用户名: 密码: 验证码:
裂隙岩体表征单元体及力学特性尺寸效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选题以国家自然科学基金重点项目[50239070]“裂隙岩体的渗流与力学特性研究”为背景,重点对裂隙岩体的表征单元体(REV)与力学特性尺寸效应进行研究,具体包括:表征单元体的力学意义、裂隙岩体表征单元体与岩体力学模型及岩体力学参数取值之间的关系、裂隙岩体表征单元体的确定方法、裂隙岩体变形与强度特性的尺寸效应、基于REV的岩体力学参数取值及数值分析方法等。主要内容有:
     通过对表征单元体定义的分析,指出表征单元体蕴含着“微观与宏观”、“离散与连续”、“随机性与确定性”的对立统一的辨证思想,同时反映了材料性质的尺寸效应。因此,裂隙岩体表征单元体应该作为一个基本的岩体力学问题加以重视。分析了裂隙岩体表征单元体与岩体介质类型选取及力学参数取值之间的密切关系,认为裂隙岩体表征单元体的大小可以作为准确选择岩体介质类型的定量标准,也是合理选择与等效连续介质模型相关的力学参数的重要依据。对于具体的岩体工程,首先根据断层、软弱夹层等大型结构面进行地质分区。在同一地质分区内,如果岩体的表征单元体存在且较小,可以将岩体视为等效连续介质处理;若REV相比与岩体区域尺寸较大或不存在,则应该不连续介质处理。另外,对于采用等效连续介质模型的岩体力学参数研究来说,主要包含三方面的问题:(1)确定裂隙岩体REV的大小;(2)确定REV内的岩体等效连续属性;(3)寻找岩体性质随岩体体积的变化规律,为确定岩体体积小于REV时的力学参数提供依据。
     介绍了三种确定裂隙岩体表征单元体的方法,即能量迭加方法、地质统计方法与数值模拟方法,并通过实例分别对其可行性进行了验证。其中,重点介绍了岩体裂隙网络模拟技术,以作为研究裂隙岩体表征单元体的基础。详细阐述了基于裂隙网络生成技术、采用数值模拟方法确定裂隙岩体表征单元体的基本思路与技术路线。结果表明,三种方法均能有效的确定随机裂隙岩体表征单元体的大小。基于裂隙网络模拟技术的数值试验方法能够灵活处理裂隙岩体系统详尽的几何特征与力学特性,且不受研究尺度的限制,因而是研究裂隙岩体表征单元体的主流方法。数值试验的准确性主要依赖于对岩块和裂隙力学特性的准确把握。
     综合采用岩体裂隙网络生成技术与数值分析方法,重点研究了裂隙岩体变形与强度特性的表征单元体大小与尺寸效应。本文的大量数值试验结果表明,随机裂隙岩体的弹性模量、抗剪强度、抗压强度等指标均随岩体体积的增大而变化,表现出明显的尺寸效应,但当岩体体积增大到一定值后,这些指标均趋于稳定。通
The selection of research topic of this dissertation is based on significant item of Natural Science Fund [50239070] "Study on seepage characteristic and mechanical property of fractured rock masses ", and its purpose is to present a comprehensive description of the representative elementary volume (REV) of fractured rock masses, including the general mechanical implications of REV, the relationship between REV and mechanical models as well as mechanical parameters, the estimation of REV, the size effects of mechanical properties, and the REV-based finite element method. The major contributions of this paper are summarized as follows.The general mechanical meaning of REV is analyzed in detail by discussing its definition and then REV is considered as a fundamental conception in rock mechanics, which demonstrates the dialectic relationships of microstructure-macrostructure, discreteness-continuousness and randomness-determinacy and it reflects the size effects of mechanical properties. The close relationship between REV of fractured rock masses and the choice of rock mechanical models as well as the selection of mechanical parameters are elaborated in this dissertation. It is shown that REV can be regarded as a quantitative criterion for choosing equivalent continuum approach or discrete approach to solving rock engineering problems and for selecting appropriate parameters of the equivalent continuum models. For any rock engineering, large discontinuities (e.g., faults, large fissures, etc.) in the region of interest should be investigated and their mechanical properties should be established separately. As a result, the rock region is divided into several sub-regions by these large discontinuities. In each sub-region, the fracture information is investigated by in-situ measurements and the REV estimation method is applied to determine the REV size of that sub-region. If REV exists and is significantly smaller than the volume of the fractured rocks being investigated, equivalent continuum models are a suitable choice for analysis. Otherwise, discrete models should be applied. In additon, the following three major problems related to the mechanical parameters of the equivalent continuum models require further development: (1) evaluation of the REV size of fractured rock masses; (2) determination of the equivalent continuum properties of rock masses within REV; and (3) determination of the variation of the mechanical properties with the volume of the rock masses so as to provide a criterion for assigning appropriate mechanical parameters to the rock mass element with its volume smaller than the REV.Three methods, called Energy Superposition Method (ESM), Geological Statistic Method (GSM) and Numerical Simulation Method (NSM) are proposed to estimate the
    REV sizes of rock masses with stochastic fracture network system. Especially, modeling techniques of fracture network system is introduced in detail and Monte-Carlo simulation approach is employed to generate fracture nework system within rock masses for estimating the REV sizes of fractured rock masses. And the comprehensive scheme of numerical simulation method (NSM) based on modeling techniques of fracture network system is also presented. And the effectiveness of these three methods is demonstrated by explanatory examples respectively. The analysis results indicate that three methods are all effective for estimating the REV sizes of fractured rock masses. The numerical approach has the advantage of being able to consider the influence of irregular fracture system geometry and complex constitutive models of rock matrix and fractures. Therefore, numerical simulation method (NSM) based on modeling techniques of fracture network system is suggested to be the main approach to estimating the REV of fractured rock masses.Combined with modeling techniques of fracture network system, numerical method is applied to investigate the REV of fractured rock masses and the size effects of several important indices of rock mechanical properties, such as elastic modulus, compression strength and shear strength. Plenty of numerical tests are performed and computation results indicate that all the indices vary with the size of fractured rock masses. But when the size of rock mass is increased up to a certain value, they all approach constant values. Firstly, the Monte-Carlo simulation approach is used to generate the discrete fracture network models, based on distribution functions of location, orientation, trace-length and density of fractures. Considering a two-dimensional rock mass, which contains two sets of stochastic fractures, eight series of discrete fracture network models are generated by individual Monte-Carlo simulation and they have the same fracture statistics. The numerical analysis results indicate that the equivalent elastic moduli of eight discrete fracture network models are almost same and the REV size of this fractured rock masses is suggested to be 7mx7m. In addition, one of the eight discrete fracture network models are rotated in anticlockwise direction with a 30° intervals(0° ,30° ,60° ,90° ,120° ,150° ) and the anisotropy of elastic modulus of fractured rock masses is also analyzed. For the same discrete fracture network model, numercal tests are alse conducted to investigate the size effects of cohesion, friction angle and compression strength.To reflect the size effect of mechanical properties of fractured rock masses, a new approach named REV-based finite element method (FEM) is proposed and applied to simulate the mechanical behavior of rock masses. In rock engineering practices, researchers and engineers usually ignore the size effects of mechanical parameters, and the equivalent mechanical parameters are assigned to the whole geological region regardless of the FEM mesh sizes. This unreasonable treatment often leads to error results of FEM analysis. In fact, FEM meshes have significant impact on mechanical
    parameters of rock masses. Firstly, to save computational cost for large or very large-scale problems, there generally exist elements with their sizes beyond the REV size of the considered region. The equivalent continuum properties should be determined within REV and the uniform parameters should be assigned to these elements. Secondly, to ensure reasonable calculation precision in some critical sub-regions, there also exist some elements with their sizes smaller than the REV. For these elements, special attention must be paid to the size effect of the rock mechanics parameters, and it is necessary to adopt different parameters for elements with distinct sizes. REV-based FEM is established exactly to solve these two problems. REV-based FEM is used to model the cavern excavation in a two-dimensional rock mass, and the analysis results demonstrate that the total displacement derived from traditional FEM is obviously larger than that derived from REV-based FEM. The underlying reason is that in traditional FEM, the same mechanical parameters are adopted for all elements regardless of their distinction in sizes, which essentially weakens the mechanical property of the rock mass. This implies that REV-based FEM should be more comprehensive and rational than traditional FEM, due to disregard of the size effects of mechanical parameters in the latter approach.
引文
[001] Harrison JP, Hudson JA. Engineering rock mechanics. Part 2: illustrative workable examples. In: Sarkka P, Eloranta P, editors. Oxford: Pergamon, 2000
    [002] Hill R. 1963. Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids. 11,357-372
    [003] Zihui Xia, Yunfa Zhang, Fernand Ellyin. A unified periodical boundary conditions for representative volume elements of composites and applications. International journal of Solids and Structures 40(2003) 1907-1921
    [004] Bear J. Dynamics of fluids in porous media. New York: American Elsevier, 1972
    [005] J Bear. Hydraulics of groundwater [M]. McGrawHill, 1979
    [006] Louis. C. Rock Hydraulics in Rock Mechanics. edited by L. Muller, Verlay Wien New York. 1974
    [010] Wilson. C. R, Witherspoon. P. A. An investigation of laminar flow in fractured porous rocks. University of California, Berkalay, California, 1970
    [011] Maini. Y. N. T, Noorishad. J, Sharp. J. Theoretical and field considerations in the determination of the in situ hydraulic parameters in fractured rock. Proc. Symposium on percolation through fissured rock, Stuttgart, Germany, 1972
    [012] Dershowitz. W. S, Einstein. H. H. Three-dimensional flow modeling in jointed rock masses. In: Herget. O, Vongpaisal. O, editors. Proceedings of the Sixth Congress on ISRM, Montreal, Canada, vol, 1, 1987. p. 87-92.
    [013] Tsang YW, Tsang CF. Channel model of flow through fractured media. Water Resour Res 1987; 22(3): 467-79.
    [014] Jing L. A review of techniques, advances and outstanding issues in numerical modeling for rock mechanics and rock engineering, Int. J. Rock Mech. Min. Sci., 2003, 40(3), 283-353
    [015] Marsily GDe. Flow, transport in fractured rocks: connectivity and scale effect. Proceedings of the International Association of Hydrogeologists. Hydrogeology of Rocks of Low Permeability. Tucson, memories, vol. ⅩⅦ, 1985. p. 267-277
    [016] Hsieh PA, Neuman SP. Field determination of the three-dimensional hydraulic conductivity tensor of anisotropic media, 1, theory. Water Resources Research 1985; 21(11): 1655-1665
    [017] Hsieh PA, Neuman SP, Stiles GK, Simpson ES. Field determination of the three-dimensional hydraulic conductivity tensor of anisotropic media, 2, methodology and application to fractured rocks. Water Resources Research 1985; 21(11): 1667-1676
    [018] Snow DT. Anisotropic permeability of fractured media. Water Resources Research. 1969, 5(6): 1273-1289
    [019] Romm E S. Flow Characteristics of Fractured Rocks [M]. Nedra, Moscow, 1966
    [020] Sagar B, Runchal A. Permeability of fractured rock: Effect of fracture size and data concertainities. Water Resources Research. 1982, 18(2): 266-274
    [021] Long JCS, Witherspoon PA. The relationship of the degree of interconnection to permeability in fractured networks. Journal of Geophysical Research. 1985, 90(B4): 3087-3097
    [022] Oda M. Permeability tensor for discontinuous rock masses. Geotechnique, 1985, 35(4): 483-495
    [023] Oda M. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses. Water Resources Research, Vol. 22, No. 13, 1986, P. 1845-1856
    [024] Oda M. Fabric tensor for discontinuous geological materials. Soils Fdns 1982; 22(4): 96-108.
    [025] Oda M. Similarity rule of crack geometry in statistically homogeneous rock masses. Mech Mater 1984; 3: 119-29.
    [026] Oda M. A method for evaluating the effect of crack geometry on the mechanical behavior of cracked rock masses [J]. Mech. Mater. 1983,(2): 163-171
    [027] Oda M. Modern developments in rock structure characterization [A]. In: Comprehensive Rock Engineering[C]. Hudson J A (ed.), 1988, 1: 185-200
    [028] Oda M. Kanamaru M&IwashitaK. The effect of crack geometry on hydrodynamic dispersion in cracked media [J]. Soil and Foundations (Japanese Geotechnical Society), 1996, 36(2): 69-80
    [029] Oda M. &HatsuyamaY. Numerical experiments on permeability tensor and its aplication to jointed granite at Strip a mine [J]. Sweden, J. ofGeophysical Research, 1987, 92(B8): 8037-8048
    [030] Salamon MDG. Elastic moduli of a stratified rock mass. Int. J Rock Mech Min Sci GeoMech Abstr 1968; 5: 519-27.
    [031] Singh B. Continuum characterization of jointed rock masses. Int J Rock Mech Min Sci Geomech Abstr 1973; 10: 311-35.
    [032] Gerrard CM. Elastic models of rock masses having one, two and three sets of joints. Int J Rock Mech Min Sci Geomech Abstrl982; 19: 15-23.
    [033] Fossum AF. Effective elastic properties for a randomly jointed rock mass. Int J Rock Mech Min Sci Geomech Abstr. 1985; 22(6): 467-70.
    [034] Amadei B, Goodman RE. A 3-D constitutive relation for fractured rock masses. In: Selvadurai APS, editor. Proceedings of the International Symposium on the Mechanical Behavior of Structured Media, Ottawa, Part B, 1981. p. 249-68.
    [035] Hu KX, Huang Y. Estimation of the elastic properties of fractured rock masses. Int J Rock Mech Min Sci Geomech Abstr 1993; 30(4): 381-94.
    [036] Ki-Bok Min, Lanru Jing. Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method. Int. J. Rock Mech. Min. Sci. , Vol.40 (2003), 795-816
    [037] Wang, M, P. H. S. W. Kulatilake, Estimation of REV size and three-dimensional hydraulic conductivity tensor for a fractured rock mass through a single well packer test and discrete fracture fluid flow modeling, Int. J. Rock Mech. Min. Sci., Vol. 39 (2002), 887-904
    [038] Long JCS, Remer JS, Wilson CR, Witherspoon PA. Porous media equivalents for networks of discontinuous fractures. Water Resources Research 1982; 18(3): 645-658
    [039] Witherspoon. A. Etal. New approaches to problem of fluid flow in fracture rock masses. Proc. U. S. Symp. Rock Mech 22nd 1981
    [040] Neuman SP. Stochastic continuum representation of Fractured rock permeability as an alternative to the REV and fracture network concepts [A]. 28th US Symposium on Rock Mech[C]. 1987.533-561
    [041] Kulatilake PHSW, Panda BB. Effect of block size and joint geometry on jointed rock hydraulics and REV. ASCE J Eng Mech2000; 126(8): 850-8
    [042] Zhou C. B. etal. Representative Elementary Volume relevant to permeability of jointed rock masses [A]. 第九届国际岩土力学计算机方法会议论文集[C]. 1997
    [043] Kulatilake PHSW, Chen J, Teng J, Shufang X, Pan G. Discontinuity geometry characterization for the rock mass around a tunnel close to the permanent shiplock area of the Three Gorges dam site in China. Int J Rock Mech Min Sci 1996; 33: 255-77.
    [044] Kulatilake PHSW, Wuthagala DN, Stephansson O. Joint network modelling, including a validation to an area in Stripa Mine, Sweden. Int J Rock Mech Min Sci 1993; 30(5): 503-26.
    [045] Wathugala DN, Kulatilake PHSW, Wathugala GW, Stephansson O. A general procedure to correct sampling bias on joint orientation using a vector approach. Comput Geotech 1990; 10: 1-31.
    [046] Kulatilake PHSW, Wu TH. Relation between discontinuity size and trace length. Proceedings of the 27th US Symposium on Rock Mechanics, Tuscaloosa, AL, 1986. p. 130-3.
    [047] Hoek E,Brown E T. Practical estimates of rock mass strength [J]. Int. J. Rock Mech. and Min. Sci., 1997,34(8): 1165-1187
    [048] Andersson J, Dverstorp B. Conditional simulations of fluid flow in three-dimensional networks of discrete fractures. Water Resour. Res., 1987, 23(10): 1876~1886.
    [049] Barton N., Bandis S. C. Strength, deformation and conductivity coupling of rock joints. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1985;22 (3) : 121-140
    [050] Bathe K J. Finite element free surface seepage analysis without mesh. Int. J. of Num. Ana. Meth. Geomech., 1979; 3.
    [051] C. A. Tanga, L. G. Thamb, Coupled analysis of flow, stress and damage (FSD) in rock failure, Int. J. Rock Mech. Min. Sci., 39 (2002) 477 - 489
    [052] Chan, T., Khair, K., International comparision of coupled hydro-mechanical models of a multiple-fracture benchmark problem: DECOVALEX phase I, Bench Mark Test 2, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 32, No. 5 (1995), 435~452
    [053] Chongbin Zhao, B. E. Hobbs, Theoretical and Numerical Analyses of Convective Instability in Porous Media with Upward through Flow Int. J. Numer. Anal. Meth. Ggeomech. , 23, 629~646(1999)
    [054] Cornet, F. H. ; Morin, R. H. , Evaluation of hydromechanical coupling in a granite rock mass from a high-volume high-pressure injection experiment: Le Mayet de Montagne, France, Int. J. Rock Mech. Min. Sci., Vol. 34, No. 3-4, April ~ June(1997), 427
    [055] E. Detournay and A. H. -D. Cheng, Poroelastic response of a borehole in a non-hydrostatic stress field, Int. J. Rock. Mech. Min. Sci. Geomech. Abstr. , 25(3), 171- 182 (1988).
    [056] Gangi A F., Variation of whole and fracturedporous rock permeability with confining pressure. Int. J. Rock Mech. Min. Sci. &Geomech. Abstr. Vol. 15 (1978), 249~257.
    [057] Gentier S, Billaus D, van Vliet L. Laboratory testing of the voids of a fracture. Int. J. Rock Mech. Rock. Eng., 1989, 22: 149-157.
    [058] Guvanasen, V.; Chan, Tin, A three-dimensional numerical model for thermohydromechanical deformation with hysteresis in a fractured rock mass, Int. J. Rock Mech. Min. Sci., Vol. 37, Issue: 1-2, January 1, 2000, 89-106
    [059] Jing, Lanru; Ma, Yue; Modeling of fluid flow and solid deformation for fractured rocks with discontinuous deformation analysis (DDA) method, Int. J. Rock Mech. Min. Sci. , Vol. 38, Issue: 3, April, 2001, 343-355
    [060] Jing L., Tsang C. F., An international cooperative research project on mathematical models of coupled THM processes for safety analysis of radioactive waste repositories. Int. J. Rock Mech. Min. Sci. &Geomech. Abstr., 1995; 32 (5) : 399-408
    [061] Jing. L, Nordlund. E; Stephansson. Experimental Study on the Anisotropy and Stress-Dependency of the Strength and Deformability of Rock Joints. Int. J. Rock Mech. Min. Sci. &Geomech. Abstract, Vol. 29, no. 6, 535-542, 1992
    [062] Carranza-Torres C , Fairhust C. The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion [J]. Int. J. Rock Mech. and Min. Sci., 1999,36(6): 777-809
    [063] Sonmez H, Ulusay R. Modification to the geological strengthe index (GSI) and their applicablity to stablity of slopes [J]. Int. J. Rock Mech. and Min. Sci., 1999,36 (6): 743-760
    [064] Barton N. Suggested method for the quantitative description of discontinuinties in rock mass [J]. Int. J. Rock Mech. and Min. Sci., 1978,15(6): 319-368
    [065] Priest S D,Hudson J A. Estimation of discontinuity spacing and trace length using scaling sureys [J]. Int. J. Rock Min. Sci. & Geomech. Abstra. ,1981,18: 183-197
    [066] Kulatilake P,Wu T H. The density of discontinuity trace in sampling window [J]. Int. J. Rock Mech. Sci., 1984,21(6): 345-347
    [067] Barton N,Bandis S. Review of predictive capabilities of JRC-JCS mode in engineering practice [A], In: Rock Joints[C]. Rotterdam: A. A. Balkema,1990,603-610
    [068] Lajtai E Z. Strength of discontinuous rocks in shear [J]. Geotechnique, 1969, 19 (2): 218-233
    [069] Jennings J E. A mathematical theory for the calculation of the stability of open cut mines [A]. Johannesburg: Proc. Symposium on the Theoretical Background to the Planning of Open Pit Mines [C]. 1970, 87-102
    [070] Einstein H H, Stephansson O. Fracture systems, fracture propagation and coalescence [A]. Melbourne, Australia: Geoeng2000-An International Conference on Geotechnical & Geological Engineering [C]. 2000, 1-41
    [071] Kanno, T., Fujita, T. Coupled thermo-hydro-mechanical modelling of bentonite buffer material Int. J. Numer. Anal. Meth. Geomech. 23, 1281~1307 (1999)
    [072] Kim, Yong-Il; Amadei, B. Modeling the effect of water, excavation sequence and rock reinforcement with discontinuous deformation analysis, Int. J. Rock Mech. Min. Sci. , Vol. 36, No. 7, (1999), 949~970
    [073] Noorishad J., Ayatollahi M. S. A finite element method for coupled stress and fluid flow analysis in fractured rock masses, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. , 1982; 19: 185-193
    [074] M. Bai, F. Meng, D. Elsworth. Numerical modelling of coupled flow and deformation in fractured rock specimens, Int. J. Numer. Anal. Meth. Geomech., 23, 141~160 (1999)
    [075] M. Bai, D. Elsworth. Multi-porosity/multi -permeability approach to the simulation of naturally fractured reservoirs, Water Resour. Res., 29, (1993). 1621~1633
    [076] Olsson, R. ; Barton, N. An improved model for hydromechanical coupling during shearing of rock joints, Int. J. Rock Mech. Min. Sci., Vol. 38, No. 3, (2001), 317-329
    [077] Persoff P., Pruess K. Two phases flow visualization and relative permeability measurement in natural rough walled rock fractures. Water Resour. Res., 1995, 31(5): 1175-1186.
    [078] Peters R R, Klavetter EA. A continuum model for water movement in an unsaturated fractured rock mass. Water Resour. Res., 1988, 23(3): 416-430.
    [079] Pruess K, Narasimhan J S Y, Tsang Y W. On thermohydrologic conditions near high level nuclear wastes emplaced in partially saturated fractured tuff,2, Effective continuina approximation. Water Resour. Res, 1990, 26(6): 1249-1261.
    [080] Pruess K, Tsang Y W. On two-phase relative permeability and capillary pressure of rough walled rock fractures [J]. Water Resour. Res., 1990, 26(9): 1915-1926.
    [081] Pyrak-Nolte, L. J. ; Morris, J. P. Single fractures under normal stress: The relation between fracture specific stiffness and fluid flow, Int. J. Rock Mech. Min. Sci., 37(1) 2000, 245-262
    [082] Reitsma S, Kueper BH. Laboratory measurement of capillary pressure saturation relationships in a rock fracture. Water Resour. Res., 1994, 30(4):865-878.
    [083] Rouleau A, Gale JE. Stochastic discrete fracture simulation of ground water flow into an underground excavation in granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. , 1987; 24(2): 99~112.
    [084] Rutqvist, J, Wu, Y. S. A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock, Int. J. Rock Mech. Min. Sci., (2002), 39(4), 429~442
    [085] Rutqvist J, Borgesson, L. Thermohydromechanics of partially saturatedgeological media: governing equations andformulation of four finite element models. Int. J. Rock Mech. Min. Sci. (2001); 38(1): 129~42.
    [086] Rutqvist, J. ; Borgesson, L. Coupled thermo-hydro-mechanical analysis of a heater test in fractured rock and bentonite at Kamaishi Mine—comparison of field results to predictions of four finite element codes, Int. J. Rock Mech. Min. Sci., 2001, 38(1), 129~142
    [087] Shapiro A M, Nicholas J R. Assessing the validity of the channel model of fracture aperture under field conditions. Water Resour. Res., 1989, 25(5): 817-825.
    [088] Tsang YW, Tsang C. F. Channel model of flow through fractured media. Water Resour. Res., 1987;23(3): 467~479.
    [089] Tang, C. A. ; Tham, L. G. Coupled analysis of flow, stress and damage (FSD) in rock failure, Int. J. Rock Mech. Min. Sci., Vol. 39, No. 4, (2002), 477~489
    [090] Lemaitre J. How to use damage mechanics [J]. Nucl. Eng. Design, 1984,80 (1): 233-245
    [091] Bandis S, lumsden A C, Barton N K. Experimental studies of scale effects on the hear behavior of rock joint [J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstra., 1981,18: 1-21
    [092] Barton N. The influence of joint properties in modeling jointed rock masses. In: Proc. 8th int. Rock Mech. Congress. Tokyo: [s. n.], 1995:3-4
    [093] Huang T H, Chang C S, Yang Z Y. Elastic Moduli forFractured Rock Mass. Rock Mech & Rock Eng. 1995, 28 (3): 135-144
    [094] 周创兵,於三大.论岩体表征单元体积REV-岩体力学参数取值的一个基本问题.工程地质学报,1999,Vol7.No.4
    [095] 周创兵,熊文林.论岩体的渗透特性.工程地质学报.1996,4(2):69-74
    [096] 周创兵,熊文林.双场耦合条件下裂隙岩体的渗透张量.岩石力学与工程学报.1996,15(4):338-344
    [097] 周创兵,熊文林.岩体节理的渗流广义立方定理.岩土力学.1996,17(4):1~7
    [098] 周创兵,熊文林.不连续面的分形维数及其在渗流分析中的应用[J].水文地质工程地质, 1996,23(6):1-5.
    [099] 周创兵,裂隙岩体渗流场与应力场耦合分析研究[D],博士论文,1996
    [100] 周火明等.三峡船闸边坡卸荷扰动区范围及岩体力学性质弱化程度研究.岩石力学与工程学报,2004,23(7):1078-1081
    [101] 龚玉峰.裂隙岩体多场广义耦合分析及工程应用研究[D].博士论文,武汉大学,2003
    [102] 陈胜宏等.节理岩体渗流和变形耦合性质的研究.武汉水利电力大学报,1990
    [103] 陈剑平.岩体随机不连续面三维网络数值模拟技术[J].岩土工程学报,2001,23(4):397-402
    [104] 邬爱清,周火明,任放.岩体三维网络模拟技术及其在三峡工程中的应用[J].长江科学院院报,1998,15(6):15-18
    [105] 陈剑平,卢波,王良奎等.复杂不稳定块体的自动搜索及其失稳方式判断[J].岩石力学与工程学报,2003,22(7):1126-1131
    [106] 陈剑平,石丙飞,王树林等.单测线法估算随机节理迹长的数值技术[J].岩石力学与工程学报,2004,23(10):1755-1759
    [107] 陈剑平,王清,赵红亮.窗口测线法获取岩体RQD[J].岩石力学与工程学报,2004,23(9):1491-1495
    [108] 黄润秋等.复杂岩体结构精细描述及其工程应用[M].北京:科学出版社,2004
    [109] 孙钧.迎接新世纪的岩石力学若干进展[A].第五届全国岩石力学与工程大会[C].上海:中国科技出版社,1998.1-10.[2]
    [110] 陶振宇.试论岩石力学的最新进展[J].力学进展,1992,(2):161-172.[3]
    [111] 周维垣.高等岩石力学[M].北京:水利电力出版社,1991
    [112] 哈秋舲,李建林.长江三峡工程岩石边坡卸荷岩体宏观力学参数研究[M].北京:中国建筑出版社,1996.15-22.
    [113] 潘别桐,黄润秋.工程地质数值法[M].北京:地质出版社,1994.46-52.
    [114] 白明洲,王连俊,许兆义.工程掩体抗剪强度参数的数值分析及应用[J].北方交通大学学报,2001,25(4):63-65
    [115] 白世伟等.共面闭合断续节理岩体强度特性直剪试验研究[J].岩土力学,1999,20(2):10-16
    [116] 唐辉明,晏同珍著.岩体断裂力学理论与工程应用.武汉:中国地质大学出版社,1993.1-6
    [117] 范景伟,何江达.含定向闭合断续节理岩体的强度特性.岩石力学与工程学报,1992,11(2):190-199
    [118] 刘东燕,朱可善.岩石压剪断裂及其强度特性分析.重庆建筑工程学院学报,1994,16(2):54-60
    [119] 张善余,张汝强,龙湘桂.南岭大理岩的压剪断裂过程特性.岩石混凝土断裂与强度,1985,(2):57-62
    [120] 晏石林,黄玉盈,陈传尧.贯通节理岩体等效模型与弹性参数确定[J].华中科技大学学报,2001,29(6):60-63
    [121] 周维恒,杨延毅.节理裂隙岩体损伤2断裂力学模型及其在岩体工程中的应用.岩石力学与工程学报,1991,10(1):43-54
    [122] 张武,张宏宪.节理岩体的弹性模型.岩土工程学报,1987,9(4):33-44
    [123] 秦娟,耿克勤.节理岩体的代表性单元集合体模型及弹性参数预测[J].水利学报,2001,(9):45-50
    [124] 高安泽,张宏宪.各向异性节理岩体应力应变关系[J].水力发电学报,1993,(2)
    [125] 张武,张宏宪.节理岩体的弹性模型[J].岩土工程学报,1987,(4)
    [126] 陈胜宏.节理岩体的弹塑性和弹2粘塑性有限元计算[J].武汉水利电力大学学报,1986,(6):79-86
    [127] 朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1995
    [128] 周应华等.节理岩体抗剪强度参数的实验分析[J].西南交通大学学报,2005,40(1):73-76
    [129] 张少华,缪协兴.岩石强度的三轴与剪切实验误差分析[J].湘潭矿业学院学报,1997,12(4):1-5
    [130] 韩佳泳.直剪实验中参数误差原因探讨[J].大坝观测与土工测试,2001,25(2):43-44.
    [131] 李同录等.节理岩体力学参数的选取与应用[J].岩石力学与工程学报,2004,23(13):2182-2186
    [132] 兰恒星,伍法权.岩土力学数值模拟中力学参数的确定方法[J].世界地质,2001,20(1):66-71
    [133] 凌建明,蒋爵光,付永胜.非贯通裂隙岩体力学特性的损伤力学分析[J].岩石力学与工程学报,1992,11(4):373-383
    [134] 邹海,王桂梁,桂和荣等.岩体力学参数的损伤.反分析优化性研究[J].长春科技大学学报,1999,29(2):167-170
    [135] 周维垣.高等岩石力学[M].北京:高等教育出版社,1990
    [136] 孙卫军,周维垣.裂隙岩体弹塑性-损伤本构模型[J].岩石力学与工程学报,1990,9(2):108-118
    [137] Hook E,Brown E T.岩石地下工程[M].连志升,田连灿,王维德译.北京:冶金出版社,1986
    [138] 杜景灿,汪小刚,陈祖煜.结构面倾角对节理岩体的连通特性和综合抗剪强度的影响[J].水利学报,2002,(5):41-46
    [139] 汪小刚,陈祖煜,孙文松.应用蒙特卡罗法确定节理岩体的连通率和综合抗剪强度指标[J].岩石力学与工程学报,1992,11(4):345-355
    [140] 杨学堂等.裂隙岩体宏观力学参数数值仿真模拟研究[J].水力发电,2004,30(7):14-16
    [141] 乔春生,张清,黄修云.岩石工程数值分析中选择岩体力学参数的神经元网络方法[J].岩石力学与工程学报,2001(1):64-67
    [142] 陈志坚,张雄文.样本单元法及块状裂隙岩体力学参数的确定[J].岩土工程技术,2001(4):244-247
    [143] 陈志坚,卓家寿.样本单元法及层状含裂隙岩体力学参数的确定[J].河海大学学报,2000(1):14-17
    [144] 盛谦,黄正加,邬爱清.三峡节理岩体力学性质的数值模拟试验[J].长江科学院院报,2001,18(1):35-37
    [145] 陈志坚,孙英学.裂隙岩体力学参数的弱化处理[J].江苏地质,2000,24(1):36-38
    [146] 刘效云,张弛.浅谈岩石抗压强度试验中应注意的几个问题[J].煤炭科技,1999(1):18-20
    [147] 周火明,盛谦,邬爱清.三峡工程永久船闸边坡岩体宏观力学参数的尺寸效应研究[J].岩石力学与工程学报,2001,20(5):661-664
    [148] 李建林,哈秋龄.三峡卸荷岩体宏观力学参数三维数值模拟[J].武汉水利电力大学(宜昌)学报,1997,19(3):1-6
    [149] 朱维,王平.节理岩体的等效连续模型与工程应用[J].岩土工程学报,1992(2)
    [150] 李建林.岩石边坡卸荷岩体宏观参数研究[M].北京:中国建筑工业出版社,1996
    [151] 哈秋舲.岩石边坡工程与卸荷非线性岩石(体)力学.岩石力学与工程学报,1997,16(4):386-391
    [152] 吴刚,孙钧.卸荷应力状态下裂隙岩体的变形和强度特性[J].岩石力学与工程学报,1998,17(6):615-621
    [153] 刘宝琛等.岩石抗压强度的尺寸效应[J].岩石力学与工程学报,1998,17(6):611-614
    [154] 邵小曼.岩石抗压强度的随机-模糊分析[J].岩石力学与工程学报,2001,20(增):1776-1779
    [155] 朱珍德等.岩石抗压强度与试件尺寸相关性试验研究[J].河海大学学报(自然科学版),2004,32(1):42-45
    [156] 郭中华,朱珍德,杨志祥等.岩石强度特性的单轴压缩试验研究[J].河海大学学报(自然科学版),2002,30(2):93-96
    [157] 光耀华.岩体抗剪强度特性研究[J].人民珠江,1999(2):15-18
    [158] 韩凤山.大体积节理化岩体强度与力学参数[J].岩石力学与工程学报,2004,23(5):777-780
    [159] 吕杰堂,郑礼金,许广泉.利用节理张量确定岩体代表性单元体积[J].淮南工业学院学报,2002,22(1):10-13
    [160] 伍法权.统计岩体力学原理[M].武汉:中国地质大学出版社,1993.
    [161] 潘别桐.岩体结构面网络模拟及应用[M].武汉:武汉地质学工程地质教研究室,1987.
    [162] 陈剑平等.随机不连续面三维网络计算机模拟原理[M].长春:东北师范大学出版社,1995.
    [163] 张辉.岩体饱和/非饱和渗流表征单元体积浅析[J].水利学报,2001(2):79-84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700