用户名: 密码: 验证码:
点接触锁定接骨板系统的三维有限元分析及生物力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1.探讨点接触锁定接骨板系统和传统动力加压接骨板系统固定股骨干骨折后,接骨板和股骨上的应力、应变分布特征,为进一步生物力学实验和临床应用研究提供理论依据。
     2.在骨质疏松性粉碎性骨折模型上,对比研究点接触锁定接骨板系统和传统动力加压接骨板系统的生物力学强度,为进一步动物实验和临床应用研究提供理论依据。
     3.建立山羊胫骨粉碎性骨折模型,对比研究点接触锁定加压接骨板与有限接触动力加压接骨板固定骨折后骨痂形成情况,为进一步临床应用研究提供理论依据。
     方法:
     1.利用计算机辅助设计技术和逆向工程技术,构建接骨板和股骨的三维模型。利用Pro/E软件进行模型装配,模拟接骨板固定骨折的临床实际情况。利用ANSA12.0专业软件进行网格划分,在不同的加载条件下,利用ANSYS10.0软件进行三维有限元分析,得到接骨板和股骨上的应力、应变分布特征。
     2.利用双能X线机选取成对的老年性骨质疏松性尸体骨标本,中间横断1cm间隙构建粉碎性骨折模型。在四点弯曲、扭转及轴向压缩加载下,对比研究点接触锁定接骨板系统和传统动力加压接骨板系统的抗弯、抗扭及抗压刚度。
     3.选取健康1岁左右山羊,胫骨“Z”字形截骨,建立粉碎性骨折模型, PC-LCP与LC-DCP接骨板固定。通过X线影像学观察、四点弯曲力学测试、组织学观察和计量学研究,对比两种接骨板固定后的骨痂形成情况。
     结果:
     1.三维有限元分析结果表明,PC-LP系统与LC-DCP系统比较,股骨和接骨板上的应力、应变分布规律大体相同。在轴向压缩和扭转载荷下,从股骨上的螺孔处应力集中现象看,PC-LP接骨板总体上优于LC-DCP接骨板。PC-LP系统在四点前后弯曲、轴向压缩和扭转三种载荷下,接骨板上应力集中的区域位于板边缘或者中间,而股骨的应力都集中在骨折位点最近的两个螺孔或最远的两个螺孔处。
     2.在骨质疏松性粉碎性桡骨骨折模型上,PC-LCP与DCP接骨板对比,在前后四点弯曲、内外四点弯曲及扭转实验测试下,PC-LCP固定桡骨骨折模型的抗弯刚度及抗扭刚度均有大于DCP的趋势;而PC-LP与LC-DCP对比时,在前后四点弯曲、内外四点弯曲及扭转实验测试下,PC-LCP固定桡骨骨折模型的抗弯刚度及抗扭刚度均明显大于DCP接骨板,两者差异具有统计学意义。在骨质疏松性粉碎性股骨干骨折模型上,PC-LCP与DCP接骨板对比,在前后四点弯曲、轴向压缩实验测试下,PC-LCP固定股骨干骨折模型的抗弯刚度及抗压刚度均大于DCP接骨板,两者差异具有统计学意义;在扭转实验测试下,PC-LCP固定股骨干骨折模型的抗扭刚度有大于DCP的趋势,但两者差异没有统计学意义。
     3.在动物实验中,X线影像学观察,术后8周、术后12周时,PC-LCP组粉碎性骨折处的骨痂形成多于DCP组。术后12周,四点弯曲力学测试,PC-LCP组的骨折愈合后骨痂的弯曲强度和最大载荷均明显大于DCP组,两者差异有统计学意义。术后12周时骨痂组织形态学分析,普通光学显微镜下,PC-LCP组比DCP组的骨小粱形成较多,排列更规则。对于骨痂组织的静态参数,小粱骨痂体积密度(TBV),显微镜下的形态计量学结果提示,PC-LCP组的TBV明显大于DCP组,两者差异具有统计学意义。对于骨痂组织动态参数,骨沉积率(AR),我们采用四环素和钙黄绿素双标,荧光显微镜下观察,形态计量学分析。结果提示,PC-LCP组的骨沉积率平均值大于DCP组,但是两者差异没有统计学意义。两个骨痂的形态学计量结果提示,PC-LCP组比DCP组的骨折愈合更好的机制,可能在于成骨细胞的增殖分化,而不在于骨矿化沉积。
     结论:
     综上所述,点接触锁定接骨板系统作为一种生物学内固定理念的接骨板,其生物力学特性明显优于传统接骨板,同时其点接触设计,保护了骨折局部血运,促进骨折愈合。对于骨质疏松性和粉碎性骨折,点接触锁定接骨板系统比传统动力加压接骨板系统具有更加优越的生物力学特性,更多骨痂形成,是一种更加理想的生物学接骨板。
Objective:
     1.To investigate the distribution of stress and strain on the plate and the femur, we used the finite element analysis method to analyze biomechanic characters of the femoral shaft fracture fixed with the point contact locking plate system (PC-LP) or the limited contact dynamic compression plate system (LC-DCP) under different loading models.
     2. To compare biomechanic characters of the point contact locking plate system and the conventional dynamic compression plate system, we used the osteoporotic and comminuted fracture model to test the bending and torsion stiffness under different loading models.
     3. To compare the formation of calluses, we established the comminuted tibial fracture model of goats fixed with the point contact locking compression plate system (PC-LCP) or the limited contact dynamic compression plate system.
     Methods:
     1. The compute aided design technology and the reverse engineering technology were used to establish the three dimension models of plate and femur. After model assembles using the Pro/E software, we used the ANSA12.0 software to generate meshes. Under different loading models, we analyzed the distribution of stress and strain on the plate and the femur using the ANSYS10.0 software.
     2. The osteoporotic cadaveric bone was selected by the double energy X-ray machine. A 10 mm gap osteotomy model was used to simulate a comminuted fracture. Under four point bending, torsion and axial compression loading, we compared the bending stiffness, torsion stiffness and compression stiffness of the point contact locking plate system with the conventional dynamic compression plate system.
     3. We selected healthy mature goats and made a Z-shape osteotomy fixed with the point contact locking compression plate or the limited contact dynamic compression plate to simulate the comminuted fracture model. Through the X-ray examination, four point bending test and bone morphology study, the calluses formation of the fracture fixed with the point contact locking compression plate was compared with the limited contact dynamic compression plate.
     Results:
     1. The results of finite element analysis show that the distribution pattens of strain and stress have no significant difference between the point contact locking plate system and the limited contact dynamic compression plate. Under the axial compression and torsion loading, the stress concentration on femur screw holes of PC-LP was less than that of the LC-DCP. Under different loading models, the stress concentration on plate of the PC-LP focus on the middle of the plate or on the edge of the plate. And the stress concentration on femur screw holes of the PC-LP system focus on the middle or the distal two holes
     2. The osteoporotic and comminuted radial fracture was made and fixed with the PC-LCP or the DCP. Under anteroposterior four point bending, mediolateral four point bending or torsion test, the average bending stiffness or the average torsion stiffness of the radial fracture model fixed with the PC-LCP have a trend to be more than that of the radial fracture model fixed with the DCP. When the radial fracture model fixed with the PC-LP or the LC-DCP, the average bending stiffness or the average torsion stiffness of the radial fracture model fixed with the PC-LP was significant more than that of the radial fracture model fixed with the LC-DCP. When the femoral fracture model was used and fixed with the PC-LCP or the DCP, we carried out the anteroposterior four point bending, axial compression and torsion test. The average bending stiffness or the average compression stiffness of the femoral fracture model fixed with the PC-LCP was significant more than that of the femoral fracture model fixed with the DCP. And the average torsion stiffness of the PC-LCP has a trend to be more than that of the DCP.
     3. In the animal study, the calluses formation of the comminuted fracture fixed with the PC-LCP after the postoperative eight weeks or twelve weeks was more than that of the DCP through the radiographic results. After the postoperative twelve weeks, the average bending strenghth or the average maximum load of the tibia after removing the PC-LCP was significant more than that of the tibia after removing the DCP. After the postoperative twelve weeks, trabecular bone of PC-LCP group was more than that of the DCP group through the morphology study of calluses. Using the histomorphometry of bone, the trabecular bone volume of the PC-LCP group was significant more than that of the DCP group. But the difference of the appositional rate between the PC-LCP group and the DCP group has no significance.
     Conclusions:
     In summary, as one kind of biological internal fixation, the biomechanic property of the point contact locking plate system is significant higher than that of the conventional dynamic compression plate. At the same time, the poin contact design reduce the vascular damage around the fracture site. Thus, when we manage the osteoporotic and comminuted fracture, the point contact locking plate system is superior to the conventional dynamic compression plate and promote the calluses formation. Compared with the the conventional dynamic compression plate, the point contact locking plate system is one more ideal biological plate.
引文
1. Mueller M, Allgower M, Willenegger H. Technik der operativen Frakturenbehandlung. Berlin, etc: Springer-Verlag, 1963.
    2. Schatzker J, Tile M. The rationale of operative fracture care. Berlin: Springer Verlag, 1987.
    3. Klaue K. Principles of plate and screw osteosynthesis. Oxford textbook of orthopaedics and trauma. Oxford: Oxford University Press 2002:1697-1710.
    4. Gerber C, Mast J, Ganz R. Biological internal fixation of fractures. Arch Orthop Trauma Surg 1990; 109:295-303.
    5. Claudi B, Oedekoven G. Biological osteosynthesis. Chirurg 1991;62:367-77.
    6. Baumgaertel F, Gotzen L. The biological plate osteosynthesis in multi fragment fractures of the para-articular femur. Unfallchirurg 1994; 97: 78-84.
    7. Gautier E, Ganz R. The biological plate osteosynthesis. Zentralbl Chir 1994; 119: 564-72.
    8. Thielemann FW, Blersch E, Holz U. Plate osteosynthesis of femoral shaft fracture with reference to biological aspects. Unfallchirurg 1988;91:389-394.
    9. Ganz R, Mast J, Weber B, Perren S. Clinical aspects of“biological”plating. Injury 1991;22:4-5.
    10. Tayton K, Johnson-Nurse C, McKibbin B, et al. The use of semi-rigid carbon fibre reinforced plastic plates for fixation of human fractures. J Bone Joint Surg Br 1982; 64B:105-11.
    11. Schmidtmann U, Knopp W, Wolff C, Sturmer KM. Results of elastic plate osteosynthesis of simple femoral shaft fractures in polytraumatized patients: an alternative procedure. Unfallchirurg 1997; 100:949-956.
    12. Goodship AE, Kenwright J. The influence of induced micromovement upon the healing of experimental tibial fractures. J Bone Joint Surg Br 1985; 67-B:650-655.
    13. Perren SM. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br. 2002 Nov;84(8):1093-1110.
    1. Perren SM. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology.J Bone Joint Surg Br. 2002;84 (8):1093-110.
    2. Palmer RH. Biological osteosynthesis. Vet Clin North Am Small Anim Pract. 1999 Sep; 29(5):1171-85.
    3. Perren SM. The concept of biological plating using the limited contact dynamic compression plate (LC-DCP). Scientific back-ground, design and application. Injury, 1991,22(Suppl1):1-41.
    4. Perren SM, Buchanan JS. Basic concepts relevant to the design and development of the point contact fixator (PC-Fix). Injury 1995:26(2):1-4.
    5. Frigg R. Locking Compression Plate (LCP).An osteosynthesis plate based on the Dynamic Compression Plate and the Point Contact Fixator (PC-Fix). Injury, 2001;32(2 supple):63-66.
    6. Zhao YF, Li QH, Gu ZC, Wang AM. The biomechanics of point contact-dynamic compression plate and its effects on bone perfusion. Chin J Traumatol. 2006; 9(3):161-7.
    7. Prendergast PJ. Finite element models in tissue mechanics and orthopaedic implant design. Clin Biomech (Bristol, Avon). 1997; 12(6):343-366.
    8. Brekelmans WAM, Poort HW and Slooff TJJH. A new method to analyse the mechanical behaviour of skeletal parts. Acta Orthop Stand, 1972;43:301-317.
    9. Lee AJC. Finite element analysis and its significance in total hip replacement. In The Art ofTotal Hip Arthroplasty, ed. W. T. Stillwell. Grune and Stratton, Orlando, 1987; 33-39.
    10. Huiskes, R. Biomechanics of artificial-joint fixation. In Basic Orthopaedic Biomechanics, ed. VC. Mow and WC. Hayes. Raven Press, New York, 1991, pp.375- 442.
    11. Rybicki EF, Simonen FA, Mills EJ, et al. Mathematical and experimental studies on the mechanics of plated transverse fractures. J Biomech. 1974 Aug; 7(4):377-84.
    12.梁萍,张胜霞,等.机械工程制图AutoCAD 3D实体造型实例教程. 2006;北京:清华大学出版社.
    13.徐琳.基于AutoCAD的三维实体建模探讨.装备制造技术. 2008;6:104-107.
    14.龚伟权,尤胜超.机械零件的逆向工程研究.叉车技术. 2008;3:19-20.
    15.徐红兵,任乃飞. ATOS流动式光学扫描仪的工作原理与系统标定.工具技术. 2006; 40(9):8l-84.
    16. Brown TD, Hild GL. Pre-collapse stress redistributions in femoral head osteonecrosis–a three-dimensional finite element analysis. J Biomech Eng. 1983; 105:171-176.
    17. Nambu T, Gasser B, Schneider E, Bandi W, Perren SM. Deformation of the distal femur: a contribution towards the pathogenesis of osteochondrosis dissecans in the knee joint. J Biomech, 1991;24(6):421-433.
    18. Wang CJ, Yettram AL, Yao MS, Procter P. Finite element analysis of a Gamma nail within a fractured femur. Med Eng Phys. 1998;20(9):677-683.
    19.罗承刚,龚宪生.近端股骨的非均匀及各向异性有限元模拟.重庆大学学报(自然科学版). 2004;27(2):20-23.
    20.陈希瑞;龚宪生.基于ANSYS的股骨自适应再造仿真研究.中国生物医学工程学报. 2007;26(2):199-203.
    1. Muller ME, M-Allgower R. Schoelder H, et a1. Translated: Bone internal fixation (Third edition). People’s Health Publishing Press, Beijing. 1995;1-519.
    2. Uhthoff H K, Poitras P, Backman DS. Internal plate fixation of fractures: short history and recent developments . J Orthop Sci 2006;(11):118–126.
    3. Perren SM. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology.J Bone Joint Surg Br. 2002;84 (8):1093-110.
    4. Brekelmans WAM, Poort HW, Slooff TJJH. A new method to analyse the mechanical behaviour of skeletal parts. Acta Orthop Stand, 1972;43(6):301-317.
    5. Rohlmann A, Mdssner U, Bergmann G, Kiilbel R. Finite element analysis and experimental investigation in a femur with hip endoprosthesis. J Biomech, 1983;16(9): 727-742.
    6. Lewis JL, Askew MJ, Wixson RL, Kramer GM, Tarr RR. The influence of prosthetic stem stiffness and of a calcar collar on stresses in the proximal end of the femur with a cemented femoral component. J Bone Joint Surg, 1984;66(2):280-286.
    7. Fagan MJ, Lee AJC. Material selection in the design of the femoral component of cemented total hip replacements. Clin Mater, 1986;1:151-167.
    8. Rohlmann A, Mossner U, Bergmann G, Hees G, Kolbel R. Effects of stem design and material properties on stresses in hip endoprostheses. J Biomed Eng, 1987;9(1):77-83.
    9. Prendergast PJ, Monaghan J, Taylor D. Materials selection in the artificial hip joint using finite element stress analysis. Clin Mater, 1989;4:361-376.
    10. Cheal EJ, Spector M, Hayes WC. Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty. J Orthop Res. 1992;10(3): 405-422.
    11. Rohlmann A, Cheal EJ. Hayes WC, Bergmantr G. A nonlinear finite element analysis of interface conditions in porous coated hip cndoprostheses. J Biomech. 1988;21(7): 605-611.
    12. Harrigan TP, Harris WH. A three dimensional non-linear finite element study of the effect of cement-prosthesis debonding in cemented femoral total hip components. JBiomech, 1991:24(11);1047-1058.
    13. Carter DR, Vasu R, Harris WH. Stress changes in the femoral head due to porous ingrowth surface replacement arthroplasty. J Biomech, 1984:17(10);737-747.
    14. Fyhrie DP, Carter DR, Schurman DJ. Effects of ingrowth, geometry, and material on stress transfer under porous coated hip surface replacements. J Orthop Res, 1988;6(3): 425-433.
    15. Unsworth A, Strozzi A. Axisymmetric finite element analysis of hip replacements possessing an elastomeric layer: the effects of clearance and Poisson’s ratio. Proc Inst Mech Eng (Lond), 1995;209(1):59-64.
    16. Garg A, Walker PS. The effect of the interface on the bone stresses beneath tibial components. J Biomech, 1986;19(12):957-967.
    17. Rakotomanana RL, Leyvraz PF, Curnier A. Heegaard JH, Rubin PJ. A finite element model for evaluation of tibial prosthesis-bone interface in total knee replacement. J Biomech, 1992;25(12): 1413-1424.
    18. Walker PS, Nunamaker D, Huiskes R, Parchinski T, Greene D. A new approach to the fixation of a metacarpophalangeal joint prosthesis. Eng Med, 1983:12(3);135-140.
    19. Chao EY, Kasman RA, An KN. Rigidity and stress annlysis of external fracture fixation devices it theoretical approach. J Biomech, 1982:15(12); 971-983
    20. Beaupre GS, Hayes WC, Jofe MH, White III AA. Monitoring fracture site properties with external fixation. J Biomech Eng, 1983;105(2):120-126.
    21. BeauprC GS, Schneider E, Perren SM. Stress analysis of a partially slotted intramedullary nail. J Orthop Res, 1984;2(4):369-376.
    22. BeauprC GS, Carter DR, Orr TE, Csongradi J. Stresses in plated long-bones: the role of screw tightness and interface slipping. J Orthop Res, 1988;6(1):39-50.
    23. Arnold W. Initial clinical experiences with the cervical spine titanium locking plate. Unfallchirurg. 1990;93(12):559-561. German.
    24. S?derholm AL, Lindqvist C, Skutnabb K, Rahn B. Bridging of mandibular defects with two different reconstruction systems: an experimental study. J Oral Maxillofac Surg. 1991;49(10):1098-1105.
    25. Smith WR, Ziran BH, Anglen JO, Stahel PF. Locking plates: tips and tricks. J Bone Joint Surg Am. 2007 Oct; 89(10):2298-2307
    26. Greiwe RM, Archdeacon MT. Locking plate technology: current concepts. J Knee Surg. 2007; 20(1):50-55.
    27. Egol KA, Kubiak EN, Fulkerson E, Kummer FJ, Koval KJ. Biomechanics of locked plates and screws. J Orthop Trauma. 2004;18(8):488-493.
    28. Stoffel K, Dieter U, Stachowiak G, G?chter A, Kuster MS. Biomechanical testing of the LCP—how can stability in locked internal fixators be controlled? Injury. 2003;34 (Suppl 2):B11-19.
    29. Niemeyer P, Südkamp NP. Principles and clinical application of the locking compression plate (LCP). Acta Chir Orthop Traumatol Cech. 2006;73(4):221-228.
    30. Bresina SJ, Tepic S. Finite element analysis (FEA) for the Point contact fixator screw drive, plate design, overcuts. Injury, 1995:26(suppl 2):B20-B23.
    1. Bagby GW, Janes JM. The effect of compression on the rate of fracture healing using a special plate. Am J Surg 1958,95:761–771.
    2. Perren SM. The concept of biological plating using the limited contact dynamic compression plate (LC-DCP). Scientific back-ground, design and application. Injury 1991,22(Suppl1):1-41.
    3. Frigg R. Locking Compression Plate (LCP). An osteosynthesis plate based on the Dynamic Compression Plate and the Point Contact Fixator(PC-Fix). Injury 2001,32(2 supple):63-66.
    4. Smith WR, Ziran BH, Anglen JO, Stahel PF. Locking plates: tips and tricks. J Bone Joint Surg Am. 2007 Oct; 89(10):2298-307
    5. Zhao YF, Li QH, Gu ZC, Wang AM. The biomechanics of point contact-dynamic compression plate and its effects on bone perfusion. Chin J Traumatol. 2006, 9(3):161-167.
    6.邢叔星,赵玉峰,刘东北,等.新型点接触锁定加压接骨板的生物力学研究.医用生物力学. 2007, 22(3):1-3.
    7.王洪复翁世芳.上海地区812名老年人尺桡骨骨密度的测定结果.老年学杂志1990,10(2):74-75.
    8.刘忠厚杨定焯朱汉民等.中国人原发性骨质疏松症诊断标准.中国骨质疏松杂志1999; 5(1): 639-640.
    9.韩立平王本龙. 256例老年桡骨远端骨折病人骨密度测量结果分析.医学理论与实践2004,17(1):23-24.
    10. Field JR, Hearn TC, Caldwell CB. Bone plate fixation: an evaluation of interface contact area and force of the dynamic compression plate (DCP) and the limited contact-dynamic compression plate (LC-DCP) applied to cadaveric bone. J Orthop Trauma 1997,11:368–373.
    11. Jain R, Podworny N. A biomechanical evaluation of different plates for fixation of canine radial osteotomies. J Trauma. 1998, 44(1): 193-197.
    12. Kregor PJ, Senft D, Parvin D, et al. Cortical bone perfusion in plated fractured sheep tibiae. J Orthop Res. 1995;13(5):715-724.
    13. Iqbal MM. Osteoporosis: epidemiology, diagnosis, and treatment. South Med J. 2000 Jan;93(1):2-18.
    14. Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet. 2002 May 18;359(9319):1761-7.
    15.吴雪辉,李起鸿.锥点式接触钢板内固定对局部皮质骨微循环影响的实验研究.中华骨科杂志, 2000, 20:137-141.
    16.赵玉峰,李起鸿,顾祖超,等.新型点状接触动力加压接骨板的研制(生物力学部分).医用生物力学, 2002,17:59-61.
    17. Gerber C, Mast JW, Ganz R. Biological internal fixation of fractures. Arch Orthop Trauma Surg, 1990, 109: 295-303.
    18.邢叔星,王爱民,赵玉峰等.两种有限接触接骨板固定不同类型骨表面特征评估.创伤外科杂志2007, 9(1):49-52.
    19. Borgeaud M, Cordey J, Leyvraz PE, et al. Mechanical analysis of the bone to plate interface of the LC-DCP and of the PC-FIX on human femora. Injury, 2000, 31(Suppl 3): C29-C36.
    20. Egol KA, Kubiak EN, Fulkerson E, et al. Biomechanics of locked plates and screws. J Orthop Trauma, 2004, 18:488-493.
    1. Perren SM, Cordey J, Rahn BA, et al. Early temporary porosis of bone induced by internal fixation implants. A reaction to necrosis, not to stress protection? Clin Orthop Relat Res, 1988;232:139-151.
    2. Perren SM. The concept of biological plating using the limited contact dynamic compression plate (LC-DCP). Scientific background, design and application. Injury 1991;22(Suppl):1-41.
    3. Turner IG, Rice GN. Comparison of bone screw holding strength in healthy bovine and osteoporotic human cancellous bone. Clin Mater, 1992;9(2):105-107.
    4. Perren SM. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br, 2002;84(8):1093-1110.
    5. Greiwe RM, Archdeacon MT. Locking plate technology: current concepts. J Knee Surg, 2007;20(1):50-55.
    6. Egol KA, Kubiak EN, Fulkerson E, et al. Biomechanics of locked plates and screws. J Orthop Trauma 2004;18(8):488-493.
    7. Frigg R. Locking Compression Plate (LCP). An osteosynthesis plate based on the Dynamic Compression Plate and the Point Contact Fixator (PC-Fix). Injury 2001;32(Suppl):63-66.
    8. Gardner MJ, Brophy RH, Campbell D, et al. The mechanical behavior of locking compression plates compared with dynamic compression plates in a cadaver radius model. J Orthop Trauma, 2005;19(9):597-603.
    9. Thiele OC, Eckhardt C, Linke B, et al. Factors affecting the stability of screws in human cortical osteoporotic bone: a cadaver study. J Bone Joint Surg Br, 2007; 89(5):701-705.
    10. Perren SM. Backgrounds of the technology of internal fixators. Injury, 2003;34 (Suppl 2):1-3.
    11. Chapman JR, Harrington RM, Lee KM. Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng, 1996;118(3):391-398.
    12. Giannoudis PV, Schneider E. Principles of fixation of osteoporotic fractures. J Bone Joint Surg Br, 2006;88(10):1272-1278.
    13. Borgeaud M, Cordey J, Leyvraz PE, et al. Mechanical analysis of the bone to plate interface of the LC-DCP and of the PC-FIX on human femora. Injury, 2000;31(suppl 3):29-36.
    14. Jacobs RR, Rahn BA, Perren SM. Effects of plates on cortical bone perfusion. J Trauma, 1981;21(2):91-95.
    15. Uhthoff HK, Boisvert D, Finnegan M. Cortical porosis under plates. Reaction to unloading or to necrosis? J Bone Joint Surg Am, 1994;76(10):1507-1512.
    16. Gautier E, Perren SM, Cordey J. Strain distribution in plated and unplated sheep tibia an in vivo experiment. Injury, 2000;31 (Suppl 3):37-44.
    17. Arnold W. Initial clinical experiences with the cervical spine titanium locking plate. Unfallchirurg, 1990;93(12):559-561.
    18. S?derholm AL, Lindqvist C, Skutnabb K, et al. Bridging of mandibular defects with two different reconstruction systems: an experimental study. J Oral Maxillofac Surg, 1991;49(10):1098-1105.
    19. Smith WR, Ziran BH, Anglen JO, et al. Locking plates: tips and tricks. J Bone Joint Surg Am, 2007;89(10):2298-2307.
    20. Cordey J, Borgeaud M, Perren SM. Force transfer between the plate and the bone: relative importance of the bending stiffness of the screws friction between plate and bone. Injury, 2000;31(suppl 3):21-28.
    21. Snow M, Thompson G, Turner PG. A mechanical comparison of the locking compression plate (LCP) and the low contact-dynamic compression plate (DCP) in an osteoporotic bone model. J Orthop Trauma, 2008;22(2):121-125.
    22. Eijer H, Hauke C, Arens S, et al. PC-Fix and local infection resistance influence of implant design on postoperative infection development, clinical and experimental results. Injury, 2001;32(suppl 2):38-43.
    23. Fulkerson E, Egol KA, Kubiak EN, et al. Fixation of diaphyseal fractures with a segmental defect: a biomechanical comparison of locked and conventional plating techniques. J Trauma. 2006;60(4):830-835.
    1. Perren SM. Backgrounds of the technology of internal fixators. Injury, 2003;34 (Suppl 2):1-3.
    2. Chapman JR, Harrington RM, Lee KM. Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng, 1996;118(3):391-398.
    3. Egol KA, Kubiak EN, Fulkerson E, et al. Biomechanics of locked plates and screws. J Orthop Trauma 2004;18(8):488-493.
    4. Ring D, Kloen P, Kadzielski J, et al. Locking compression plates for osteoporotic nonunions of the diaphyseal humerus. Clin Orthop Relat Res 2004;425:50-54.
    5. Ring D, Perey BH, Jupiter JB. The functional outcome of operative treatment of ununited fractures of the humeral diaphysis in older patients. J Bone Joint Surg Am 1999;81(2):177-190.
    6. Zhao YF, Li QH, Gu ZC, Wang AM. The biomechanics of point contact-dynamic compression plate and its effects on bone perfusion. Chin J Traumatol. 2006, 9(3):161-167.
    7.邢叔星,赵玉峰,刘东北,等.新型点接触锁定加压接骨板的生物力学研究.医用生物力学. 2007, 22(3):1-3.
    8.张华,赵鹏,安耀荣等,股骨干骨折的生物力学研究进展.实用骨科杂志, 2007;13(11):669-671.
    9. Carr CR. and Wingo CH. Fractures ofthe Femoral Diaphysis. A Retrospective Study of the Results and Costs of Treatment by Intramedullary Nailing and by Traction and a Spica Cast. J. Bone and Joint Surg. 1973, 55(4): 690-700.
    10. Buxton RA. The Use of Perkins’Traction in the Treatment of Femoral Shaft Fractures. J Bone and Joint Surg. 1981, 63B(3): 362-366.
    11. Mcivor JB. Ross P. Landry G. and Davis LA. Treatment of Femoral Fractures with the Cast Brace. Canadian J Surg, 1984;27(6): 592-594.
    12. O’Beirne J. O’Connell RJ. White JM. Flynn M. Fractures of the Femur Treated by Femoral Plating Using the Anterolateral Approach. Injury, 1986;17(6): 387-390.
    13. Bucholz RW, Jones A. Fractures of the shaft of the femur. J Bone Joint Surg Am. 1991; 73(10):1561-1566.
    14. Xu X, Zhang X, Liu J, et al. Stress analysis after femoral shaft osteotomy fixed by various plates with different rigidities in simulation test. Chin Med J 1993; 106(2): 127-131.
    15. Ellis T, Bourgeault CA, Kyle RF. Screw position affects dynamic compression plate strain in an in vitro fracture model. Journal of Orthopaedic Trauma, 2001;15(5): 333-337.
    16. Kessler SB, Deiler S, Schiffl-Deiler M, et al. Refractures: a consequence of impaired local bone viability. Arch Orthop Trauma Surg 1992; 111(2):96-101.
    17. Lin J, Lin SJ, Chen PQ, et al. Stress analysis of the distal locking screws for femoral interlocking nailing. J Orthop Res. 2001;19(1):57-63.
    18. Koval KJ, Hoehl JJ, Kummer FJ, et al. Distal femoral fixation: a biomechanical comparison of the standard condylar buttress plate, a locked buttress plate, and the 95-degree blade plate. J Orthop Trauma. 1997;11(7):521-524.
    19. George CJ, Lindsey RW, Noble PC, et al. Optimal location of a single distal interlocking screw in intramedullary nailing of distal third femoral shaft fractures. J Orthop Trauma. 1998;12(4):267-272.
    20. Bottlang M, Doornink J, Byrd GD, et al. A nonlocking end screw can decrease fracture risk caused by locked plating in the osteoporotic diaphysis. J Bone Joint Surg Am. 2009;91(3):620-627.
    21. Papini M, Zdero R, Schemitsch EH, et al. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. J Biomech Eng. 2007;129(1):12-9.
    22. Fulkerson E, Egol KA, Kubiak EN, et al. Fixation of diaphyseal fractures with a segmental defect: a biomechanical comparison of locked and conventional plating techniques. J Trauma. 2006;60(4):830-835.
    23. Cordey J, Borgeaud M, Perren SM. Force transfer between the plate and the bone: relative importance of the bending stiffness of the screws friction between plate and bone. Injury, 2000;31(suppl 3):21-28.
    1. Laes L, Heitemeyer U, Krischak G et al. Fixation technique influences osteogenesis of comminuted fractures. Clin Orthop Relat Res. 1999;365:221-9.
    2. Gerber C, Mast JW, Ganz R. Biological internal fixation of fractures. Arch Orthop Trauma Surg 1991;110(4):226.
    3. Baumgaertel F, Perren SM, Rahn B. Animal experiment studies of "biological" plate osteosynthesis of multi-fragment fractures of the femur. Unfallchirurg. 1994; 97(1):19-27.
    4. Frigg R. Locking Compression Plate (LCP). An osteosynthesis plate based on the Dynamic Compression Plate and the Point Contact Fixator (PC-Fix). Injury. 2001;32 (Suppl 2):63-66.
    5. Miller DL, Goswami T. A review of locking compression plate biomechanics and their dvantages as internal fixators in fracture healing. Clin Biomech. 2007;2(10): 1049-1062.
    6. Zhao YF, Li QH, Gu ZC, Wang AM. The biomechanics of point contact-dynamic compression plate and its effects on bone perfusion. Chin J Traumatol. 2006;9 (3):161-167.
    7.邢叔星,赵玉峰,刘东北,等.新型点接触锁定加压接骨板的生物力学研究.医用生物力学. 2007;22(3):1-3.
    8. Revell PA. Histomorphometry of bone. J Clin Pathol. 1983;36(12):1323-1331.
    9. Brighton CT, Fisher JR, Levine SE, et al. The biochemical pathway mediating the proliferative response of bone cells to a mechanical stimulus. J Bone Joint Surg Am, 1996;78(9):1337-1347.
    10. Hulth A. Current concepts of fracture healing. Clin Orthop 1989;249:265-270.
    11. O'Sullivan ME, Chao EVS, Kelly PJ. The effects of fixation on fracture healing. J Bone Joint Surg Am, 1989;71(2):306-310.
    12. Einhorn TA. The cell and molecular biology of fracture healing. Clinical Orthopaedics 1998;(355 Suppl):S7-S21.
    13. Jacobs RR, Rahn BA, Perren SM. Effects of plates on cortical bone perfusion. J Trauma, 1981;21(2):91-95.
    14. Uhthoff HK, Boisvert D, Finnegan M. Cortical porosis under plates. Reaction to unloading or to necrosis? J Bone Joint Surg Am, 1994;76(10):1507-1512.
    15. Gautier E, Perren SM, Cordey J. Strain distribution in plated and unplated sheep tibia an in vivo experiment. Injury, 2000;31 (Suppl 3):37-44.
    16. Klaue K, Fengels I, Perren SM. Long-term effects of plate osteosynthesis: Comparison of four defferent plates, Injury. 2000,31(supply2):SB51-SB62.
    17. Perren SM. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br. 2002;84(8):1093-1110.
    18. Gautier E, Perren SM, Cordey J. Effect of plate position relative to bending direction on the rigidity of a plate osteosynthesis. A theoretical analysis. Injury. 2000;31(suppl 3):C14-C20.
    19. Schutz M, Sudkamp N. Revolution in plate osteosynthesis: new internal fixator systems. J Orthop Sci, 2003;8(2):252-258.
    20. Robert Frigg. Development of the locking compression plate. Injury, 2003;34(2 suppl):6-10.
    21.李秀群,邓力,罗静聪,等.硬组织切片技术在组织工程骨研究中的应用.中国修复重建外科杂志, 2004;18(3):239-240.
    22.于顺禄叶伟胜.实验家兔骨折愈合骨组织形态计量学研究.中华骨科杂志, 1991; 11(4):294-298.
    23. Parfitt AM, Drezner MK, Glorieux FH, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 1987;2(6):595-610.
    24. Parfitt AM. Bone histomorphometry: proposed system for standardization of nomenclature, symbols, and units. Calcif Tissue Int. 1988;42(5):284-286.
    25. Parfitt AM. Bone histomorphometry: standardization of nomenclature, symbols and units (summary of proposed system). Bone, 1988;9(1):67-69.
    1. Lane WA. Some remarks on the treatment of fractures. BMJ, 1895;1:861-863.
    2. Lambotte A. Technique et indication des prothèses dans letraitement des fractures. Presse Med 1909;17:321.
    3. Sherman WO. Vanadium steel bone plates and screws. Surg Gynecol Obstet 1912; 14:629-34.
    4. Eggers GW. Internal contact splint. J Bone Joint Surg Am, 1948;30A(1):40-52.
    5. Danis R. Théorie et pratique de l’ostéosynthèse. Paris: Masson;1949.
    6. Bagby GW, Janes JM. The effect of compression on the rate of fracture healing using a special plate. Am J Surg, 1958;95(5):761-771.
    7. Müller ME, Allg?wer M, Willenegger H. Compression fixation with plates. In: Technique of internal fixation of fractures. Berlin: Springer; 1965. p. 47-51.
    8. Ellis T, Bourgeault CA, Kyle RF. Screw position affects dynamic compression plate strain in an in vitro fracture model. Journal of Orthopaedic Trauma, 2001;15(5): 333-337.
    9. Kessler SB, Deiler S, Schiffl-Deiler M, et al. Refractures: a consequence of impaired local bone viability. Arch Orthop Trauma Surg, 1992;111(2):96-101.
    10. Gino M, Kerkhoffs MD, Peter Kloen MD. Alternative Use of the Dynamic Compression Plate as an External Fixator. Techniques in Orthopaedics, 2003:18(4): 338-343.
    11. Perren SM.The concept of biological plating using the limited contact dynamic compression plate (LC-DCP). Scientific background, design and application. Injury, 1991;22(Suppl 1):1-41.
    12. Gautier E, Perren SM. Die limited contact dynamic compression plate (LC-DCP): Biomechanische Forschung als Grundlage desneuen Plattendesigns. Orthopade, 1992;21(1):11-23 (in German).
    13. Field JR, Hearn TC, Caldwell CB. Bone plate fixation: an evaluation of interface contact area and force of the dynamic compression plate (DCP) and the limited contact-dynamic compression plate (LC-DCP) applied to cadaveric bone. J Orthop Trauma, 1997;11(5):368-373.
    14. Jain R, Podworny N, A biomechanical evaluation of different plates for fixation of canine radial osteotomies. J Trauma, 1998;44(1):193-197.
    15. McKee MD, Seiler JG, Jupiter JB. The application of the limited contact dynamic compression plate in the upper extremity: an analysis of 114 consecutive cases. Injury 1995;26(10):661-666.
    16. Thompson NW, Sloan SC, Adair A, et al. The limited-contact dynamic compression plate in the management of proximal humeral non-union. 2004;35(11):1137-1139.
    17. Tomas B, Sune L, Percutaneous plating of distal tibial fractures Preliminary results in 21 patients. Injury, 2004;35(6):608-614.
    18. Perren SM , Buchanan JS. Basic concepts relevant to the design and development of the point contact fixator (PC-Fix). Injury 1995;26(2):1-4.
    19. Tepic S, Perren S. The biomechanics of the PC-Fix internal fixator. Injury, 1995; 26(Suppl 2):B5-B10.
    20. Bresina SJ, Tepic S. Finite element analysis (FEA) for the Point contact fixator screw drive, plate design, overcuts.Injury, 1995;26(Suppl 2):20-23.
    21. Borgeaud M, Cordey J, Leyvraz PE, et a1. Mechanical analysis of the bone to plate interfac e of the LCCDP and of the PC Fix on human femora. Injury, 2000;31(Suppl 3): C29-36.
    22. Eijer H,Hauke C,Arens S,eta1.PC-Fix and local infection resistance influence of implant design on postoperative infection development,clinical an d experimental results. Injury, 2001;32(Suppl 2):38-43.
    23. Baumgaertel F. Fracture healing in biological plate osteosynthesis, Injury 1998; 29(Suppl 3):3-6.
    24. Haas N, Hauke C. Treatment of diaphyseal fractures of the forearm using the Point Contact Fixator (PC-Fix): results of 387 fractures of a prospective multicentric study (PC-Fix II). Injury. 2001;32 (Suppl 2): 51-62.
    25. Hertel R, Eijer H, Biomechanical and biological considerations relating to the clinical use of the Point Contact Fixator evaluation of the device handling test in the treatment of diaphyseal fractures of the radius and/or ulna. Injury. 2001,32 (Suppl 2): 10-4.
    26. Hofer, H,Wildburger, R,Observations concerning different patterns of bone healing using the Point Contact Fixator (PC-Fix) as a new technique for fracture fixation. Injury, 2001;32 (Suppl 2): 15-25.
    27. Karnezis IA. Biomechanical considerations in biological femoral osteosynthesis an experimental study of the‘bridging’and‘wave’plating techniques. Arch Orthop Trauma Surg 2000;120(5-6):272–275.
    28. Heitemeyer U, Kemper F, Hierholzer G Haines J. Severely comminuted femoral shaft fractures: treatment by bridging-plate osteosynthesis. Arch Orthop Trauma Surg. 1987;106(5):327-30.
    29. Ring D, Jupiter JB, Sanders RA. Complex nonunion of fractures of the femoral shaft treated by wave-plate osteosynthesis. J Bone Joint Surg Br. 1997;79(2):289-94.
    30. Livani B, Belangero WD,Bridging plate osteosynthesis of humeral shaft fractures Injury, 2004; 35(6):587-595.
    31. Ring D, Jupiter JB, Quintero J, Sanders RA, Marti RK. Atrophic ununited diaphyseal fractures of the humerus with a bony defect: treatment by wave-plate osteosynthesis. J Bone Joint Surg Br. 2000;82(6):867-71.
    32. Ariane MD, Marti Rene MD, Jupiter, Jesse MD. Surgical management of diaphyseal humeral nonunion after intramedullary nailing: Wave-plate fixation and autologous bone grafting without nail removal. Journal of Shoulder & Elbow Surgery. 2003;12(4):309-313.
    33. Frigg R. Locking Compression Plate(LCP).An osteosynthesis plate based on the Dynamic Compression Plate and the Point Contact Fixator(PC-Fix). Injury, 2001;32(2 supple):63-66.
    34. Wagner M, Frigg R. Locking compression plate(LCP):Ein neuer AO Standard. OP J, 2000;16(3):238-243.
    35. Schutz M, Sudkamp N. Revolution in plate osteosynthesis: new internal fixator systems. J Orthop Sci, 2003;8(2):252-258.
    36. Sommer C, Gautier E, Muller M, et al. First clinical results of the locking compression plate (LCP). Injury, 2003; 34 (supple 2): 43-54.
    37. Prasad S, Mohammed A, Ang S. Volar locking compression plate technique for dorsally displaced fractures of the distal radius– our first clinical results. J Hand Surg Br, 2006; 31(Suppl 1):22-23.
    38. Jan Korner, MD, Gerd Diederichs, Michael Arzdorf, et al A Biomechanical Evaluation of Methods of Distal Humerus Fracture Fixation Using Locking Compression Plates Versus Conventional Reconstruction Plates. J Orthop Trauma 2004;18(5):286-293
    39. Ahmad M, Nanda R, Bajwa AS. Biomechanical testing of the locking compression plate: When does the distance between bone and implant significantly reduce construct stability? Injury, 2007;38(3):358-364.
    40. Leung F, Zhu L,Ho H,et al. Palmar plate fixation of AO type C2 fracture of distal radius using a locking compression plate: A biomechanical study in a cadaveric model. J Hand Surg (Br), 2003,28(3):263-266.
    41. Hasenboehler E, Rikli D, Babst R. Locking Compression Plate with Minimally Invasive Plate Osteosynthesis in diaphyseal and distal tibial fracture: A retrospective study of 32 patients. Injury, 2007; 38(3):365-370.
    42. Sommer C. Fixation of Transverse Fractures of the Sternum and Sacrum With the Locking Compression Plate System. J Orthop Trauma 2005;19(7):487-490.
    43. Kent ME, Sinopidis C, Brown DJ, et al. The locking compression plate in periprosthetic humeral fractures: A review of two cases. Injury, 2005;36(10): 1241-1245.
    44. Sommer C, Babst R., Muller M, Hanson B. Locking Compression Plate Loosening and Plate Breakage. J Orthop Trauma 2004; 18(8):571-577.
    45. Perren SM. Evolution of the internal fixation of long bone f racture, the scientific basis of biological internal fixation: choosing a new balance between stability and biology. Bone Joint Surg Br, 2002;84(8):1093-1110.
    46.戴闽,戴克戎,裘世静.应力松弛接骨板对骨改建影响的实验研究.中华外科杂志.1995:33(11):698-700.
    47.蒋振刚,谢国瑞,范玉刚,等.滑槽式可变应力接骨板的实验研究及临床应用.中国矫形外科杂志, 1996;3(2):123-124.
    48.戴闽,戴克戎.应力松弛接骨板对板下皮质骨微循环影响的实验研究.中华骨科杂志, 1998:18(8):484-488.
    49.张先龙,戴克戎.应力松弛接骨板对骨结构的影响.上海第二医科大学学报2000:20(6):488-490.
    50.张先龙,戴克戎,汤亭亭.应力松弛接骨松对骨折愈合胶原基因表达及细胞超微结构的影响.中华骨科杂志, 2000;20(6):362-365.
    51.张先龙,戴克戎.应力松弛接骨板固定兔胫骨截骨后骨折的形态学观察.中华实验外科杂志, 2000;17(6):587-587.
    52.张先龙,戴克戎,等.应力松弛接骨板固定对板下皮质骨改建影响的扫描电镜观察.中国修复重建外科杂志, 2001;15(1):1-4.
    53. Foux A, Yeadon AJ, Uhthoff HK. Improved fracture healing with less rigid plates: a biomechanical study in dogs. Clin Orthop 1997;339:232-245.
    54. Backman D, Uhthoff H, Poitras P, Schwamberger A. Mechanical performance of a fracture plate incorporating bioresorbable inserts. J Bone Joint Surg Proceed Br 2004; 86(Suppl III):300.
    55. Poitras P, Backman D, Uhthoff HK, et al. Creep properties of a bioresorbable polymer for an axially compressible fracture plate. Presented at the 5th Combined Meeting of the Orthopaedic Research Societies of Canada, USA, Japan and Europe. Banff, AB. October 2004.
    56. Frigg R,Appenzeller A,Christense NR,et a1.The development of the distal femur less invasive stabilization system (LISS).Injury, 2001;32( Suppl 3):24-31.
    57. Matri A,Fankhauser C,Frenk A, et a1.Biomechanical evaluation of the less invasive stabiliza tion system for the intemal fixation of distal femur fractures. J Orthop Trauma. 2001;15(7):482-487.
    58. Gosling T, Schandelmaier P, Marti A, et al. Less invasive stabilization of complex tibial plateau fractures: a biomechanical evaluation of a unilateral locked screw plate and double plating. J Orthop Trauma. 2004; 18(8):546-551.
    59. Zlowodzki M, Williamson S, Zardiackas LD, Kregor PJ. Biomechanical evaluation ofthe less invasive stabilization system and the 95-degree angled blade plate for the internal fixation of distal femur Fractures in human cadaveric bones with high bone mineral density. J Trauma. 2006;60(4):836-840.
    60. Schiutz M,Muller M,Krettek C, et a1. Minimally invasive fracture stabilization of distal femoml flractures with the LISS: a prospective multicenter study results of a clinical study with special emphasis on difficult cases. Injury, 2001;32(Suppl3):48-54.
    61. Kregor PJ, Stannard J, Zlowodzki M, et al. Distal femoral fracture fixation utilizing the Less Invasive Stabilization System (L.I.S.S.): the technique and early results. Injury. 2001;32(Suppl 3):SC32-47.
    62. Syed AA, Agarwal M, Giannoudis PV, et al. Distal femoral fractures: long-term outcome following stabilisation with the LISS. Injury. 2004; 35(6):599-607.
    63. Cole PA, Zlowodzki M, Kregor PJ. Less invasive stabilization system (LISS) for fractures of the proximal tibia: Indications, Surgical Technique and Preliminary Results of the UMC Clinical Trial. Injury, 2003;34(Suppl. 1):SA16-29.
    64. Button G, Wolinsky P, Hak D. Failure of less invasive stabilization system plates in the distal femur: a report of four cases. J Orthop Trauma. 2004;18(8):565-570.
    65. Karnezis IA, Miles AW, Cunningham JL, Learmonth ID. "Biological" internal fixation of long bone fractures: a biomechanical study of a "noncontact" plate system. Injury. 1998;29(9):689-695.
    66.吴雪辉,李起鸿.锥状点式接触钢板内固定对局部皮质骨微循环影响的实验研究.中华骨科杂志, 2000;20(3): 137-141.
    67.赵玉峰,李起鸿,顾祖超,等.新型点状接触动力加压接骨板的研制(生物力学部分).医用生物力学, 2002;17(1):58-62.
    68.邢叔星,王爱民,赵玉峰,等.两种有限接触接骨板固定不同类型骨表面特征评估.创伤外科杂志, 2007;9(1):49-52.
    69. Uhthoff H K, Poitras P, Backman DS. Internal plate fixation of fractures: short history and recent developments. J Orthop Sci, 2006;(11):118-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700