用户名: 密码: 验证码:
柏孜克里克石窟崖体稳定性及加固措施
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柏孜克里克石窟(又名柏孜克里克千佛洞)为国务院1982年公布的第二批全国重点文物保护单位,现保存此时建造的洞窟最多,窟形也较大。它与龟兹石窟、敦煌石窟、印度址阿旃陀石窟齐名的世界石窟艺术。这里一直是高昌地区的佛教中心,甚至成为高昌王的佛家寺院,其精美的壁画堪称佛家经典。但是,柏孜克里克石窟历经千百年的漫长岁月,由于受到外界营力的长期作用和人类活动的影响,使石窟的大部分岩体、壁画、雕像等遭到不同程度的破坏。目前已经对区内洞窟集中并且崖体严重破坏的NO1~NO6区域进行了抢救性的加固。然而对于非洞窟集中地段、崖体破坏较为严重地段、旅游参观路线附近濒危崖体地段仍需要急需保护。全面细致的掌握现场资料,研究崖体的破坏模式并进行数值计算,进而确定最佳的加固方案,从而为后续的科学旅游参观奠定基础。
     柏孜克里克石窟崖体在二期勘察中又细分为9个区域,即A区~I区。本文通过野外实际调查资料以及一期资料,认为洪水冲刷、强烈的风蚀作用以及典型的干旱沙漠气候,是崖体破坏的主要因素。并对野外采集的土样进行了室内实验,研究土的工程地质特性。结果显示主要是粉土和泥岩,干燥状态下土体工程性质总体较好,但是在遇水时发生较快的崩解,强度急剧降低。
     在上述研究的基础上并根据现场的资料,确定柏孜克里克崖体可能发生的破坏模式以及计算公式。详细分析每个区的病害发育情况,运用极限平衡法计算每一区可能发生的破坏模式下的稳定性。
     选取几个典型的崖体剖面,运用有限元软件分析了卸荷裂隙、掏蚀凹进、外荷载、以及人为扰动这四种情况对崖体稳定性的影响情况。具体模拟计算了崖体在有无裂隙、裂隙发育深度、裂隙与崖面距离、裂隙倾角、裂隙张开度、掏蚀凹进深度、地震作用、风载作用、车载作用以及人群荷载作用下的位移变化以及应力应变情况,为科学合理的加固设计提供更丰富的资料。
     根据调查资料、区段破坏情况分析以及数值计算,提出了柏孜克里克的合理的加固措施,并详细介绍了各种措施。
Bezklik Grottoes(also known as Bezklik Thousand Buddha Caves), is one of the second batches of state emphasis cultural relic unit, which keeps the most caves of construction at that time and has the lager form among the grottos. It is equally famous with Qiuzi Grottoes, Dunhuang Grottoes and India Ajanta Grottoes as the world grotto art. Here has been the center of the Western Regions of Buddhism in the Gaochang area, even the Buddhist temple for Gaochang king, the Grottoes's beautiful paintings called Buddhist classics. However, after the long years, Bezklik Grottoes go through thousands of years. Due to the long-term, exogenic forces and the influence of human activities caused varying degrees of destruction of the majority of rock caves, murals, and sculptures. The first Strengthening Engineering has emergently rescued the grottoes concentrated areas (No1 to No6 regions) whose cliff mass have been serious damaged. However, location for less grottoe, serious damaged cliff mass and endangered cliff mass near the tourist route for visit still needs urgent protection. After comprehensive and detailed grasp the field data, we determine the best reinforcement with the failure modes of cliff mass and numerical calculation, so as to lay a foundation for scientific tour visit in further.
     During the second strengthening project, the Bezklik cliff mass has been further divided into nine regions, named A to I. According to the actual field survey data and previous investigations, we find the flood scouring, wind erosion and typical arid desert climate, as the major factors of destruction cliff mass. We test the field collection of soil samples and study the engineering geological characteristics of soil in the laboratory. The results show that the samples mainly made of silt and clay, which have the better engineering properties under dry state, but rapid disintegration and strength rapidly decreased after contacting with water.
     Based on the above research and field survey document, determine the possible failure mode and formulas, detailed analysis the survival and growth of disease of each district, calculate the stability of each cliff mass with limit equilibrium method. Select a few typical cliff mass sections, using finite element software to analyze the change of the stability of the cliffs caused by stress-release crack, erosion, external-load, and human turbulence to provide more extensive information for scientific and reasonable design. Detailed the change of displacement, the stress and strain of the cliff mass under different simulation, such as whether has crack, the depth of the crack, the displacement between the crack and cliff face, the dip of the crack, the crack opening, the depth of the erosion, the earthquake, the wind, the vehicle loads, and the crowd loads.
     According to the survey data, analysis of cliff mass and numerical calculation, we propose the reasonable reinforcement measures for Bezklik cliff mass and details of various measures.
引文
[1]敦煌研究院,兰州大学.柏孜克里克石窟保护二期工程勘察报告(第二版本)[R].兰州:兰州大学,2009.
    [2]Ngecu W M, Ichang'i D W. Environmental impact of landslides on the Population living on the eastern foot slopes of the Aberdare ranges in Kenya:A case study of Maringa Village landslide [J]. Environmental Geology,1999,38(3):259-264.
    [3]Stephen G E, Jerome V D. Catastrophic Landslides:Effects, Occurrence, and Mechanisms[M]. Published by the Geological Society of America,2002.
    [4]Wong H N, Ho K K S.23 July 1994 Landslide at KwunLung Lau, Hong Kong[J].Canadian Geotechnical Journal,1997,34(6):825-840.
    [5]United States Geological Survey. Landslide Hazards[R]. Reston, VA, USA:United States GS Fact Sheet,2000.
    [6]孙玉科,姚宝魁,许兵.矿山边坡稳定性研究的回顾与展望[J].工程地质学报1998,4(06),305-31
    [7]李天斌.岩质工程高边坡稳定性及其控制的系统研究[博士学位论文D].成都:成都理工大学,2002.
    [8]陈红旗.岩质厂程高边坡施工地质研究[学博士后科研工作报告D].成都:成都理工大,2004.
    [9]石安池,徐卫亚,张贵科.三峡工程永久船闸高边坡岩体卸荷松弛特征研究[J].岩土力学,2006,27(5):723-129
    [10]杨永红,吕大伟.高速公路碳质页岩高边坡加固处治研究[J].岩石力学与工程学报,2006,25(2):392-398
    [11]王成虎,何满超,郭启亮.水电站高边坡变形及强度稳定性的系统分析研究[J].岩土力学,2007,28(s):581-585
    [12]倪俊.红砂岩高陡岩质边坡稳定性分析及治理[J].岩土力学,2004,25(6),981-983.
    [13]刘卫华.高陡边坡危岩体稳定性运动特征及防治对策[博士学位论文D].成都,成都理工大学,2008.
    [14]程良奎,张作眉,杨志银.岩土加固实用技术[M].北京:地震出版社,1994.
    [15]E.Hoek. J. W.Brav.岩石边坡工程[M].卢世宗译.北京:冶金工业出版社,1983.
    [16]刘高,谌文武.工程岩体力学[M].兰州:兰州大学地质系,1998.
    [17]张倬元.王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1994.
    [18]孙广忠.工程地质与地质工程[M].北京:地震出版社,1993.
    [19]金德镰.水利水电工程边坡的工程地质分类[M].西北水电,2000.
    [20]喻军华.岩质高边坡开挖与支护过程分析[博十学位论文D].杭州:浙江大学,2003.
    [21]龚文惠.公路膨胀土路基的沉降和边坡稳定性研究[博士学位论文D].武汉:华中科技大学,2004.
    [22]白云峰.顺层岩质边坡稳定性及工程设计研究[博士学位论文D].成都:西南交通大学,2005.
    [23]黄润秋.岩石高边坡发育动力过程及其稳定性控制[J].岩石力学与工程学报,2008,27(8):1525-1543
    [24]黄润秋,邓荣贵.高边坡物质运动全过程模拟[M].成都:成都科技大学出版社,1993.
    [25]黄润秋,王峥嵘,许强.反倾向岩质边坡变形破坏规律分析[M].成都:西南交通大学出版社,1994.
    [26]Seed H, Geoffrey R, Martin. The seismic coefficient in earth dam design[J]. Journal of the Soil Mechanics and Foundations Division, Proceedings of the American Society of Civil Engineering,1966,92(SM3):25-58.
    [27]Keefer D K. Landslides caused by earthquakes[J]. Geol. Soc. Am.1984, 95:406-421
    [28]Keefer D K. The Importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazard sin seismically active regions[J]. Geomorphology,1994,10:265-2$4
    [29]丁彦慧,王余庆,孙进忠.地震崩滑与地震参数的关系及其在边坡震害预测中的应用[J].地球物理学报,1999,42(sup):101-107
    [30]毛彦龙,胡广韬,赵法锁.等.地震动触发滑坡体滑动的机理[J].西安工程学院学报,1998,20(4):45-52
    [31]薄景山,徐国栋,景立平.土边坡地震反应及其动力稳定性分析[J].地震工程与工程振动,2001,21(2):116-120
    [32]宋立胜,历史地震与滑坡灾害[J].山西地震,1994(2):55-57
    [33]李忠生.国内外地震滑坡灾害研究综述[J].灾害学,2003,18(4):61-70
    [34]辛鸿博,唐川,王余庆.岩土边坡地震崩滑及其初判准则[J].1999,21(5):591-594.
    [35]陈晓利,口一卜洪,程菊红.GIS技术在区域地震滑坡危险性预测中的应用-以龙陵地震滑坡为例[J].工程地质学报,2006,14(03):333-338
    [36]李万源,沈志宝,吕世华,等.风蚀影响因子的敏感性试验[J].中国沙漠,2007,27(6):984-992
    [37]移小勇,赵哈林,张铜会,等.挟沙风对土壤风蚀的影响研究[J].水土保持学报,2005,19(3):58~61
    [38]Wood ruff N P, Siddoway F H.A wind erosion equation[J]. Proc Soil Sci Soc Am,1965,29:602-208
    [39]Tetsuya Kogure, Hisashi Aoki, Akira Maekado. Effect of the development of notches and tension cracks on instabilityof limestone coastal cliffs in the Ryukyus, Japan[J]. Geomorphology,2006,80:236-244
    [40]严耿升,张虎元,王旭东,等.古代生土建筑风蚀的主要影响因素分析[J].敦煌研究2007,(5):78~82
    [41]赵海英,李最雄,韩文峰.西北干旱区土遗址的主要病害及成因[J].岩石力学与工程学报,2003,22(s2):2875~2880
    [42]孙满利,李最雄,王旭东,等.环境对交河故城破坏机理研究[J].敦煌研究,2007,(5):68-74
    [43]畅益锋,李仁华.白龙江泄流坡滑坡变形特征及成因分析[J].中国地质灾与防治学报,1999,10(1):93-95
    [44]张帆宇,刘高.国道212线福津河段滑坡发育特征及成因分析地质灾害与环境保护,2005,16(2):130-134
    [45]白云峰.乌江下游沿岸滑坡发育特征[J].中国地质灾害与防治学报,2005,16(2):43-46
    [46]白云峰,周德培.319国道涪陵至彭水沿线滑坡发育特征[J].山地学报,2003,21(b):721-725
    [47]李悼芬,陈虹甲.雨水渗透与香港滑坡灾害[J].水文地质工程地质,1997,24(4):34-38
    [48]夏金梧,郭厚祯.长江上游地区滑坡分布特征及主要控制因素探讨[J].水文地质工程地质,1997,3(2):60-69
    [49]谢守益,张年学,许兵.长江三峡库区典型滑坡降雨诱发的概率分析[J].工程地质学报,1995,3(2):60-69
    [50]兰恒星,周成虎,王等涓.等.地理信息系统支持下的滑坡一水文祸合模型研究[J].岩石力学与工程学报,2003,22(8):1309-1314
    [51]Wang Fa-wu. Fluidiza.tion Mechanisms and Motion Simulation on Flowslides
    Triggered by Earthquake and Rainfall[J].Chinese Jourunal of Rock Mechancs and Engineering,2005,24(10):1654-1661
    [52]汤明高,许强,黄润秋,等.滑坡体基质吸力的观测试验及变化特征分析[J].岩石力学与工程学报,2006,25(2):355-362
    [53]Hoek E. Estimating the Stability of Excavated Slopes in Qpencast Mines[J].Trans Inst Mining Met Sect A,1970,767(79):a109-a32
    [54]谷德振,岩体工程地质力学基础[M].北京:科学出版社,1979.
    [55]孙玉科,姚宝魁.我国岩质边坡变形破坏的主要要地质模式[J].岩石力学与工程学报,1983,2(1),67-76.
    [56]Fujita H. Infiuence of Water Level Fluctuation in a Reservoir on Slope Stability[C].Bulletin of the International Association of Engineering Geology, 1977,16:170-173
    [57]中村浩之.论水库滑坡[J].水土保持通报,1990,10(1):53-64
    [58]廖红建,盛谦,高石夯,等.库水位下降对滑坡体稳定性的影响[J].岩石力学与工程学报,2005,24(19):3454-3458
    [59]Zhang, Junfeng; Meng, Xiangyue; Zhu, Erqian. Testing Study on Landslide of Layered Slope Induced by Fluctuation of Water Level[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(16):2676-2680.
    [60]Luc Schillemans. Impact of sound and vibration of the North-South high-speed railway connection through the city of Antwerp Belgium[J] Journal of Sound and Vibra-tion,2003,267:637-649.
    [61]Chetlur G B. Assessment of Construction Vibration Im-pacts on Historic Structures[J] Journal of Acoustical Soci-ety of American,1998,103(5):3022-3025.
    [62]吴川顺,金爱兵,王金安.车辆荷载下路基挡土墙结构失稳机理数值模拟[J].岩土力学,2008,28(2):258-262
    [63]谢伟平,王国波,王艳丽.移动荷载引起的土变形计算[J].岩土工程学报,2004,26(3):318-322
    [64]杨忠良.交通荷载对道路两侧建筑物桩土体系受力性状的影响研究[硕士学位论文D].杭州:浙江大学,2006.
    [65]Lu Sun,Computer simulation and filed measurement of dynamic pavement loading[J].Mathematics and Computers in Simulation,2001,56:297—313.
    [66]周圆.人为扰动下路堑边坡稳定性研究[硕士学位论文D].上海,上海交通大 学,2008.
    [67]邓春燕.砖土拱城门结构的安全性分析及加固技术研究[硕士学位论文D].南京东南大学,2004.
    [68]金爱兵.G104界河立交桥加筋挡土墙失稳机理及加固方案[J].有色金属,2003,55(2):113-117
    [69]伍定一.TMD对钢结构人行天桥的振动控制研究[硕士学位论文D].长沙,长沙理工大学,2007.
    [70]魏建东.与人群有关的桥梁垮塌事故[J].中外公路,2006,(6):78-80
    [71]廖红建.岩土工程数值分析[M].北京:机械出版社,2009.
    [72]赖永标.ANSYS11.0土木工程有限元分析典型范例[M].北京:电子工业出版社,2007.
    [73]胡明清.丝绸之路典型土遗址地震破坏机理与抗震安全性研究[硕士学位论文D].兰州:中国地震局兰州地震研究所,2003.
    [74]石玉成.石窟围岩及其附属构筑物地震稳定性评价方法研究[J].西北地震学报,2002,22(1):83-89
    [75]秋仁东.地震荷载下预应力锚索加固石窟围岩的动力响应研究[硕士学位论文D].甘肃,中国地震局兰州地震研究所,2006.
    [76]王春放.土钉墙在地震作用下的动力稳定性分析[硕士学位论文D].兰州:兰州理工大学,2008.
    [77]黄达,黄润秋,裴向军,刘卫华.溪洛渡水电站某危岩体稳定性及加固措施研究[J].岩土力学,2008,29(5):1425-1429
    [78]李丽慧.龙游大型古洞窟群变形破坏模式及加固方法研究[J].岩石力学与工程学报,2005,24(12):2018-2027
    [79]赵立新,肖成忠.龙游石窟3#洞东区洞顶围岩稳定性分析及加固措施[J].中国科技信息,2007,18:73-74
    [80]李文军,王逢瑞.中国石窟岩体病害治理技术[M].兰州:兰州大学出版社,2006.
    [81]王旭东.中国西北干旱环境下石窟和土遗址保护加固研究[博士学位论文D].兰州:兰州大学,2003.
    [82]李最雄.丝绸之路古遗址保护[M].北京:科学出版社,2003.
    [83]李最雄,王旭东.古代土建筑遗址保护加固研究的新进展[J].敦煌研究,1997,(4):167—172.
    [84]李最雄,王旭东,孙满利.交河故城保护加固技术研究[M].北京,科学出版社,2008
    [85]吐鲁番地区志编撰委员会.吐鲁番地区志[M].乌鲁木齐,新疆人民出版社,2004.
    [86]唐大雄,王清,张文殊,等.工程岩土学[M].北京:地质出版社,1998.
    [87]中华人民共和国建设部.土的分类标准(GBJ 145-90)[S].北京:中国建筑工业出版社,2001.
    [88]王祖华.高层建筑结构设计[M].广州:华南理工出版社,2008.
    [89]中华人民共和国建设部.建筑抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社,2001.
    [90]中华人民共和国建设部.建筑结构荷载规范GB50009-200[s].北京:中国建筑工业出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700