用户名: 密码: 验证码:
校准雨量计密度对雷达估测流域降水和水文模拟的影响及其校准方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用“黄淮项目”和973中国暴雨项目外场试验资料中的合肥雷达观测资料、气象部门和淮委收集的雨量计资料、淮委收集的蒸发和入库观测流量等资料,对淠河流域上游的响洪殿和佛子岭流域,以流域内各自12部雨量计距离平方反比法得到的雨量作为真值,采用距离加权校准方法,结合TOPMODEL水文模型,对不同数量雨量计校准雷达对流域面雨量和入库流量模拟的影响进行了研究。在平均校准和距离权重校准的基础上,提出了一种局地平均校准方法,并对雨量和模拟入库流量结果进行了分析。主要工作包括:
     1)通过选择和控制校准雨量计的位置和数量,对研究流域内不同数量雨量计校准雷达时的面雨量进行了计算,并进行了比较;
     2)将1)中得到的一系列雨量序列输入TOPMODEL水文模型,进行了入库流量模拟,并进行了流量序列的对比和分析;
     3)使用局地平均校准方法对流域雨量进行计算,同雨量计和雷达等得到的平均面雨量和单点雨量序列进行了比较,并结合水文模型,进行了入库流量的对比。
     根据上述研究工作的开展,获得的结论主要有以下几点:
     1)两研究流域内研究时段的几次降水过程,各自两部及以上的雨量计实施校准时,同作为真值的12部雨量计平均面雨量相比,估测误差较小,RMSE变化平缓,相关性较高。两部雨量计校准时,佛子岭流域内的雨量计密度为900km2每部,而临近的响洪殿流域为700km2,可以作为研究流域的校准雨量计密度下限;
     2)入库流量径流深的模拟结果显示,模拟入库径流深序列之间的变化与模式输入雨量序列之间的变化具有很大的类似性,雨量的估测精度对模拟结果有很大影响,根据研究流域内三次降水过程得到的两部校准雨量计的下限在入库流量方面仍有显著体现,两部以上的雨量计校准时,模型效率系数、RMSE和相关系数均稳定在较好的水平。
     3)序列和单点雨量以及模拟入库流量序列的比较表明,局地平均校准方法能有效提高降水的估测精度和入库流量模拟精度。
Rainfall-runoff model named TOPMODEL is employed to simulate runoffs of Xianghongdian and Foziling sub-catchments located in the upper reaches of Pihe River. The input data for the model include evaporation and runoff data collected by the Huaihe River Commission of Ministry of Water Resource, P. R. C., and initial rain gauge data and Hefei CINRAD radar data obtained by the China heavy rainfall experiment under the frame of 973 Project and Project of Huaihe/Huanghe Basin Heavy Rainfall/Flooding Monitoring System. By employing the distance weighting algorithm, the effects of calibration rain gauge densities on radar rainfall and runoff simulations are studied, and a domain average calibration algorithm formed from average adjusting algorithm and distance weighting algorithm is depicted and studied. Following are main parts of this work:
     1)Data are firstly processed. By choosing and controlling calibration gauges manually, effects of adjusting gauge densities on radar rainfall estimates are studied;
     2)Rainfall series obtained from step 1) are input to the TOPMODEL model, runoffs are obtained, compared and analyzed;
     3)Based on the domain average calibration algorithm, areal rainfalls are computed and runoffs simulated. Results are compared with that obtained from average adjusting and distance weighting algorithms.
     Some conclusions based upon above investigations are given as follows:
     1)Two calibration gauges would be a good threshold while the error of precipitation estimation is less than 10% with the stable RMSE and correlation coefficients for cases studied over both sub-catchments; the corresponding gauge density is about 900km2 per gauge for Foziling sub-catchment, and 700km2 per gauge for Xianghongdian, respectively.
     2)Simulations show that runoffs are greatly affected by the accuracy of rainfall estimation. The threshold obtained from rainfall comparison still works in runoff simulations. All of the model efficiency criterion, RMSE and correlation coefficients keep steady on high levels with this threshold.
     3)Comparisons of rainfall series obtained from single gauges and over the whole catchment, also runoff simulations, show that the accuracy of rainfall estimation and runoff simulations can be obviously improved by the domain average calibration algorithm. Key words: radar-gauge calibration; runoff simulation; rain gauge densities; domain average calibration algorithm; TOPMODEL
引文
[1]汪维林,毛桐恩,解敬.我国天灾综合预测研究进展.科技导报,1999,1:46-48.
    [2]张业成.我国洪涝灾害的地质环境因素与减灾对策建议.地质灾害与环境保护,1999,10(1):1-13.
    [3]丁一汇.高等天气学.北京:气象出版社,2005,pp585.
    [4]邓雪娇,吴兑,黄浩辉.自记雨量资料订正雷达估测降水方法简介.广东气象,1998,2:17-19.
    [5]刘晓阳.遥感估测降水在径流模拟中的应用,北京大学博士研究生学位论文,北京,2001,131pp.
    [6]Beven, K. J., and Kirkby, M., A physically based variable contributing area model of basin hydrology. Hydrol. Sci. Bull, 1979, 24:43-69.
    [7]Todini, E., and Ciarapica, L., The TOPKAPI model. In: Singh V , Frever D K(des), Mathematical Models of Large Watershed Hydrology, Water Resource Publications, LLC, Highlands Ranch, Colorado, USA,2002,471-506.
    [8]赵人俊.流域水文模型:新安江模型与陕北模型.北京:水利电力出版社,1984.
    [9]Brandes, E., Optimizing rainfall estimates with the aid of radar. J. App. Meteor., 1975, 14:1339-1345.
    [10]Koistinen, J., and Puhakka, T., An improved spatial gauge-radar adjustment technique. Proc. 20th Conf. on radar Met., AMS, 1981, 179-186.
    [11]Collier, C. G., Larke, P. R., and May, B. R., A weather radar correction procedure for real-time estimation of surface rainfall. Quart. J. Roy. Met. Soc., 1983, 109:509-608.
    [12]张培昌,戴铁丕,王登炎,等.最优化发求 Z-I 关系及其在测定降水量中的精度.气象科学,1992,12(3):333-338.
    [13]李建通,张培昌.最优插值法用于天气雷达测定区域降水量.台湾海峡,1996,15(3): 255-259.
    [14]李建通,杨维生,郭林,等.提高最优插值法测量区域降水量精度的探讨.大气科学,2000,24(3):263-270.
    [15]Krajewski, W. F., Co-kriging radar-rainfall and rain gauge data. J. Geophys. Res., 1987, 92(d8):9571-9580.
    [16]Ahnert, P. R., Krajewski, W. F., and Johnson, E. R. Kalman filter estimation of radar-rainfallfield bias. In preprints 23rd Conf. on radar Met., 1996, JP 33-37.
    [17]Ninomiya, K., and Akeyama, T. Objective analysis of heavy rainfalls based on radar and gauge measurement. J. Met. Soc. Japan, 1978, 50:206-210.
    [18]Fulton, R. A., Breidenbach, J. P., and Seo, D.-J., et.al., The WSR-88D rainfall algorithm. Wea. Forecasting, 1998, 13:377-395.
    [19]Anagnostou, E. N., and Krajewski, W. F., Real-time radar rainfall estimation Part I: Algorithm formulation. J. Atmos. Ocean. Technol, 1999a, 16:189-197.
    [20]Anagnostou, E. N., and Krajewski, W. F., Real-time radar rainfall estimation Part II: Case Study.J. Atmos. Ocean. Technol, 1999b, 16:198-205.
    [21]Byers, H. R. The use of radar in determining the amount of rain falling over a small area. Trans. Am. Geophys., Union, 1948, 29:187-196.
    [22]Doneaud, A. A., and Niscov, S. I., et. al., The area-time integral as an indicator for convective rain volumes. J. Climate App. Met., 1984, 23:555-561.
    [23]Chiu, L. S., Rain estimation from satellite: Areal rainfall-rain area relations. Third Conf. on satellite meteorology and oceanography. Anaheim, AMS, 1988, 363-368.
    [24]Rosenfeld, D., Atlas, D., and Short, D. A., The estimation of convective rainfall by area integrals Part II: The height-area (Hart) method. J. Geophys. Res., 1990, 95, D3:2161-2176.
    [25]Cheng, M. H., and Browning, R., Estimation of area-average rainfall for frontal rain using the threshold method. Quart J. Roy. Met., 1993, 119:825-844.
    [26]Calheiros, R. V., and Zawadzki, I., Reflectivity-rain rate relationship for radar hydrology in Brazil. J. Climate App. Met. , 1987, 26:118-132.
    [27]Krajewski, W.F., and Smith, J.A., On the estimation of climatological Z-R relationships. J. App. Met., 1991, 30:1436-1445.
    [28]Rosenfeld, D., Wolff, D. B., and Amitai,E., The windows probability matching method for rainfall measurements with radar. J. App. Met., 1994, 33:682-693.
    [29]俞小鼎,姚秀萍,熊廷南,周小刚,等.多普勒天气雷达愿与业务应用.北京:气象出版社,2006,pp314.
    [30]张培昌,杜秉玉,等.雷达气象学.北京:气象出版社,2001,pp511.
    [31]刘黎平,钱永甫,王致君,等.双线偏振雷达测雨效果的对比分析.大气科学,1996,20(5):615-619.
    [32]曹俊武,刘黎平,葛润生.模糊逻辑法在双线偏振雷达识别降水粒子相态中的研究.大气科学,2005,29(5):827-836.
    [33]Herndon, A., Woodley, W. L., and Miller, A. H., et.al., Comparison of gauge and radar methods of convective precipitation measurement. NOAA Tech. Mem, ERLOD-18, 1973.
    [34]Collier, C. G., Harrold, T. W., and Nicholass, C. A., A comparison of areal rainfall as measured by a raingauge-calibrated radar system and raingauge networks of various densities. Preprints 16th Radar Met. Conference, Houston AMS, Boston, 1975, pp: 467-472.
    [35]Woodley, W. L., Olsen, A. R., Herndon, A., and Wiggert,V., Comparison of gages and radar methods of convective rain measurement. J. Appl. Meteor., 1975, 14: 909-928.
    [36]Duchon, C. E., Renkevens, T. M., and Crosson, W. L., Estimation of daily areal-average rainfall during the CaPE experiment in central Florida. J. Appl. Meteor., 1995, 34: 2704-2714.
    [37]Westcott, N. E. Comparison of storm rainfall as measured by raingages and radar. The Record Rainstorm of July 17–18, 1996 in Northern Illinois, S. Changnon, Ed., Illinois State Water Survey, 1997, 178–193. (Misc. Publ. 182.).
    [38]Anagnostou, E. N., Krajewski, W. F., and Smith, J.. Uncertainty quantification of mean-field radar-rainfall estimates. J. Atmos. Oceanic Technol., 1999, 16:206-215.
    [39]Makihara, Y. A method for improving radar estimates of precipitation by comparing data from radars and raingauges. J. Meteoro. Soc. Japan, 1996, 74(4):459-480.
    [40]Makihara, Y., N. Uekiyo, A. Tabata, and Y. Abe, 1996: Accuracy of Radar-AMeDAS precipitation. IEICE Trans. Trans. Commun., E79-B, 751–762.
    [41]徐时进,钱名开等.淮河史灌河流域水量平衡初步分析.赵柏林,丁一汇主编,淮河流域能量与水分循环研究(一).北京:气象出版社.1999,pp273.
    [42]徐胜,杨亚群,丁韶辉.淮河黄河流域暴雨洪水监测预报系统简介及其进展.制淮,2002,10:15-17.
    [43]刘晓阳,毛节泰,李纪人,朱元竞.雷达估测降水模拟史灌河流域径流.北京大学学报(自然科学版),2002,38(3):342-349.
    [44]刘晓阳,毛节泰,李纪人,朱元竞.雷达联合雨量计估测降水模拟水库入库流量.水利学报,2002,4:51-55.
    [45]张亚萍,程明虎,徐慧,王嘉涛.雷达定量测量降水在佛子岭流域径流模拟中的应用.应用气象学报,2007,18(3):295-305.
    [46]张亚萍.利用新一代天气雷达观测资料制作流域径流预报的研究:[博士学位论文].北京:中国气象科学研究院、南京信息工程大学联合培养.2007,pp167.
    [47]姚燕飞.Z-I 关系对雷达测量流域面雨量和径流模拟影响的研究:[硕士学位论文].北京:中国气象科学研究院.2007,pp65.
    [48]Szturc, J., Jurczyk, A., Osrodla, K., and Bruen, M., Data sensitivities of hydrological models used for flood forecasting, with special reference to the effects of radar data errors. COST717/Working Group 1, 2005, pp24.
    [49]Zhao, R. J., Zhuang, Y. L., Fang, L. R., Liu, X. R., and Zhang, Q. S., The Xinanjiang model. “Hydrological Forecasting”, Proc. Oxford Symp., IAHS Publication no. 1980, 129:351-356
    [50]Todini, E., The ARNO rainfall-runoff model. J. Hydro, 1996, 175:339-382.
    [51]Moore, R. J., The probability-distributed principle and runoff production at point and basin scales. Hydro. Sc. J., 1985, 30:173-297.
    [52]Franchini, M., Wendling, J., Obled, C., and Todini,E., Physical interpretation and sensitivity of the TOPMODEL. J. Hydro., 1996, 175:293-338.
    [53]Entehabi, D., and Eagleson, P., Land surface hydrology parameterization for atmospheric general circulation models including subgrid-scale variability. J. Climate., 1989, 2:816-831.
    [54]Avissar, R., Conceptual aspects of a statistical-dynamical approach to represent landscape subgrid-scale heteorogenities in atmospheric models. J. Geophys. Res, 1992, 97:2729-2742.
    [55]Singh, V. P., (editor).Computer models of watershed hydrology. Water Resources publications, USA, 1995.
    [56]熊立华,郭生练.分布式水文模式.北京:中国水利水电出版社,2004,pp224.
    [57]Freeze, R. A., and Harlan, R. L.. Blueprint for a physically-based digitally simulated hydrologic response model. J. Hydro., 1969, 9: 237-258.
    [58]Abbott, M. B., Bathurst, J. C., and Cunge, J. A., et. al., An introduction to the European Hydrological System-Systeme Hydrologique Europeen “SHE”1: History and philosophy of a physically based distributed modeling system. J. Hydro., 1986a, 87:45-59.
    [59]Abbott, M. B., Bathurst, J. C., and Cunge, J. A., et. al., An introduction to the European Hydrological System-Systeme Hydrologique Europeen “SHE”2: Structure of a physically based distributed modeling system. J. Hydro., 1986b, 87:61-77.
    [60]DHI. MIKE SHE WM short description.1993.
    [61]Wigmosta, M. S., Vail, L. W., and Lettenmaier, D.P., A distributed hydrology-vegetation model for complex terrain. Water Resource Research.1994, 30(6):1665-1679.
    [62]Wigmosta, M. S., Vail, L. W., Nijssen, B., and Storch, P., The distributed hydrology soil vegetation model. Mathematical Models for Small Watershed Hydrology and Applications. In: Singh V P, Department of Civil and Environment Engineering Louisiana State University, Water Resources Publications, LLC, 2002.
    [63]黄平,赵吉国.流域分布型水文模型的研究及应用前景展望.水文,1997,17(5):5-10.
    [64]熊立华,郭生练,等.基于 DEM 的分布式流域水文物理模型.武汉水利电力大学学报,2000,33(6):1-5.
    [65]李纪人.遥感和地理信息系统在水文模型中的应用.水文,1997,17(3):8-12.
    [66]Borga, M., Anagnostou, E. N., and Frank, E., On the use of real-time radar rainfall estimates for flood prediction in mountainous basins. J. G. R., 2000, 105, D5:2269-3380.
    [67]Finnerty, B., Smith,M., and Seo, D. J., et. al., Space-time scale sensitivity of Sacramento model to radar-gauge precipitation inputs. J. Hydro., 1997, 203, 21-38.
    [68]Pessoa, M. L., Bras, R. L., and Williams, E. R., Use of weather radar for flood fprecasting in the Sieve River Basin: a sensitivity analysis. J. App. Met. 1993, 32, 462-475.
    [69]Rossa, A., Bruen, M., Fruhwald, D., Holleman, I., Michelson, et al., COST 717 Final Report, “Use of Radar Observations in Hydrological and NWP Models”. Working document: WDD_MC_200502_1, pp292.
    [70]李致家,刘金涛,葛文忠,赵坤.雷达估测降雨与水文模型的耦合在洪水预报中的应用,河海大学学报,2004,32(6):601-606.
    [71]郭方,刘新仁,任立良.以地形为基础的流域水文模型.水科学进展,2000,11(3):296-301.
    [72]熊立华,郭生练.TOPMODEL 在流域径流模拟中的应用研究.水文,2002,22(5):5-8.
    [73]Beven, K. J., Kirkby, M. J., Schofield, N., and Tagg, A. F., Testing a physically based flood-forecasting model(TOPMODEL) for three UK catchments. J. Hydro., 1984, 69:119-143.
    [74]Liu Xiaoyang, Mao Jietai, Zhu Yuanjing, and Li Jiren., Runoff simulation using radar and rain gauge data. Advances in Atmospheric Sciences, 2003, 20(2): 213-218.
    [75]Sun Shufen, and Deng Huiping. A study of rainfall-runoff response in a catchment using TOPMODEL. Advances in Atmospheric Sciences, 2004, 21(1):87-95.
    [76]夏军.水文非线性系统理论与方法.武汉:武汉大学出版社.2002,pp431.
    [77]Beven, K., TOPMODEL user notes: Windows version 97.01. www.es.lancs.ac.uk/hfdg/freeware/hfdg_freeware_top.htm.
    [78]张健云,等.2003 年淮河暴雨洪水.北京:中国水利水电出版社,2006,pp275.
    [79]孔凡哲,芮孝芳.TOPMODEL 中地形指数计算方法的探讨.水科学进展,2003,14(1):42-45.
    [80]姚燕飞,程明虎,杨洪平,等.优化 Z-I 关系及其在淮河流域面雨量测量中的应用.气象,2007,33(6):37-43.
    [81]Dixon, M., Wiener, G., TIAN: thunderstorm identification, tracking, analysis, and nowcasting: a radar-methodology. J. Atmos. Oceanic Tech, 1993, 10(6):785-797.
    [82]张亚萍.天气雷达定量估测降水精度的评估.硕士学位论文,南京信息工程大学图书馆,2002.
    [83]姚学祥,徐晶.2003 年淮河流域大水期间体积降水量的研究.气象学报,2004,62(6):803-813.
    [84]王欢,倪允琪.2003 年淮河汛期一次中尺度强暴雨过程的诊断分析和数值模拟研究.气象学报,2006,64(6):734-742.
    [85]James, D. B. Recommended parameter changes to improve WSR-88D rainfall estimates during cool season stratiform rain events. 1999. http://www.roc.noaa.gov/ops/z2r_osf5.asp
    [86]尹忠海,张沛源.利用卡尔曼滤波校准方法估算区域降水量.应用气象学报,2005,16(2):213-219.
    [87]史锐,程明虎,崔哲虎,等.用反射率因子垂直廓线联合雨量计校准估测夏季区域强降水.应用气象学报,2005,16(6):737-745.
    [88]张培昌,戴铁丕,等.用变分法校准数字化天气雷达测定区域降水量基本原理和精度.大气科学,1992,16(2):248-256.
    [89]戴铁丕,詹煜,刘玉洁.在雷达-雨量计联合探测系统中距离加权和时间外推校准技术的研究.气象科学,1996,16(3):63-74.
    [90]矫梅燕,姚学祥,周兵,等.2003 年淮河大水天气分析与研究.北京:气象出版社.2004,215pp.
    [91]张晰莹,金凤岭.新一代天气雷达回波图集.北京:气象出版社.2005,124pp.
    [92]Keith, J. B.著,马骏,刘晓伟,王庆斋,等译,降雨-径流模拟.北京:中国水利水电出版社,2006,pp282.
    [93]Collier, C. G., and Knowles, J. M. Accuracy of rainfall estimates by radar, part III: application for short-term flood forecasting. J. Hydro., 1986, 83:237-249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700