用户名: 密码: 验证码:
深层凝析气藏伤害机理与水力压裂改造研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凝析气藏是一类最为特殊、复杂的气藏,在开采过程中凝析油气体系在地层中的渗流伴随着复杂的相态变化,与一般气藏相比,凝析气藏在开采过程中随着压力的逐渐下降会发生反凝析现象,从而发生相态的变化。因此开采难度极大。
     鉴于此,中国石油化工集团股份公司针对中原深层凝析气藏开发中存在的问题,专题立项研究“东濮凹陷东部含气区深层凝析气藏评价及储层改造技术”攻关,包括储层评价、水力压裂改造和测试技术三大专题。本文是该项目专题二“东濮凹陷东部含气区凝析气藏储层改造”的重要组成部分,取得的重要成果如下:
     (1) 分析了多孔介质吸附、多孔介质毛细凝聚、孔隙结构以及流体因素对相态与平衡的影响;采用凝析气井获得的油、气、水样和地层岩心,通过测试岩心的气测渗透率;原生水饱和度建立与原生水饱和度下的气测渗透率测试;原生水饱和度+残余油饱和度建立(等效于束缚水饱和度)及该饱和度下的气相渗透率测试。分析凝析油吸附作用对地层渗透率的影响程度
     (2) 当含水饱和度从0增大到最小原生水饱和度时岩心气测渗透率下降倍数较低,而含水饱和度从最小原生水饱和度增大到最大原生水饱和度时的岩心气测渗透率下降倍数占绝大部分,显示出后半段地层中凝析油对地层渗透率伤害较严重。在液相饱和度从最小原生水饱和度增大到最大原生水饱和度过程中,凝析油的析出与吸附作用替代部分束缚水饱和度,可以在一定程度上减轻井底凝析水聚集对储层的伤害。
     (3) 在残余油饱和度条件下,尽管液相饱和度超过了束缚水饱和度,但气相渗透率普遍比束缚水饱和度条件下渗透率大。这说明在液相饱和度从最小原生水饱增大到最大原生水饱度过程中,凝析油的析出与吸附作用替代部分束缚水饱和度的作用,可在一定程度上减轻井底凝析水的聚集对地层渗透率的伤害。
     (4) 研究工区内沙三下和沙四的水敏程度属于中等偏强范围,说明岩石的水敏性对地层渗透率的伤害程度比较严重,应力敏感性较强。
     (5) 水锁和油锁实验表明,即使扣除端点效应压力,使真实启动压力梯度等于实验测试的启动压力梯度30%,液锁深度超过3.2m后,现有的地层压力条件也难以到达解除液锁需要的压差条件的。
     (6) 首先结合交连反应与反应动力学分析了硼交联机理、延迟胶联机理和延迟胶联技术,说明了OCB-Ⅱ压裂液体系具有抗高温性能。
     (7) 通过实验评价筛选了以羟丙基胍胶为稠化剂,OCB-Ⅰ或OCB-Ⅱ为高温胶联剂,APS为破胶剂的抗高温水基冻胶压裂液配方,实验分析了HPG用量,粘土稳定剂用量,对压裂液的综合性能的影响。
     (7) 首次通过描述平衡气液相组成、物质量(摩尔数)及平衡常数与压力、温度关系的物质平衡条件方程组;平衡气液相组成、物质量、平衡常数与逸度关系的热力学平衡
    
    条件方程组及用于相平衡计算的状态方程,建立相平衡模型。结合组分模型建立了凝析
    气藏压裂后生产动态模拟的数学模型。应用牛顿—拉弗生方法进行相态数值计算、采
    用IMPES方法模拟凝析气藏压裂后生产动态。
     (8)随着水力裂缝长度增加,天然气和凝析油的产量均增加,裂缝越长,增产效果
    越明显。这与常规气藏、黑油油藏水力压裂增产相似;随着储层中轻组分增加,天然气
    产量增加幅度更大,而凝析油增产幅度相对减小。因此,凝析气藏增产效果不仅取决于
    裂缝几何尺寸,而且受储层流体组成和压力、温度环境显著影响。
     (9)通过分析凝析气藏流体组成、环境条件(温度和压力)、裂缝几何尺寸对凝析
    气、凝析液对储层中压力分布、含油气饱和度分布以及生产动态的影响,说明了凝析气
    藏压裂与常规气藏、黑油油藏压裂有显著区别,必须区别对待。由于凝析气藏压裂后在
    井筒和裂缝周围有大量的凝析油析出并饱和地层而产生凝析油环,对储层产生很大的伤
    害,将极大地减小天然气产量,这些凝析油环受前述多种因素控制。
     关键词:凝析气藏凝析液实验研究伤害机理相态生产动态
Condensate gas reservoir is the most special and complex reservoir. When it is in initial pressure, condensate gas reservoir only has single gas phase. However, with the pressure goes down, heavy components will be separated out into liquid. In companion with time goes on, condensate liquid will gather around the well bore. Furthermore the changing of pressure and temperature, inter-phase mass transfer and phase state changing will affect the seepage of condensate reservoir. As a result, great difficulty has been presented in the exploit of condensate reservoirs.As an important portion of SINOPEC's leading projects. The paper systematically investigates the literatures and application actuality. A great deal of research and experiments has been carried on the high temperature and high pressure resisting fracture fluid systems; combine with corresponding numerical modeling, and calculation results have been given. Principal conclusions are the following.(1) Anglicized how porous medium adsorbing, porous medium capillary condensation, and other kinds of factors affect the phase equilibrium. Heavier component leads to greater losing of condensate gas saturation; higher formation temperature leads to less effect of adsorption; less porosity leads to greater absorbing. In addition, core experiment proved that retrograde condensation has greater effect in low seepage rate condensate reservoirs.(2) When water saturation rising from zero to minimum primary water saturation to maximum primary water saturation. The times of descend is lower in former half stage. To a great extent descend is in latter stage. This shows that in latter stage, damage of seepage is more sever. The paper account for it correctly.(3) in the situation of irreducible oil saturation, even if the fluid phase exceed the irreducible water saturation, the seepage of gas phase saturation is usually greater than irreducible water saturation, which shows that the bleeding of condensate oil and adsorption interchange the acting of irreducible water saturation, which will alleviate the degree of condensate water.(4) The effluent water of Sha 3 and Sha 4 is not condensate water but formation water. Water sensitiveness is in the medium level or a little upper. Once the rock's permeation character has been changed, rock's permeation character can't be changed although high rapidity gas flowing has been
    
    presented.(5) Water locking and oil locking experiments shows, available reservoir pressure gradient can't discharge the locking of fluid, even if making earnest trigger pressure gradient amount to 30 percent experimental testing and exceed to 3.2 meter of water locking depth.(6) Firstly, combining with the cross link reaction process and reaction dynamics, anglicized the mechanism of boracium cross link fracture fluid, and put on the retarding cross link mechanism and control technology. High temperature resisting performance of the OCB-II fracture fluid system has been explained.(7) Through experiment, we determined the fracturing fluid system: OBC-I or OBC-II as high temperature cross-linking agent, HPG as thickener. APS and NBA101 capsule as breaker. Meanwhile, clay stabilizer, surface active agent, high temperature stabilizer were screened out. Effects of additives on properties of fracturing fluid were quantitatively analysis.(8) Analyzed the changing of shear rate, researched the cropping resisting performance, compatibleness, core damage and flow conductivity. Based on the temperature-time profile, we adjusted the components and evaluated the rheological property gel-out thinking performance.(9) The paper represented equalized oil gas phase components, mole fraction, equilibrium constant and equation of material balance in relation to temperature and pressure; equ-ibalance oil-gas buildup, equilibrium constant and fugacity equation. And use this for phase balance calculation. Through using Darcy's law, we represented flow equation for e
引文
1 李士伦主编:凝析气藏开发技术论文集。成都。四川科技出版社,1999
    2 李颖川主编:采油工程。北京:石油工业出版社,2002
    3 王鸿勋编著:水力压裂原理.石油工业出版社,1985
    4 胡永全,赵金洲:水力压裂原理与设计方法(CNPC酸化压裂培训教材).南充,西南石油学院,1999
    5 埃克诺米兹:油藏增产措施。北京:石油工业出版社,1990
    6 吉德利等:水力压裂技术新进展(蒋阗等译),北京:石油工业出版社,1995
    7 万仁溥等:采油技术手册(九:水力压裂).北京:石油工业出版社,1988
    8 李士伦等编著.天然气工程.北京:石油工业出版社.2000
    9 孙良田等编.油层物理实验.北京:石油工业出版社.1992
    10 何更生编著:油层物理.南充:西南石油学院.1994
    11 Peng D Y, Robininson D B: Discussion of critical point and saturation pressure calculations for multi component systems. SPE J. 1980;20(2).
    12 李士伦、孙雷等:凝析气藏相态计算软件研制。西南石油学院.1991。
    13 罗凯等:凝析气流体临界点的理论计算。天然气工业.2001.21(1)
    14 郭平等:多孔介质对凝析气露点的影响讨论.中国海上油气(地质).2001。No.3
    15 杜建芬等:多孔介质毛细凝聚对凝析气藏露点的影响研究.天然气工业.2001.21(2)
    16 Characterization of the Plus Fraction and Prediction of the Dewpoint Pressure for Gas Condesensate Reservoirs. SPE68776
    17 Fussell D D 1973 Morrison G & Kincaid J M: Critical point measurements on nearly polydisperse fluids. AIChE, J. 1984, 30,257
    18 M T Abacob
    19 Jones & Raghavan: Interpretation of flowing well respone in gas Condesensate wells. Spe 14204,1989
    20 刘建仪等:反凝析污染对凝析气井伤害的实验评价研究.天然气工业.2001.21(5).67~70
    21 朱维耀,黄延章.多孔介质中凝析气液的渗流机理.石油勘探与开发,1992,13(1):45~48.
    22 刘玉慧等:反凝析液对产能的影响机理研究.石油勘探与开发.2001,No.2,54-57
    23 赵子刚等:确定凝析气藏相态特征和气井产量预测的方法。石油学报.2001,No.2
    
    24 R S Barnum & F P Brinkman: Gas Condensate Reservoir Behaviour: Productivity and Recovery Reduction Due to Condensation. Spe30767
    25 Establishing Inflow Performance Relationship(IPR) for Gas Condensate Wells. Spe75503
    26 郭平等:吸附对气藏及凝析气藏储量的影响探讨。西南石油学院学报。1998,No1
    27 黄全华:《考虑多孔介质吸附影响的凝析油气渗流》天然气工业2001
    28 R.E Mott:计算凝析气井产能时相对渗透率的测量
    29 余元洲等:凝析气顶油藏油气产量的计算方法探讨.石油勘探与开发。2001,No.1
    30 何志雄等:凝析气井产能分析新方法。天然气工业。1996,No.5
    31 何志雄等:凝析气井生产系统分析方法.石油学报。1998,No.4
    32 朱德武、何汉平:凝析气井井筒温度分布计算。天然气工业.1998.18(1)
    33 喻西崇、胡永全等:凝析气井井眼压降和温降计算研究。钻采工艺。2002,No.1
    34 郝恩杰等:凝析气井动态分析方法及应用。断块油气田。1996,No.4
    35 Katz D L etal: Handbook of natural gas engineering. New York McGraw-Hill Book Company, Inc., 1959.
    36 Clark C R: Adsorption and desorption of linght paraffinic hydrocarbons in dry and water—saturated sand-clay packs: Studies to determine the effect of these phenomena on the PVT behaviors of naturalnatural gases and gas condensates in the reservoir. Ph. DThesis U. of Kansas Lawrence. 1969.
    37 Adjustment of Hydraulic Fracture Design in Gas-Condensate Wells. Spe73751
    38 欧阳良彪:凝析油气渗流理论研究进展.力学进展.1992,(2)
    39 阎庆来等:凝析油气在多孔介质中的相态变化特征。西安石油学院学报。1988(2).
    40 A X米尔扎攒扎杰等编:凝析气田开发。北京。石油工业出版社。1983
    41 M T阿巴索夫:凝析气田开发及气水动力学。北京:石油工业出版社,1993。
    42 葛家理主编:油气层渗流力学。北京:石油工业出版社,1982
    43 《SPE Reservoir & Eng.》 3(6), Dec., 2000
    44 Moss.JT, White.P. D. : How to Calculate Trmperature Profiles in a Water Injection well. 1959
    45 Ramey.H.J.Jr.: Wellbore Heat Transmission,1962
    46 Squire.D.P.: Calculated Temperatures Behavior of Hot Water Injection Wells.1962.
    47 Eickmeimer J.R.: Wellbore Temperatures and Heat Losses During Production or Injection Operations.
    
    48 李平,王鸿勋:水力压裂过程中井筒温度的数值计算。石油学报,No.2,1987
    49 Whitsitt, N. F. and Dysart, G. H.: "The Effect of On Stimulation Design," JPT, 1970,4: 493—502.
    50 Wheeler, J. A.: "Analytical Calculations for Heat Transfer from Fractures,"SPE 2494.
    51 Biot, M. A. et al.: "Temperature Analysis in Hydraulic Fracturing,"SPE 13228.
    52 Ben-Naceur and Stephenson P.: "Models of Heat Transfer in Hydraulic Fracturing". SPE 13865.
    53 熊宏杰,任书泉:一种新的缝中温度场模型.西南石油学院院报.No.2 1986.
    54 李平:“水力压裂裂缝的缝中温度计算公式,”天然气工业,1991,Vol 11(1).
    55 Howard.a.c.Fast,C.R: Optimum Fluid Characterictics for Fracture Extension. Drill.& prod.Prac.,API(1957)261.
    56 Khristianovitch,S.A,Ze;tov.Y.p.: "Formation of Vertical Fractures by Means of Highly Viscous Fluids." Proc.,Fourth World Petroleum Cong.,Rome (1955)Ⅱ,579.
    57 Geertsna J. and De Klerk F. : "A Rapid Method of Predicting Width and Extend of Hydrauliclly Induced Fractures," JPT, 1969,11 : 1571—1581.
    58 Daneshy A. A.: "On the Design of Vertical Hydraulic Fractures,"JPT,1973,1 : 83—93.
    59 Perkins, T. K. and Kern, L. R.: " Widths of Hydraulic Fractures," JPT,1961, Vol.13 (9): 937-949.
    60 Nordgren, R. E: "Propagation of a Vertical HydraulicFracture," SPEJ,1972,Vol.12 (8): 306—314.
    61 Palmer, I. D. and Carrol, H. B.: "Numerical Solution for Height and Elonged Hydraulic Fracturing," SPE 11627.
    62 Palmer, I. D. and Craig, H. R.: "Modeling of Asymmetric Vertical Growth in Elongated Hydraulic Fracture and Application to First MWX Stimulation," SPE 12879.
    63 Advani, S. H. and Lee, J. K. " Finite Element Model Simulations Associated Width Hydraulic Fracturing,"SPEJ, 1982,Vol.22(4): 209—218.
    64 Clifton, R. J. ,Abou-Sayed, A. S. and Sinha, K. E: " Evaluation of the Influence of In-Situ Reservoir Conditions on the Geometry of Hydraulic Fractures Using a 3D Simulator:Part 1-Technical Approach," SPE 12877.
    65 Clifton, R. J/and Abou-Sayed, A. S., et al. : "Evaluation of the Influence of In-Situ Reservoir Conditions on the Geometry of Hydraulic Fractures Using a 3D Simulator:Part 2--Case Studies," SPE 12878.
    66 Cleary, M. P. and Settari, A.: " Three-Dimensional Simulation of Hydraulic Fracturing,"JPT, 1984,Vol.36(7): 1177—1190.
    
    67 Cleary, M. P. and Lam K. Y.: "A Complete Three-Dimensional Simulator for Analysis and Design of Hydraulic Fracturing," SPE 15266.
    68 赵金洲:水力压裂工程计算方法研究及计算和程序编制.西南石油学院硕士论文,1985.
    69 胡永全,任书泉:“压裂裂缝拟三维延伸的数值模拟,”西南石油学院学报,1992,Vol 14(2):54—62.
    70 胡永全:非对称应力分布下水力压裂三维延伸模拟.西部探矿工程.1999.No.4.
    71 刘蜀知:油气层水力压裂裂缝三维延伸的数值模拟研究.西南石油学院硕士论文,1990.
    72 赵金洲,杨兆中等:“裂缝三维延伸的数值模拟,”“油气藏地质及开发工程”国际学术研讨会论文.中国.四川,1995年8月.
    73 张平:水力压裂三维优化设计方法研究及软件研制。西南石油学院硕士论文,1997
    74 陈勉等:“三维弯曲水压裂缝力学模型及计算方法,”石油大学学报,1995,Vol19(增刊):43—47.
    75 吴迪详,刘忠春:“水力压裂垂直裂缝形态的数值模拟,”石油钻采工艺,1991,4:57—61.
    76 吴继周,曲德斌,继伟:“水力压裂裂缝几何形态的数值模拟及影响因素分析.”大庆石油地质与开发,1990,Vol 9(4):64—70.
    77 景朝晖,张强德:“拟三维水力压裂设计软件的研究与应用,”中原油气,1991,2:62—73.
    78 黄志诚等:“拟三维酸压设计软件研究与应用,”石油钻采工艺,1996,Vol18(1):45-51.
    79 赵以文:钛交联植物胶高温压裂液的关键性能.油田化学.93,10(2).
    80 Brannon H D, Ault M G: New Delayed Borate-Crosslinked Fluid Provides Improved Fracture Conductivity in High-temperature Application. SPE-22838, 1991
    81 卢拥军,杜长虹:压裂液有机硼络合交联剂。钻井液与完井液95,12(1).
    82 卢拥军,杜长虹,陈彦东:有机硼交联压裂液在高温深井中的应用。钻井液与完井液.1995,12(6).
    83 Ainley B R, Card R J: High-temperature Borate-Crosslinked Fracturing Fluids, A Comparions of Delay Methodology. SPE-25463. 1993.
    84 李延美;何志勇:延迟交联无机硼水基冻胶高温压裂液。油田化学.96.13(1)
    85 朱平生;邵南:新型高温双元延迟交联压裂液的研究与应用.大庆石油地质与开发96 15(2)
    86 赵宝林:压裂液用高温缓速破胶剂.油田化学.92,9(4)
    
    87 Micguire W J, Sikora V J: The effect of vertical fracture on well productivity. Trans. AIME, 1960. v219, p401-403
    88 Tannich J D and Nierode D E: The effect of vertical fractures on gas well productivity. SPE 15902
    89 Remond L R & Binder G G: Productivity of wells in vertically fractured damaged formations. JPT, Jan. 1967
    90 Hoditeh S A et al: The optimization of well spacing and fracturing length in low-permeability gas reservoirs. SPE 7496
    91 P F Lemen and H J Patel: Effects of fracture and reservoir parameters on recovery from low-permeability gas reservoir. SPE 5111
    92 J K Tison et al: A method for selecting potential infill location in the East Texas Cotton Valley gas play. SPE 11022
    93 D N Meehan & B F Pennijgton: Numerical simulation results in the Carthage Cotton Valley Field. JPT, 34 9838, Jan. 1982
    94 Soliman M Y : modification to production increase calculation for a hydraulic fractured well.. OGJ, Oct. 1986
    95 Tinsley J M et al: Vertical fracture height—Its effect on steady-state production increase. JPT, (May 1969) p633-6381
    96 Soliman M Y: Numerical model estimates fracture production increase. OGJ, Feb. 1986
    97 何艳青,王鸿勋:用数值模拟方法预测压裂井的生产动态.石油大学学报.1990.Vol 14,NO4
    98 Agarwal R G et al: Evaluation and performance prediction of low-permeability gas well stimulated by massive hydraulic fracturing. JPT, (March 1979), p262-372
    99 张士诚:水力压裂参数对采收率影响的研究.低渗透油藏开发技术.1994年
    100 杨兆中:西南石油学院博士论文,1996
    101 中国石油天然气总公司制定的“砂岩储层岩心静态流动实验推荐程序”,1994
    102 张绍槐、罗平亚:储集层保护技术.北京.石油工业出版社.1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700