用户名: 密码: 验证码:
大庆喇萨杏油田特高含水期开发潜力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喇萨杏油田位于松辽盆地中央坳陷长垣背斜构造带上,处于盆地生油和储油最有利的地带。沉积体系为大型河流-三角洲体,岩性以细砂和粉砂岩为主。主力油层的空气渗透率0.5μm~2以上,薄砂层的渗透率在0.02~0.8μm~2之间,表外储层的渗透率在0.001~0.05μm~2之间,属层状背斜构造油藏。原油性质属于石蜡基原油,含蜡量达20~30%。容积法计算探明地质储量41.9429×10~8t,动用地质储量41.7426×10~8t,可采储量21.599×10~8t,剩余可采储量3.1119×10~8t。
     喇萨杏油田1960年6月投入开发,经历了上产、稳产高产阶段后,目前处于“双特高”产量递减阶段。截止到2008年末,已累积生产原油18.4880×10~8t,采出地质储量的44.29%,采出可采储量的85.59%;2008年生产原油3275.3×10~8t,地质储量采油速度0.78%,剩余可采储量采油速度9.76%,综合含水91.3%。改善“双特高”开发阶段的开发效果,必须搞清剩余潜力资源,制定科学的开发对策,努力增加可采储量,稳定产量,减缓产量递减速度。
     本文根据相对渗透率曲线、密闭取芯井资料和开发动态数据,建立了符合喇萨杏油田实际情况的分类油层远景潜力预测方法,落实了油田开发资源潜力,为制定油田开发技术政策,编制油田开发规划提供了科学依据。
     利用水驱特征曲线和相对渗透率曲线,建立了多层合采条件下分类油层动态地质储量计算方法,计算了分类油层的动用储量;综合分析了喇萨杏油田密闭取芯井资料,搞清了分类油层的水洗状况;依据取芯井资料和相渗透率曲线,建立了喇萨杏油田各类油层剩余可动油计算方法,落实了剩余潜力分布状况;利用取芯井资料,采用统计回归方法建立了不同类型油层的~(R-f_w)关系式,预测了各类油层的水驱采收率潜力;依据室内相对渗透率实验和取芯井的资料,研究了水驱、聚驱、三元复合驱驱动方式下的驱替效率计算方法,计算了不同驱动方式的极限驱油效率;利用密闭取芯井资料建立了波及系数与含水率的关系,预测了各类油层极限含条件下的波及系数;运用概率决策分析方法,优选设计了油田提高采收率方案,给出了远景潜力。
La-Sa-Xing Oilfields is located in the Depression Placanticline anticline belt in the Central Basin,and oil generation and oil storage are best in the basin.Deposition system is the major river - delta system,and lithology is mainly the principle of fine sandstone and siltstone.When Air permeability of the major reservoirs is over 0.5μm~2,permeability is amongst 0.02~0.8μm~2 in the thin sand.Reservoir is laminar anticlinal structure reservoir when permeability of the useless reservoir is amongst 0.001~0.05μm~2.The crude oil is green oil,and the paraffin content reaches to 20 ~ 30 percent.Calculated by volumetric method,proved geologic reserve is 41.9429×10~8t,producing geologic reserve is 41.7426×10~8t, recoverable reserves is 21.599×10~8t and the quantity of remaining recoverable oil is 3.1119×10~8t.
     La-Sa-Xing Oilfields,placed on production from June 1960,has experienced on the production stage,stable yields stage and high production stage,now the oil field comes to the double extra high production declining stage.By the end of 2008,the accumulative oil production is 18.4880×10~8t,the producing geologic reserve is 44.29 percent,and the producing recoverable reserves is 85.59 percent.In 2008,oil production is 3275.3×10~8t,the oil production rate is 0.78 percent,the recoverable reserves oil production rate is 9.76 percent,and the composite water is 91.3 percent.To improve the development effect of double extra high development stage which means increase recoverable reserves、constant flow rate and slow down decline rate,the potentiality of remaining oil has to be figured out,and scientific development strategies have to be worked out.
     Based on phase permeability curve、hermetic core hole data and dynamic development data,forecasting method of prospective potentiality for the classified oil layers is set up which is closer to the true situation of Lasaxing oilfield.The oilfield development permeability is calculated,which provides scientific foundation for establishing development technical policy and compiling development program.
     According to the waterflooding characteristic curve and effective permeability curve, dynamic geological reserves equation for the classified oil layers in the condition of multi-layer production is established,with which producing reserves can be calculated.Through analyzing the hermetic core hole data in Lasaxing oilfield,water flushed zones has been figured out.On the basic of the core hole data and phase permeability curve, calculation procedure of remaining oil for every oil layer of Lasaxing Oilfield has been established.The distribution of remaining oil is measured.The relation of R - f_w for different types of oil layer can be built by statistics regression method through the use of the core hole data,which can predict the potentiality of water displacement recovery for different types of oil layer.On the basis of laboratory effective permeability test data and the core hole data,the displacement efficiency equation of water drive、polymer flooding and ASP have been set up,and relevant ultimate displacement efficiency equations have also been defined.The relationship between conformance efficiency and water cut is set up by the use of hermetic core hole data,which can forecast the conformance efficiencies of every oil layer with extreme containing water.The enhanced recovery scheme of oil field is optimized through using probabilistic decision analysis method,and the prospective potentiality is calculated.
引文
[1]Ablb O,Moretti F J,Cen M,et al,Application of geological modeling and reservoir simulation to the west Saertu Area of the Daqing oilfield.SPE reservoir Evaluation & Engineering,1991(Feb.),99-106.
    [2]Baldwin J L,Bateman R M,Wbeatley C L,Application of neural network to problem of mineral identification from well logs,The Log Analyst,1990,31(5):279.
    [3]Batycky J,Irwin D & Fish R.Trapped Gas Saturation in Leduc-age Reservoir[J].The journal of Canadian Petroleum Technology(JCPT),1998,37(2):33-39.
    [4]Brinkman F P.Increased Gas Recovery From a Moderate Water Driver Reservoir[J]JPT,1981,33(12):2476-2480.
    [5]C.R.史密斯,等,实用油藏工程[M],北京:石油工业出版社,1995:426-435.
    [6]Cason L D Jr.Waterf looding increases gas recovery[.]].JPT,1989,41(10):1102.
    [7]Cinco L H & Samaneigo V F.Effect of Wellbore Storage and Damage on the Transient Pressure Behavior of Vertically Fractured Wells[Z].SPE Annual Technical Conference and Exhibition,Denver,1977.
    [8]Cinco L H.Transient Pressure Behavoir for a Well With a Finite-Conductivity Vertical Fracture[J].SPEJ,1978:254-264.
    [9]Cinco L H.Transiet Pressure Analysis:Finte Conductivity Fracture Case Versus Damaged Frecture Case[Z].The 56th Aunual Fall Technical Conference Exhibition of the Society of Petroleum Engincers of AIME,1981.
    [10]Dovan H T & Hutchins R D.New polymer technology for water control in gas wells[J].SPE Production & Facilities,1994,9(4):281-286.
    [11]Dyes,A B,Kemp,CE&Candle B H.Effect of Fractures on Sweep-Out Pattern[J].Trans.AIME,1958,211:246-249.
    [12]Femi M A.Enhanced gas recovery from water-drive reservoirs-methods and econmics[J].SPE,1982,1104:27-29.
    [13] Geffen T M, Parrish D R, Haynes G W & Morse R A. Efficiency of gas displacement from porous media by liquid flooding[J]. Trans. AIME, 1952,195(2):29-38.
    [14] Hegem an P S , etc. Well test analysis is with changing wellbore storage [c].SPE21829. 1991:239-247.
    [15] JOSHI S D. Augmentation of well productivity using slant and horizontal wells, JPT, 1998, (6): 729-739.
    [16] Lutes J L, Schuler R F & Brady M X. Accelerated Blowdown of a Strong Water Drive Gas Reservoir[J]. JPT,1977,29(12):1534-1538.
    [17] Mabendra K V, Michel B, LucienneB, Evaluation of residual oil saturation after water flood in a carbonate reservoir, SPE Reservoir Evaluation & Engineering, 1994 (Nov. ), 248-253.
    [18] McGuire, W J & Sikora V J. The Effect of Vertical Fractures on Well Productivity [J]. Trans. AIME, 1960,219:402-403.
    [19] NanbaT, Home R N, Estimation of water and oil relative permeabilities form pressure transient analysis water injection well data[C], SPE19829, 1989: 631-646.
    [20] Prats M. Effect of Vertical Fractures on Reservoir Behavior-Incompreesible Fluid Case[J]. SPE,1961(6):106-118.
    [21] Prats M. Effect of Vertival Fractures on Reservoir Behavior-Incompressible Fluid Case[J]. Soc Pet Eng. J,1961,1: 106-118.
    [22] Raymaond L R & Binder G G Jr. Productivity of Wells in Vertically Fractured , Damaged Formations[J]. JPT, 1967(1):121-130.
    [23] Stalkup F L, Crane S D, Reservoir description detail required to predict solvent and water Satiratons at an observation well , SPE Reservoir Evaluation & Engineering, 1994 (Feb.), 36-43.
    [24] SURGUCHEV L M. Optimum water alternate gas injection schemes for stratified reservoirs. SPE246.
    [25] Tbakur G C. Waterflood surveillance techniques-A reservoir management approach, Journal of Petroleum Technology 1991,10:1180.
    [26]Tinsley M & Williams J R.Vertical Fractured Height-Its Effect on Steady-State Production Increase[J].SPE-AIME,1969(5):634-638.
    [27]Willhilte P G.1986.“注水”[M],刘民中等译,张朝琛校,石油工业出版社,1992.
    [28]#12
    [29]#12
    [30]#12
    [31]#12
    [32]#12
    [33]边外和边内注水方式效果的对比,苏《石油业》,1983,9,51-53.
    [34]邴绍强、陈兆芳等,复杂断块油藏开采中后期剩余油分布规律研究,河南石油,2002年7月,第16卷第4期;
    [35]蔡鹏展.油田开发经济评价[M].北京:石油工业出版社,1997.
    [36]程希荣.“古今石油”[M],石油科技论坛,1998(1):4-8.
    [37]丹尼尔·耶金著,上海市政协翻译组译,石油风云,上海,上海译文出版,1992
    [38]方艳君,刘端奇,王天智,等.喇萨杏油田注采系统适应性评价及调整方式研究.大庆石油地质与开发.2007,26(3):73-75.
    [39]付志国,石成方,赵翰卿,等.喇萨杏油田河道砂岩厚油层夹层分布特征.大庆石油地质与开发.2007,26(4):56-58.
    [40]改变渗流流线提高注入水波及范围,苏《石油业》,1985,9,59-63.
    [41]改善油藏管理是贾伊油田注水高度成功的关键,SPE9476.
    [42]冈秦麟.对我国东部老油田提高采收率的几点看法[J].油气采收率技术,1994,1(2):2-8.
    [43]高丽馥.喇萨杏油田开发阶段划分理论.油气田地面工程.2008,27(2):32-32.
    [44]耿站立,姜汉桥,孙梦茹,等.特高含水油藏复杂韵律层重组模式研究[J],石油天然气学报,2006,28(6):103-109.
    [45]郭滕明.油藏数值模拟法预测剩余油分布及调整挖潜措施——以临南油田夏32块油藏为例[J].断块油气田,2002,(9)3:77-79.
    [46]国家计划委员会交通能源司,95白皮书·中国能源,1995
    [47]韩伟东、黄伏生等,喇嘛甸油田剩余油挖潜方法,大庆石油地质与开发,2002年6月,第21卷第3期;
    [48]黄毅诚主编,能源百科全书,北京,中国大百科全书出版社,1997
    [49]计秉玉,杨际平、吕志国.改变液流方向数值模拟计算[J].大庆石油地质与开发,1994,13(2):74-74
    [50]冀宝发、徐正顺等,喇嘛甸油田高含水后期的注采系统调整[A],大庆油田工程论文集,北京:石油工业出版社,1995年.
    [51]焦力人主编,当代中国的石油工业,北京,中国社会科学出版社,1988
    [52]金毓荪,大庆油田注水开发[M],北京:石油工业出版社,1985年;
    [53]金毓荪.油田分层开采[M].北京:石油工业出版社.1985.
    [54]李洁,张善.喇萨杏油田特高含水期油层分类.大庆石油地质与开发.2007,26(6):87-90.
    [55]李洁,张善严.喇萨杏油田特高含水期油层分类[J].大庆石油地质与开发,2007,26(6):87-90.
    [56]李晓平,杨桦.气水分界面稳定运动的渗流力学条件研究[J].钻采工艺,2001,24(3):39-40.
    [57]李阳.储层流动单元模式及剩余油分布规律[J].石油学报,2003,24(3):77-81.
    [58]李忠江,杜庆龙,杨景强.高含水后期单层剩余油识别方法研究[J].大庆石油地质与开发,2001,(20)6:31-32.
    [59]林博,戴俊生,冀国盛,等.胜坨油田坨7块沙二段91夹层随机建模研究[J].西南石油大 学学报,2008,30(4):12-14.
    [60]林志方,俞启泰.高含水期油田开发方法系统[J].新疆石油地质,1997,(18)4,164-169.
    [61]刘波,杜庆龙,王良书,等.利用神经网络方法确定薄差层剩余油的分布[J].高校地质学报,2002,(8)6:199-206.
    [62]刘丁曾,王启民,李伯虎.大庆多层砂岩油田开发[M].北京:石油工业出版社,1996.
    [63]刘三军,韩江国,等.喇嘛甸油田的开发经济界限的确定[J].大庆石油地质与开发2001,20(4):45-47.
    [64]刘士荣,俞金寿,仲蔚,等.模糊逻辑、神经网络和神经模糊技术的理论方法及其在工业过程中的应用[J].钻采工艺,2006,23(3):24-26.
    [65]刘彦亮.喇嘛甸油田北北块萨尔图油层调整挖潜方法.油气田地面工程.2005,24(3):11-11.
    [66]刘一江,王香增.化学调剖堵水技术[M].北京:石油工业出版社,1999.
    [67]卢军,张继谦,杜学军,等.水驱砂岩油田开发后期注采结构调整实践与探索[J].石油勘探与开发,1999,(26)1:44-46.
    [68]鲁国埔,杨永利,冯毅,等.应用核磁共振成像技术研究特高含水期剩余油分布[J].江汉石油学院学报,2001,(23)增刊:99-99.
    [69]鹿立卿,左松林.大庆喇萨杏油田三类油层开发方式探讨.佳木斯大学学报(自然科学版)2009,27(6):889-891
    [70]鹿立卿,左松林.大庆喇萨杏油田三类油层开发方式探讨[J].佳木斯大学学报(自然科学版),2009(6):57-60.
    [71]吕华等编著,中国石油天然气的勘查与发现,北京,地质出版社,1992
    [72]马德华,徐志华,姜宗恩.大庆喇萨杏油田厚油层极强水淹评价方法研究.录井工程.2009,20(3):57-58.
    [73]马德华,徐志华,姜宗恩.大庆喇萨杏油田厚油层极强水淹评价方法研究.录井工程.2009,20(3):57-60.
    [74]梅启.水下窄小河道砂体综合调整挖潜技术[J].大庆石油地质与开发,2000,(19)5:174-176.
    [75]面积注水油藏的开发调整,苏《石油业》,1980,9,33-34.
    [76]潘兴国,甄鹏,何艳青,等.中国陆上油气田开发技术发展历程的回顾[J].石油科技论坛,2004(2):17-32.
    [77]秦同洛.对低渗透油田开发的几点意见[C].低渗透油开发技术—全国低渗透油田开发技术座谈会论文选,北京:石油工业出版社,1994.
    [78]秦玉,杨正文.中坝气田须二气藏储层岩芯水驱气试验研究[J].天然气工业,2000,20(1):97.
    [79]申力生、张九合等,中国石油工业发展史第二卷·近代石油工业,北京,石油工业出版社,1988
    [80]申力生、张九合等,中国石油工业发展史第一卷·古代的石油与天然气,北京,石油工业出版社,1984
    [81]宋敏,杨忠男,杨晶晶,等.特高含水后期提高水驱采收率潜力及对策研究[J].中小企业管理与科技,2009,(1):231-231.
    [82]宋瑞祥主编,96中国矿产资源报告,北京,地质出版社,1997
    [83]孙国红,吕晶,窦凤华.喇萨杏油田萨零组油层有效与原始含油饱和度精细解.大庆石油地质与开发.2006,25(4):103-104.
    [84]唐玮,胡丹丹,白喜俊,等.喇萨杏油田聚驱后二次开发方向探讨.石油天然气学报(江汉石油学院学报)2009,31(1):283-285.
    [85]田树全,刘伟,周建树.复杂断块油田特高含水期实现持续稳产的做法[J].内蒙古石油化工,2006,(2):133-134.
    [86]田树全,邵治国,李菊红.复杂断块油田特高含水期实现持续稳产的做法.内蒙古石油化工.2005,(8):152-152.
    [87]王海波,赵煊.浅析胜利油田疏松砂岩浅气层的伤害与保护[J].油气采收率技术,2000,7(1):39-41
    [88]王庆霞.喇萨杏油田低渗透油层剩余油挖潜研究.石油天然气学报(江汉石油学院学报)2005,27(2):375-376.
    [89]王尚文等编,中国石油地质学,北京,石油工业版社,1983
    [90]王树立,兰丽凤,李永刚.喇萨杏油田加密井可采储量标定方法.大庆石油地质与开发.2001,20(5):23-25.
    [91]王树立,兰丽凤,孙志杰,等.喇萨杏油田套管损坏损失采收率的测算方法.大庆石油地质与开发.2007,26(5):76-77.
    [92]五彦、卫留成主编,海洋石油管理模式探索,北京,石油工业出版社,1996
    [93]夏国治、程裕琪主编,当代中国的地质事业,北京,中国社会科学出版社,1990
    [94]薛国勤,苗润航.非均质厚油层在特高含水期的剩余油分布研究[J].河南石油,2000(4):59-62.
    [95]阎长乐主编,中国能源发展报告(1997年版),北京,经济管理出版社,1997
    [96]油田开发后期的注水调整问题,苏《阿塞拜疆石油业》,1983,11,18-21.
    [97]俞启泰,李文兴,等.论注水砂岩油田高含水期的调整原则[J].石油学报,1991,12(3):59-68.
    [98]俞启泰,谢绪权,罗洪.改变液流方向可行性评价公式[J].断块油气田,2000,7(3):29-32.
    [99]俞启泰,张锐,林志芳,等.注水油藏“大尺度”未波及剩余油开采技术[J].新疆石油地质,2002,(23)2:122-125.
    [100]俞启泰.关于剩余油研究的探讨[J],石油勘探与开发,1997,24(2):47-50.
    [101]俞启泰.注水多层砂岩油藏大尺度未波及剩余油的三大富集区,石油学报[J].2000,21(2):41-45.
    [102]禹继贫.油水气井降压生产的效果分析[J].天然气工业,1993,13(6):89-90.
    [103]袁建国等,任丘雾迷山组油藏高含水后期综合调整的实践与认识.西安石油学院学报.1996,11(4):27-29.
    [104]翟云芳.渗硫力学[M].北京:石油工业出版社,1994.
    [105]张德方、孙继伟等,注水开发油田特高含水期剩余油潜力评价,河南石油,2001,15(6):36-39.
    [106]张帆,王大伟,付志国.大庆油田喇萨杏地区萨零组储层特征[J].大庆石油地质与开发,2001,20(5):2-3.
    [107]张锐,俞启秦.天然水驱砂岩油藏开发效果分析[J].石油勘探与开发,1991,18(3):47-54.
    [108]张塞主编,中国统计年鉴(1996),北京,中国统计出版社,1997
    [109]张顺,苏树林,林春明,等.提高非均质砂岩油田水驱采收率的新思路[J].石油学报,2001,22(4):87-93.
    [110]张云英,王铁燕.喇萨杏油田水淹模式库的建立及其在水淹层定性解释中的应用.测井技术.2005,29(6):549-551.
    [111]赵万优,马乔,何书梅,等.非均质复杂断块油藏高含水期开发调整方法研究.新疆地质.2006,24(2):219-220.
    [112]赵伟,鹿立卿,左松林,等.喇嘛甸油田储层动用状况和综合调整方向[J],大庆石油地质与开发,2002,(21)2:57-62.
    [113]赵永胜,兰玉波,李强.喇萨杏油田表外储层动用机制分析.大庆石油地质与开发.2001,20(3):32-35.
    [114]中国石油天然气总公司编,中国石油工业年鉴(1996),北京,石油工业出版社,1996
    [115]中国石油天然气总公司规划设计总院.石油工业建设项目经济评价方法与参数[M].北京:石油工业出版社,1994.
    [116]中国石油天然气总公司科技发展局、开发生产局.改善高含水期油田注水开发效果实例[M],北京:石油工业出版社,1993.
    [117]朱丽红,杜庆龙,魏丽影,等.神经网络技术识别厚油层层内剩余油方法[J].石油学报,2006,27(Z1):76-81.
    [118]宗会凤.高含水期油藏提高采收率方法研究及应用.内蒙古石油化工.2007,(3):199-200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700