9(5):703-715
    34.Coombe B G.Effects of growth retardants on Vitis vinifera L.[J].Vitis,1967,6(3):278-287
    35.Corbesier L,Vincent C,Jang S,et al.FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis[J].Science,2007,316(5827):1030-1033
    36.Davies B,MoRe P,Keck E,et al.PLENA and FARINELLI:redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development[J].EMBO J.,1999,18(14):4023-4034
    37.De B S,Raes J,Florquin K,et al.Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants[J].J.Mol.Evol.,2003,56(5):573-586
    38.De B S,Raes J,Van P Y,et al.And then there were many:MADS goes genomic[J].Trends Plant Sci.,2003,8(10):475-483
    39.de F S,Angenent G C.trans meets cis in MADS science[J].Trends Plant Sci.,2006,11(5):224-231
    40.de F S,Busscher J,Colombo L,et al.Transcript profiling of transcription factor genes during silique development in Arabidopsis[J].Plant Mol.Biol.,2004,56(3):351-366
    41.de F S,Immink R G,Kieffer M,et al.Comprehensive interaction map of the Arabidopsis MADS Box transcription factors[J].Plant Cell,2005,17(5):1424-1433
    42.Dezar C A,Tioni M F,Gonzalez D H,et al.Identification of three MADS-box genes expressed in sunflower capitulum[J].J.Exp.Bot.,2003,54(387):1637-1639
    43.Ditta G,Pinyopich A,Robles P,et al.The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity[J].Curr.Biol.,2004,14(21):1935-1940
    44.Egea-Cortines M,Saedler H,Sommer H.Ternary complex formation between the MADS-box proteins SQUAMOSA,DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus[J].EMBO J.,1999,18(19):5370-5379
    45.Endo T,Shimada T,Fujii H,et al.Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange(Poncirus trifoliata L.Raf.)[J].Transgenic Research,2005,14(5):703-712
    46.Fan H Y,Hu Y,Tudor M,et al.Specific interactions between the K domains of AG and AGLs,members of the MADS domain family of DNA binding proteins[J].Plant J.,1997,12(5):999-1010
    47.Favaro R,Pinyopich A,Battaglia R,et al.MADS-box protein complexes control carpel and ovule development in Arabidopsis[J].Plant Cell,2003,15(11):2603-2611
    48.Ferrandiz C,Gu Q,Martienssen R,et al.Redundant regulation of meristem identity and plant architecture by FRUITFULL,APETALA1 and CAULIFLOWER[J].Development,2000,127(4):725-734
    49.Ferrandiz C,Liljegren S J,Yanofsky M F.Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development[J].Science,2000,289(5478):436-438
    50.Ferrario S,Immink R G,Angenent G C.Conservation and diversity in flower land[J].Curr.Opin.Plant Biol.,2004,7(1):84-91
    51.Flanagan C A,Hu Y,Ma H.Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development[J].Plant J.,1996,10(2):343-353
    52.Fianagan C A,Ma H.Spatially and temporally regulated expression of the MADS-box gene AGL2in wild-type and mutant Arabidopsis flowers[J].Plant Mol.Biol.,1994,26(2):581-595
    53.Franks T,Botta R,Thomas M R,et al.Chimerism in grapevines:implications for cultivar identity,ancestry and genetic improvement[J].Theoretical and Applied Genetics,2002,104(2):192-199
    54.Frohlich M W,Parker D S.The mostly male theory of flower evolutionary origins:from genes to fossils[J].Systematic Botany,2000,25(2):155-170
    55.Gendall A R,Levy Y Y,Wilson A,et al.The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis[J].Cell,2001,107(4):525-535
    56.George S E,Huggins-Clark G,Brooks L R.Use of a Salmonella microsuspension bioassay to detect the mutagenicity of munitions compounds at low concentrations[J].Mutat.Res.,2001,490(1):45-56
    57.Goto K,Meyerowitz E M.Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA[J].Genes Dev.,1994,8(13):1548-1560
    58.Gu Q,Ferrandiz C,Yanofsky M F,et al.The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development[J].Development,1998,125(8):1509-1517
    59.Gutierrez-Cortines M E,Davies B.Beyond the ABCs:ternary complex formation in the control of floral organ identity[J].Trends in Plant Science,2000,5(11):471-476
    60.Higo K,Ugawa Y,Iwamoto M,et at.Plant cis-acting regulatory DNA elements(PLACE) database:1999[J].Nucleic Acids Res.,1999,27(1):297-300
    61.Honma T,Goto K.Complexes of MADS-box proteins are sufficient to convert leaves into floral organs[J].Nature,2001,409(6819):525-529
    62.Hsu C Y,Liu Y,Luthe D S,et at.Poplar FT2 Shortens the Juvenile Phase and Promotes Seasonal Flowering[J].Plant Cell,2006,18(8):1846-1861
    63.Huijser P,Klein J,Lonnig W E,et at.Bracteomania,an inflorescence anomaly,is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus[J].EMBO J.,1992,11(4):1239-1249
    64.Irish V F,Litt A.Flower development and evolution:gene duplication,diversification and redeployment[J].Curr.Opin.Genet.Dev.,2005,15(4):454-460
    65.Irish V F.The evolution of floral homeotic gene function[J].Bioessays,2003,25(7):637-646
    66.Jack T.Molecular and genetic mechanisms of floral control[J].Plant Cell,2004,16 Suppl:1-17
    67.Jager M,Hassanin A,Manuel M,et al.MADS-box genes in Ginkgo biloba and the evolution of the AGAMOUS family[J].Mol.Biol.Evol.,2003,20(5):842-854
    68.Jaillon O,Aury J M,Noel Bet at.The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla[J].Nature,2007,449(7161):463-468
    69.Jofuku K D,den B B,Van M M,et at.Control of Arabidopsis flower and seed development by the homeotic gene APETALA2[J].Plant Cell,1994,6(9):1211-1225
    70.Johansen B,Pedersen L B,Skipper M,et al.MADS-box gene evolution-structure and transcription patterns[J].Mol.Phylogenet.Evol.,2002,23(3):458-480
    71.Kardailsky I,Shulda V K,Ahn J H,et al.Activation tagging of the floral inducer FT[J].Science,1999,286(5446):1962-1965
    72.Kaufmann K,Melzer R,Theissen G.MIKC-type MADS-domain proteins:structural modularity,protein interactions and network evolution in land plants[J].Gene,2005,347(2):183-198
    73.Kelly A J,Bonnlander M B,Meeks-Wagner D R.NFL,the tobacco homolog of FLORICAULA and LEAFY,is transcriptionally expressed in both vegetative and floral meristems[J].Plant Cell,1995,7(2):225-234
    74.Kempin S A,Savidge B,Yanofsky M F.Molecular basis of the cauliflower phenotype in Arabidopsis[J].Science,1995,267(5197):522-525
    75.Kim S,Yoo M J,Albert V A,et al.Phylogeny and diversification of B-function MADS-box genes in angiosperms:evolutionary and functional implications of a 260-million-year-old duplication[J].American Journal of Botany,2004,91(12):2102-2118
    76.Kobayashi Y,Kaya H,Goto K,et al.A pair of related genes with antagonistic roles in mediating flowering signals[J].Science,1999,286(5446):1960-1962
    77.Koornneef M,Alonso-Blanco C,Peeters A J,et al.Genetic control of flowering time in Arabidopsis[J].Annu.Rev.Plant Physiol.Plant Mol.Biol.,1998,49:345-370
    78.Kotilainen M,Elomaa P,Uimari A,et al.GRCD1,an AGL2-like MADS box gene,participates in the C function during stamen development in Gerbera hybrida[J].Plant Cell,2000,12(10):1893-1902
    79.Kramer E M,Dorit R L,Irish V F.Molecular evolution of genes controlling petal and stamen development:duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages[J].Genetics,1998,149(2):765-783
    80.Kramer E M,Hall J C.Evolutionary dynamics of genes controlling floral development[J].Curr.Opin.Plant Biol.,2005,8(1):13-18
    81.Kramer E M,Jaramillo M A,Di S V.Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms[J].Genetics,2004,166(2):1011-1023
    82.Krizek B A,Meyerowitz E M.Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity proteins[J].Proc.Natl.Acad.Sci.USA.,1996,93(9):4063-4070
    83.Kumar S,Tamura K,Nei M.MEGA3:Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment[J].Brief Bioinform,2004,5(2):150-163
    84.Kyozuka J,Konishi S,Nemoto K,et al.Down-regulation of RFL,the FLO/LFF homolog of rice,accompanied with panicle branch initiation[J].Proc.Natl.Acad.Sci.USA.,1998,95(5):1979-1952
    85.Lamb R S,Irish V F.Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages[J].Proc.Natl.Acad.Sci.USA.,2003,100(11):6558-6563
    86.Lee H,Suh S S,Park E,et al.The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis[J].Genes and Development,2000,14(18):2366-2376
    87.Lee I,Aukerman M J,Gore S L,et al.Isolation of LUMINIDEPENDENS:a gene involved in the control of flowering time in Arabidopsis[J].Plant Cell,1994,6(1):75-83
    88.Lescot M,Dehais P,Thijs G,et al.PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J].Nucleic Acids Res.,2002,30(1):325-327
    89.Levin J Z,Meyerowitz E M.UFO:an Arabidopsis gene involved in both floral meristem and floral organ development[J].Plant Cell,1995,7(5):529-548
    90.Levy Y Y,Dean C.The transition to flowering[J].Plant Cell,1998,10(12):1973-1990
    91.Liljegren S J,Ditta G S,Eshed Y,et al.SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis[J].Nature,2000,404(6779):766-770
    92.Liljegren S J,Gustafson-Brown C,Pinyopich A,et al.Interactions among APETALA1,LEAFY,and TERMINAL FLOWER1 specify meristem fate[J].Plant Cell,1999,11(6):1007-1018
    93.Lin C.Photoreceptors and regulation of flowering time[J].Plant Physiol.,2000,123(1):39-50
    94.Litt A,Irish V F.Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage:implications for the evolution of floral development[J].Genetics,2003,165(2):821-833
    95.Lohmann J U,Weigel D.Building beauty:the genetic control of floral patterning[J].Dee.Cell,2002,2(2):135-142
    96.Ma H,Yanofsky M F,Meyerowitz E M.AGL1-AGL6,an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes[J].Genes Dev.,1991,5(3):484-495
    97.Macknight R,Bancroft I,Page T,et al.FCA,a gene controlling flowering time in Arabidopsis,encodes a protein containing RNA-binding domains[J].Cell,1997,89(5):737-745
    98.Mandel M A,Gustafson-Brown C,Savidge B,et al.Molecular characterization of the Arabidopsis floral homeotic gene APETALA1[J].Nature,1992,360(6401):273-277
    99.Mandel M A,Yanofsky M F.A gene triggering flower formation in Arabidopsis[J].Nature,1995,377(6549):522-524
    100.Mandel M A,Yanofsky M F.The Arabidopsis AGL9 MADS box gene is expressed in young flower primordia[J].Sex Plant Reprod,1998,11(1):22-28
    101.Martinez-Castilla L P,Alvarez-Buylla E R.Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny[J].Proc.Natl.Acad.Sci.USA.,2003,100(23):13407-13412
    102.Mellerowicz E J,Horgan K,Walden A,et al.PRFLL--a Pinus radiata homologue of FLORICAULA and LEAFY is expressed in buds containing vegetative shoot and undifferentiated male cone primordia[J].Planta,1998,206(4):619-629
    103.Messenguy F,Dubois E.Role of MADS box proteins and their cofaetors in combinatorial control of gene expression and cell development[J].Gene,2003,316:1-21
    104.Meyerowitz E M.Plants and the logic of development[J].Genetics,1997,145(1):5-9
    105.Michaels S D,Amasino R M.FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering[J].Plant Cell,1999,11(5):949-956
    106.Michaels S D,Amasino R M.Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization[J].Plant Cell,2001,13(4):935-941
    107.Michaels S D,Amasino R M.Memories of winter:vernalization and the competence to flower[J].Plant,Cell & Environment,2000,23(11):1145-1153
    108.Morrison J C.Bud development in Vitis vinifera L.[J].Botanical Gazette,1991,152(3):304-315
    109.Mouradov A,Glassick T,Hamdorf B,et al.NEEDLY,a Pinus radiata ortholog of FLORICAULA/LEAFY genes,expressed in both reproductive and vegetative meristems[J].Proc.Natl.Acad.Sci.USA.,1998,95(11):6537-6542
    110.Muller B M,Saedler H,Zachgo S.The MADS-box gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development[J].Plant J.,2001,28(2):169-179
    111.Mullins M G,Bouquet A,Williams L E.Biology of the Grapevine[M].Cambridge:Cambridge University Press,1991
    112.Mullins M G.Regulation of inflorescence growth in cuttings of the grapevine(Vitis vinifera L.)[J].Journal of Experimental Botany,1968,19(3):532-543
    113.Munster T,Pahnke J,Di R A,et ai.Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants[J].Proc.Natl.Acad.Sci.USA.,1997,94(6):2415-2420
    114.Munster T,Wingen L U,Faigl W,et al.Characterization of three GLOBOSA-like MADS-box genes from maize:evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses.[J].Gene,2001,262:1-13
    115.Nam J,Kim J,Lee S,et al.Type Ⅰ MADS-box genes have experienced faster birth-and-death evolution than type Ⅱ MADS-box genes in angiosperms[J].Proc.Natl.Acad.Sci.USA.,2004, 101(7):1910-1915
    116.Ng M,Yanofsky M F.Function and evolution of the plant MADS-box gene family[J].Nat.Rev.Genet.,2001,2(3):186-195
    117.Norman C,Runswick M,Pollock R,et al.Isolation and properties of cDNA clones encoding SRF,a transcription factor that binds to the c-fos serum response element[J].Cell,1988,55(6):989-1003
    118.Ohshima S,Murata M,Sakamoto W,et al.Cloning and molecular analysis of the Arabidopsis gene Terminal Flower 1[J].Mol.Gen.Genet.,1997,254(2):186-194
    119.Parenicova L,de F S,Kieffer M,et al.Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis:new openings to the MADS world[J].Plant Cell,2003,15(7):1538-1551
    120.Park D H,Somers D E,Kim Y S,et al.Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene[J].Science,1999,285(5433):1579-1582
    121.Pelaz S,Ditta G S,Baumann E,et al.B and C floral organ identity functions require SEPALLATA MADS-box genes[J].Nature,2000,405(6783):200-203
    122.Pelaz S,Gustafson-Brown C,Kohalmi S E,et al.APETALA1 and SEPALLATA3 interact to promote flower development[J].Plant J.,2001,26(4):385-394
    123.Pena L,Martin-Trillo M,Juarez J,et ai.Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time[J].Nat.Biotechnol,2001,19(3):263-267
    124.Peng J,Carol P,Richards D E,et al.The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses[J].Genes Dev.,1997,11(23):3194-3205
    125.Peng J,Richards D E,Hartley N M,et al.'Green revolution' genes encode mutant gibbereilin response modulators[J].Nature,1999,400(6741):256-261
    126.Pineiro M,Coupland G.The control of flowering time and floral identity in Arabidopsis[J].Plant Physiol.,1998,117(1):1-8
    127.Pinyopich A,Ditta G S,Savidge B,et al.Assessing the redundancy of MADS-box genes during carpel and ovule development[J].Nature,2003,424(6944):85-88
    128.Putterill J,Robson F,Lee K,et al.The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors[J].Cell,1995,80(6):847-857
    129.Ratcliffe O J,Nadzan G C,Reuber T L,et al.Regulation of flowering in Arabidopsis by an FLC homologue[J].Plant Physiol.,2001,126(1):122-132
    130.Rottmann W H,Meilan R,Sheppard L A,et al.Diverse effects of overexpression of LEAFY and PTLF,a poplar(Populus) homolog of LEAFY/FLORICAULA,in transgenie poplar and Arabidopsis [J].Plant J,2000,22(3):235-245
    131.Rounsley S D,Ditta G S,Yanofsky M F.Diverse roles for MADS box genes in Arabidopsis development[J].Plant Cell,1995,7(8):1259-1269
    132.Ruiz-Garcia L,Madueno F,Wilkinson M,et al.Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis[J].Plant Cell,1997,9(11):1921-1934
    133.Savidge B,Rounsley S D,Yanofsky M F.Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes[J].Plant Cell,1995,7(6):721-733
    134.Schaffer R,Ramsay N,Samach A,et al.The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering[J].Cell,1998,93(7):1219-1229
    135.Schultz E A,Haughn G W.LEAFY,a homeotic gene that regulates inflorescence development in Arabidopsis[J].Plant Cell,1991,3(8):771-781
    136.Schwarz-Sommer Z,Hue I,Huijser P,et al.Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens:evidence for DNA binding and autoregulation of its persistent expression throughout flower development[J].EMBO J.,1992,11(1):251-263
    137.Serrano-Cartagena J,Candela H,Robles P,et al.Genetic analysis of incurvata mutants reveals three independent genetic operations at work in Arabidopsis leaf morphogenesis[J].Genetics,2000,156(3):1363-1377
    138.Sessions A,Yanofsky M F,Weigel D.Patterning the floral meristem[J].Semin.Cell Dev.Biol.,1998,9(2):221-226
    139.Shannon S,Meeks-Wagner D R.A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development[J].Plant Cell,1991,3(9):877-892
    140.Sheldon C C,Burn J E,Perez P P,et al.The FLF MADS box gene:a repressor of flowering in Arabidopsis regulated by vernalization and methylation[J].Plant Cell,1999,11(3):445-458
    141.Sheldon C C,Finnegan E J,Rouse D T,et al.The control of flowering by vernalization[J].Curr.Opin.Plant Biol.,2000,3(5):418-422
    142.Sheldon C C,Rouse D T,Finnegan E J,et al.The molecular basis of vernalization:the central role of FLOWERING LOCUS C(FLC)[J].Proc.Natl.Acad.Sci.USA.,2000,97(7):3753-3758
    143.Shore P,Sharrocks A D.The MADS-box family of transcription factors[J].Eur.J.Biochem.,1995,229(1):1-13
    144.Simpson G G,Dean C.Arabidopsis,the Rosetta stone of flowering time?[J].Science,2002,296(5566):285-289
    145.Simpson G G,Gendall A R,Dean C.When to switch to flowering?[J].Annual Review of Cell and Developmental Biology,1999,15(1):519-550
    146.Skipper M.Genes from the APETALA3 and PISTILLATA lineages are expressed in developing vascular bundles of the tuberous rhizome,flowering stem and flower primordia of Eranthis hyemalis[J].Ann.Bot.,2002,89(1):83-88
    147.Soltis D E,Soltis P S,Albert V A,et al.Missing links:the genetic architecture of flowers [correction of flower]and floral diversification[J].Trends Plant Sci.,2002,7(1):22-31
    148.Somers D E,Webb A A,Pearson M,et al.The short-period mutant,tocI-1,alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana[J].Development,1998,125(3):485-494
    149.Sommer H,Beltran J P,Huijser P,et al.Deficiens,a bomeotic gene involved in the control of flower morphogenesis in Antirrhinum majus:the protein shows homology to transcription factors [J].EMBO J.,1990,9(3):605-613
    150.Sreekantan L,Thomas M R.VvFT and VvMADS8,the grapevine homologues of the floral integrators FT and SOC1,have unique expression patterns in grapevine and hasten flowering in Arabidopsis[J].Functional Plant Biology,2006,33(12):1129-1139
    151.Sreekantan L,Torregrosa L,Fernandez L,et al.VvMADS9,a class B MADS-box gene involved in grapevine flowering,shows different expression patterns in mutants with abnormal petal and stamen structures[J].Functional Plant Biology,2006,33(9):877-886
    152.Srinivasan C,Mullins M G.Control of flowering in the grapevine(Vitis vinifera L.):formation of inflorescences in vitro by isolated tendrils[J].Plant Physiol.,1978,61(1):127-130
    153.Srinivasan C,Muilins M G.Effects of temperature and growth regulators on formation of anlagen,tendrils and inflorescences in Vitis vinifera L[J].Annals of Botany,1980,45(4):439-446
    154.Srinivasan C,Mullins M G.Flowering in Vitis:conversion of tendrils into inflorescences and bunches of grapes[J].Planta,1979,145(2):187-192
    155.Srinivasan C,Mullins M G.Flowering in Vitis:effects of genotype on cytokinin-induced conversion of tendrils into inflorescences[J].Vitis,1980,19:293-300
    156.Strayer C,Oyama T,Schultz T F,et al.Cloning of the Arabidopsis clock gene TOC1,an autoregulatory response regulator homolog[J].Science,2000,289(5480):768-771
    157.Sung Z R,Belachew A,Shunong B,et al.EMF,an Arabidopsis gene required for vegetative shoot development[J].Science,1992,258(5088):1645-1647
    158.Tamaki S,Matsuo S,Wong H L,et al.Hd3a protein is a mobile flowering signal in rice[J].Science,2007,316(5827):1033-1036
    159.Theissen G,Becker A,Di R A,et al.A short history of MADS-box genes in plants[J].Plant Mol.Biol.,2000,42(1):115-149
    160.Theissen G,Kim J T,Saedler H.Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes [J].J.Mol.Evol.,1996,43(5):484-516
    161.Theissen G,Saedler H.Floral quartets[J].Nature,2001,409(6819):469-471
    162.Theissen G.Birth,life and death of developmental control genes:new challenges for the homology concept[J].Theory Biosei.,2005,124(2):199-212
    163.Theissen G.Development of floral organ identity:stories from the MADS house[J].Curr.Opin.Piant Biol.,2001,4(1):75-85
    164.Thompson J D,Gibson T J,Plewniak F,et al.The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools[J].Nucleic Acids Res.,1997,25(24):4876-4882
    165.Trobner W,Ramirez L,Motte P,et al.GLOBOSA:a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis[J].EMBO J.,1992,11(13):4693-4704
    166.Uimari A,Kotilainen M,Elomaa P,et al.Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene[J].Proc.Natl.Acad.Sci.USA.,2004,101(44):15817-15822
    167.Vandenbussche M,Theissen G,Van P Y,et al.Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations[J].Nucleic Acids Res.,2003,31(15):4401-4409
    168.Vrebalov J,Ruezinsky D,Padrnanabhan V,et al.A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor(rin) locus[J].Science,2002,296(5566):343-346
    169.Wada M,Cao Q F,Kotoda N,et al.Apple has two orthologues of FLORICAULA/LEAFY involved in flowering[J].Plant Mol.Biol.,2002,49(6):567-577
    170.Weigel D,Alvarez J,Smyth D R,et al.LEAFY controls floral medstem identity in Arabidopsis[J].Cell,1992,69(5):843-859
    171.Weigel D,Nilsson O.A developmental switch sufficient for flower initiation in diverse plants[J].Nature,1995,377(6549):495-500
    172.Wigge P A,Kim M C,Jaeger K E,et al.Integration of spatial and temporal information during floral induction in Arabidopsis[J].Science,2005,309(5737):1056-1059
    173.Wilkinson M D,Haughn G W.UNUSUAL FLORAL ORGANS Controls Mcristem Identity and Organ Primordia Fate in Arabidopsis[J].Plant Cell,1995,7(9):1485-1499
    174.Wilson R N,Heckman J W,Somerville C R.Gibberellin is required for flowering in Arabidopsis thaliana under short days[J].Plant Physiol.,1992,100(1):403-408
    175.Winter K U,Weiser C,Kaufmann K,et al.Evolution of class B floral homeotic proteins:obligate heterodimerization originated from homodimerization[J].Mol.Biol.Evol.,2002,19(5):587-596
    176.Yang C H,Chen L J,Sung Z R.Genetic regulation of shoot development in Arabidopsis:role of the EMF genes[J].Dev.Biol.,1995,169(2):421-435
    177.Yang Y,Fanning L,Jack T.The K domain mediates heterodimerization of the/trabidopsis floral organ identity proteins,APETALA3 and PISTILLATA[J].Plant J.,2003,33(1):47-59
    178.Yanofsky M F,Ma H,Bowman J L,et al.The protein encoded by the Arabidopsis bomeotic gene agamous resembles transcription factors[J].Nature,1990,346(6279):35-39
    179.Yao J,Dong Y,Morris B A.Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor[J].Proc.Natl.Acad.Sci.USA.,2001,98(3):1306-1311
    180.Yoo S K,Chung K S,Kim J,et al.CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis[J].Plant Physiol.,2005,139(2):770-778
    181.Zahn L M,Kong H,Leebens-Mack J H,et al.The evolution of the SEPALLATA subfamily of MADS-box genes:a preangiosperm origin with multiple duplications throughout angiosperm history[J].Genetics,2005,169(4):2209-2223
    182.Zahn L M,Leebens-Mack J H,Arrington J M,et al.Conservation and divergence in the AGAMOUS subfamily of MADS-box genes:evidence of independent sub- and neofunctionalization events[J].Evol.Dev.,2006,8(1):30-45
    183.Zahn L M,Leebens-Mack J,DePamphilis C W,et al.To B or Not to B a flower:the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms[J].J.Hered.,2005,96(3):225-240
    184.Zhang H,Forde B G.An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture[J].Science,1998,279(5349):407-409
    185.Zhou Y,Wang H,Gilmer S,et al.Control of petal and pollen development by the plant cyclin-dependent kinase inhibitor ICK1 in transgenic Brassica plants[J].Planta,2002,215(2):248-257
    186.张云,刘青林.植物花发育的分子机理研究进展[J].植物学通报,2003,5:589-601
    187.王壮伟,渠慎春,章镇,等.苹果属RNA高效快速提取新方法[J].果树学报,2004,21(04):385-387
    188.雍伟东,种康,许智宏,等.高等植物开花时间决定的基因调控研究[J].科学通报,2000,45(5):455-466

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700