用户名: 密码: 验证码:
姜辣素在新型水貂呕吐模型的作用及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     呕吐是胃内容物返入食道,经口吐出的一种反射动作。呕吐可将进入胃内的有害物质吐出,是机体的一种防御性反射,有一定保护作用。但多数情况下,呕吐是一种存在于多种疾病或条件下的难以忍受的症状。一般分为反射性、中枢性、前庭障碍性、神经官能性四大类呕吐,涉及几十种疾病,尤其是癌症放化疗可诱发患者出现频繁剧烈的呕吐,引起脱水、电解质平衡紊乱等并发症,使病人的生活质量明显下降,影响了癌症患者治疗的依从性。因此,如何有效防治放、化疗呕吐成为多国科学家研究的重要课题。
     现临床止吐药主要是化学类药物,如组胺、胆碱、多巴胺、SP等受体拮抗剂,作用靶点单一,副作用大,亟需探索天然、低毒、广谱、多靶点止吐药。
     中药生姜被称为“呕家圣药”,治疗呕吐疗效确切历史悠久,已有2000多年的历史。姜辣素(gingerols)是生姜中主要活性成分,探讨姜辣素止吐作用及其机制,可为揭开生姜止吐之谜和创制新型止吐药物提供新思路。
     本文运用新型水貂呕吐模型和经典大鼠异嗜模型,从中枢和外周两个角度,器官和细胞两个水平,从三个方面研究姜辣素作用机制:①姜辣素在水貂急性呕吐模型的作用及对5-HT、DA及SP表达的影响;②姜辣素在水貂延迟性呕吐模型的作用及对NK1受体表达的影响;③姜辣素在大鼠异嗜模型的作用及对c-fos、NK1受体及胆囊收缩素(CCK)、降钙素基因相关肽(CGRP)、胃动素(MTL)的影响。
     方法:
     1.姜辣素在水貂急性呕吐模型的作用及对5-HT、DA及SP表达的影响:
     将水貂随机分为6组(n=6):①空白对照组、②模型对照组、③恩丹西酮阳性对照组、④姜辣素小剂量组、⑤姜辣素中剂量组、⑥姜辣素大剂量组。观察顺铂注射后6h内的呕吐指标,包括呕吐潜伏期,干呕,呕吐次数。并在6h观察期结束后,取极后区脑组织及距幽门20cm处回肠组织,采用高效液相色谱法测定外周及中枢5-HT及DA表达,免疫组化方法测定外周及中枢SP表达。
     2.姜辣素在水貂延迟性呕吐模型的作用及对NK1受体表达的影响:
     分组与给药同前,观察顺铂给药后72h内的呕吐指标,记录干呕次数及呕吐次数。72h观察期结束后,取极后区脑组织及距幽门20cm处回肠组织,采用免疫组化方法及Western-blot方法测定姜辣素对水貂外周及中枢NKl受体表达水平的影响。
     3.姜辣素在大鼠异嗜模型的作用及对c-fos、NK1受体、CCK、CGRP、MTL的影响:
     将大鼠随机分为8组(n=6):①正常动物+生理盐水组、②正常动物+姜辣素组、③模型对照组、④阿瑞吡坦对照组、⑤恩丹西酮对照组、⑥姜辣素小剂量组、⑦姜辣素中剂量组、⑧姜辣素大剂量组。观察各组给药后72h内异嗜高岭土行为,每6小时观察和记录大鼠进食高岭土量。在72h观察期结束后腹主动脉取血,并立即分别截取大鼠极后区脑组织和距幽门15cm处的回肠组织。分别采用免疫组化方法测定姜辣素对外周及中枢c-fos表达的影响;RT-PCR方法测定姜辣素对外周及中枢NK1受体表达的影响;放免法测定姜辣素对血浆CCK、CGRP、MTL表达的影响。
     结果:
     1.姜辣素在水貂急性呕吐模型的作用及机制研究:
     顺铂给药(ip)后,模型组6只水貂6h内均发生呕吐,呕吐潜伏期短,干呕和呕吐次数均增多;而姜辣素大、中、小三个剂量组干呕及呕吐次数均减少,呕吐潜伏期增加,与模型对照组比较差异显著(P<0.01);姜辣素大剂量组与止吐阳性药恩丹西酮组相同。
     免疫组化和高效液相结果表明:模型对照组水貂外周回肠组织及中枢极后区脑组织中5-HT、DA及SP水平均升高(P<0.01)。而姜辣素大、中、小三个剂量组外周回肠组织及中枢极后区脑组织的5-HT、DA及SP水平均降低,与模型对照组比较有差异(P<0.05);而恩丹西酮对照组极后区脑组织中5-HT水平也降低(P<0.01);但是对回肠组织中升高的5-HT水平无降低作用(P>0.05);同时恩丹西酮对照组对回肠组织和极后区脑组织中升高的DA及SP表达无降低作用(P>0.05)。
     2.姜辣素在水貂延迟性呕吐模型的作用及机制研究:
     顺铂给药(ip)后,模型对照组水貂在24h急性呕吐期和24-72h延迟性呕吐期均有干呕和呕吐反应。姜辣素大、中、小三个剂量在24h急性呕吐期和延迟性呕吐期干呕及呕吐次数均减少(P<0.01)。恩丹西酮对照组干呕及呕吐次数在24h急性呕吐期均有减少(P<0.05),在延迟期与模型对照组相比无差异(P>0.05)。
     免疫组化和Western-blot测定结果表明:水貂回肠组织与极后区脑组织中NKl受体表达增高(P<0.01);姜辣素大、中、小三个剂量组较模型组NK1受体表达水平均降低(P<0.01),有剂量相关性(P<0.05),与恩丹西酮对照组相比也有差异(P<0.01)。恩丹西酮对照组NKl受体免疫组化及Western-blot表达与模型对照组相比无差异(P>0.05)。
     3.姜辣素在大鼠异嗜模型的作用及机制研究:
     顺铂给药(ip)后,模型对照组大鼠有明显异嗜高岭土行为,在急性呕吐期和延迟性呕吐期高岭土摄食量均增多(P<0.01)。而姜辣素大、中、小三个剂量组急性期和延迟期的嗜土量与模型对照组相比均减少(P<0.01)。与阳性止吐药恩丹西酮对照组相比,姜辣素大剂量组在24h急性呕吐期嗜土量无差异(P>0.05);但在24-72h延迟性呕吐期姜辣素大、中、小三个剂量组嗜土量均减少(P<0.05)。与阿瑞吡坦对照组相比,姜辣素三个剂量组在24h急性期和24-72h延迟期嗜土量减少作用均弱于阿瑞吡坦对照组。恩丹西酮对照组大鼠在急性期内异嗜高岭土量减少(P<0.01),但在延迟性呕吐期嗜土量与模型组相比无差异(P>0.05);阿瑞吡坦对照组在急性期和延迟性呕吐期大鼠嗜土量均减少(P<0.05)。
     免疫组化结果表明:模型对照组大鼠回肠组织和极后区脑组织c-fos表达增加(P<0.05);而姜辣素大、中、小三个剂量组外周及中枢组织中c-fos表达水平与模型对照组相比降低有差异(P<0.05),有剂量相关性(P<0.05);而姜辣素大、中、小三个剂量组外周和中枢组织中c-fos表达水平均低于恩丹西酮对照组和阿瑞吡坦对照组(P<0.05)。
     RT-PCR结果表明:模型对照组大鼠回肠组织和极后区脑组织NK1受体mRNA表达均增加(P<0.05);姜辣素大、中、小三个剂量组外周及中枢组织中NK1受体表达水平与模型对照组相比均有降低(P<0.05),有剂量相关性(P<0.05);与恩丹西酮对照组相比,姜辣素大、中、小三个剂量组外周及中枢组织中NK1受体表达水平均有降低(P<0.05);与阿瑞毗坦对照组相比无差异(P>0.05)。
     放射免疫结果表明:模型对照组大鼠血浆CCK、CGRP、MTL表达均有增加(P<0.05);而姜辣素大、中、小三个剂量组CCK、CGRP及MTL表达水平与模型对照组比较均降低(P<0.05),有剂量相关性(P<0.05);与恩丹西酮对照组和阿瑞吡坦对照组相比,其CCK、CGRP、MTL的表达也均有减少(P<0.05)。
     结论:
     1.用顺铂可制备水貂急性呕吐模型,并可增加水貂急性呕吐模型外周及中枢DA、5-HT及SP的表达;姜辣素可抑制顺铂诱导的水貂急性期呕吐反应,并可抑制外周和中枢DA、5-HT及SP的异常表达。
     2.用顺铂可制备水貂延迟性呕吐模型,并可增加其外周和中枢NK1受体的表达;姜辣素可抑制顺铂诱导的水貂延迟性呕吐反应,并抑制外周和中枢NK1受体的异常增高,有剂量相关性。
     3.用顺铂可制备大鼠异嗜模型,并可增加外周和中枢NK1受体、c-fos及血浆CCK、CGRP、MTL的表达;姜辣素可抑制顺铂诱导的大鼠异嗜模型的呕吐反应,并抑制外周和中枢NK1受体、c-fos及血浆CCK、CGRP、MTL的异常表达,有剂量相关性。
Objective:
     Vomiting is a reflex response that the gastric contents return into the esophagus, and vomit orally. Vomiting can spit out the harmful substances from the stomach, it is a kind of body's defensive and protective reflext. But in most cases, vomiting is distressing symptoms which can be modulated via multiple mechanisms operating at different loci within these systems. Generally vomiting is divided into reflective vomiting, central vomiting, vomiting of vestibular disorder and neural functionality vomiting. It involves dozens of diseases, especially during radiotherapy and chemotherapy. Vomiting can lead to dehydration or electrolyte balance disorders, which greatly reduce life quality and affect compliance in some patients. Therefore, how to effectively prevent radiotherapy or chemotherapy-induced vomiting becomes an important research subject of scientists in many countries.
     The current clinical antiemetic drugs commonly are chemical drugs, such as histamine, acetylcholine, dopamine, SP and other receptor antagonists. These drugs are endowed with high price, usually have many side effects and have to be given in combination with other agents. Therefore, it is required to explore a natural and low-toxic antiemetic agent, which could treat vomiting by multi-targets effect.
     Ginger is known as "saint drug of vomiting" which has been used as a common antiemetic drug for more than 2,000 years in China. Gingerol is the generic term of pungent constituents in ginger. To study the antiemetic mechanism of gingerol will provide useful ideas for revealing the antiemetic mystery of ginger.
     On the base of the past studies, we integrated the traditional pharmacology and the modern molecular biological techniques, use the new vomiting model of minks and the classic pica model of rats to investigate the antiemetic effect of gingerol and its probably mechanism in organs level and cells level from the following aspects:1. Gingerol inhibits the acute vomiting by down regulating 5-HT, DA and substance P expression in minks; 2. Effect of gingerol on NK1 receptor expression in the delayed vomiting model of minks; 3. Effect of gingerol on c-fos, NKi receptor, CCK, CGRP, MTL expression in the pica model of rats.
     Methods:
     1. Gingerol inhibits the acute vomiting by down regulating 5-HT, DA and substance P expression in minks
     Minks were randomly divided into the following 6 groups (n=6), the blank control group, the model group, the low-dose gingerol group, the middle-dose gingerol group, the high-dose gingerol group and the ondansetron group. Following administration of cisplatin, animals were observed continuously for 6 hours for the emetic responses, the time of onset to vomiting and the number of both retches and vomits. Animals were sacrificed 6 hours after administration of cisplatin. Tissues of the area postrema as well as the ileum were removed. The levels of 5-HT, DA and distribution of substance P in the area postrema and ileum were measured by high performance liquid chromatography (HPLC) and immunohistochemistry respectively.
     2. Effect of gingerol on NK1receptor expression in the delayed vomiting model of minks
     The groups were divided as the first experiment. Animals were observed continuously for 72 hours for the emetic responses, the time of onset to vomiting and the number of both retches and vomits. Animals were sacrificed 72 hours after administration of cisplatin. Tissues of the area postrema as well as the ileum were removed. The levels of NK1 receptor expression in the area postrema and ileum were measured by immunohistochemistry and western-blot respectively.
     3. Effect of gingerol on c-fos, NK1 receptor, CCK, CGRP, MTL expression in the pica model of rats
     Rats were randomly divided into the following 8 groups (n=6), the blank control group, the gingerol control group, the model group, the aprepitant group, the ondansetron group, the low-dose gingerol group, the middle-dose gingerol group and the high-dose gingerol group. Following administration of cisplatin, animals were observed continuously for 72 hours for the responses and the consumption of kaolin. Animals were sacrificed 72 hours after administration of cisplatin. Tissues of the area postrema as well as the ileum were removed, the blood was sampled from the abdominal aorta. The levels of NK1 receptor expression in the area postrema and ileum were measured by RT-PCR, distribution of c-fos in the area postrema and ileum were measured by immunohistochemistry, the levels of CCK, CGRP, MTL were measured by radioimmunoassay.
     Results:
     1. Gingerol inhibits the acute vomiting by down regulating 5-HT, DA and substance P expression in minks
     Cisplatin evoked a profound emetic response in 6 minks of the model group, pretreatment with gingerol reduced the number of retches and vomits induced by cisplatin and increased the latency of onset of cisplatin to induce emesis during the 6 h observation period (P<0.01). And there was no significant difference on the number of retches and vomits between the high-dose group and ondansetron group (P>0.05).
     The immunohistochemistry and HPLC studies showed:Cisplatin produced a significant increase in 5-HT, DA and SP levels in the area postrema and ileum of minks (P<0.05), and this increase was significantly inhibited by gingerol. There was no significant difference between the 5-HT release in the area postrema of ondansetron and in the high-dose group (P>0.05), but ondansetron did not alter the 5-HT release from the mink ileum induced by cisplatin (P>0.05), nor did ondansetron to DA and SP release from the mink ileum as well as the area postrema induced by cisplatin (P>0.05).
     2. Effect of gingerol on NK1 receptor expression in the delayed vomiting model of minks
     Minks dosed with vehicle followed by cisplatin had two distinct periods of retching and vomiting. There was an initial acute phase, which typically reached the peak at 24 h after dosing with cisplatin. After this period there was a delayed phase in 24-72 h (P<0.05). Gingerol decreased the retching and vomiting response during the 72 h observation period with significant decreases observed on each of the three test days (P<0.01). Ondansetron significantly decreased the retching and vomiting response during 24 h following cisplatin injection (P<0.05). However, there was no significant decreases on the retching and vomiting response during 24-72 h (P>0.05).
     The immunohistochemistry and Western-blot studies showed: The expression levels of NK1 receptor significantly increased after treatment with cisplatin (P<0.01), the elevated expression was inhibited by the pretreatment of gingerol in both the ileum and area postrema in a dose-dependent manner (P<0.01). However, ondansetron had no significant effect on the elevated level of NK1 receptor protein in either the area postrema or ileum (P>0.05).
     3. Effect of gingerol on c-fos, NK1 receptor, CCK, CGRP, MTL expression in the pica model of rats
     Rats in model group followed by cisplatin had two distinct periods of consumption of kaolin. There was an initial acute phase, which typically reached its peak at 24 h after dosing with cisplatin (P<0.01), and there was a delayed phase in 24-72 h which the consumption of kaolin was decreasing. Gingerol decreased the consumption of kaolin during the 72 h observation period (P<0.01). Ondansetron significantly decreased the consumption of kaolin during 24 h following cisplatin injection (P<0.01). However, there was no siginificant decreases during 24-72 h (P>0.05). Aprepitant decreased the consumption of kaolin either in the acute phase or the delayed period (P<0.05).
     The immunohistochemistry research showed:The expression levels of c-fos significantly increased after treatment with cisplatin (P<0.05), the elevated expression was inhibited by the pretreatment of gingerol in both the ileum and the area postrema in a dose-dependent manner (P<0.05). Ondansetron and aprepitant had no significant effect on the elevated level of c-fos protein in either the area postrema or ileum (P>0.05).
     The results of RT-PCR showed:The expression levels of NK1's mRNA significantly increased after treatment with cisplatin (P<0.05), the elevated expression was inhibited by the pretreatment of gingerol in both the ileum and area postrema in a dose-dependent manner (P<0.05). Ondansetron had significant effect on the elevated level of NK1's mRNA neither in the area postrema nor in ileum (P>0.05). Aprepitant significantly decreased the elevated levels of NK1's mRNA in both the ileum and area postrema (P<0.05).
     The results of radioimmunoassay indicated: The levels of CCK, CGRP, MTL significantly increased after treatment with cisplatin (P<0.05), the elevated levels were inhibited by the pretreatment of gingerol in a dose-dependent manner (P<0.05). Ondansetron and aprepitant had no significant effect on the elevated level of CCK, CGRP, MTL (P>0.05).
     Conclusions:
     1. Cisplatin could evoke the acute vomiting in minks and cause a significant increase in 5-HT, DA and SP levels in postrema and ileum. Gingerol can antagonize the cisplatin-induced emesis of minks in acute phase possibly by inhibiting central or peripheral increase of 5-HT, DA and substance P.
     2. Cisplatin could produce the delayed vomiting in minks and increase the expression of NK1 receptor in the area postrema and ileum. Gingerol can counteract cisplatin-induced emesis of minks in delayed period possibly by inhibiting central or peripheral increase of NK1 receptors in a dose-dependent manner.
     3. Cisplatin could replicate the pica model of rats and increase the expression of NK1 receptor, c-fos, CCK, CGRP, MTL in the area postrema and ileum. Gingerol could decrease cisplatin-induced consumption of kaolin in rats; this may be related to inhibiting central or peripheral increase of c-fos protein and NK1 receptors and the levels of CCK, CGRP, MTL in a dose-dependent manner.
引文
1. Elizabeth GR, Ettinger DS,5-HT3 receptor antagonists for the prevention of chemotherapy-induced nausea and Vomiting. Drugs,1998,55(2):173-189
    2. Borison HL, Wang SC. Physiology and pharmacology of vomiting. Pharmcol Rev,1953,5:193-230
    3.石丽娟,王德山.中医药治疗肿瘤化疗所致呕吐的研究进展.辽宁中医杂志.1998,25(3):143-144
    4. Grunberg SM,Hesketh PJ.Control of chemotherapy-induced emesis. N Engl J Med,1993,329(24): 1790-1796
    5. Saito R, Ariumi H, Kubota H, et al.The role of tachykinin NK-1 receptors in emetic action in the area postrema of ferrets. Nippon Yakurigaku Zasshi.1999,114 (1):209-214.
    6.王钢莲.5-HT3受体拮抗剂预防化疗引起的恶心和呕吐—药理和临床疗效的比较.国外医药-合成药,生化药制剂分册,1999,20(1):40-45
    7. Ljung T, Hellstrom PM.Vasoactive intestinal peptide suppresses migating myoelectric complex of rat small intestine independent of nitric oxide. Acta Physiol Scand,1999,165(2):225-231.
    8. Wolf H. Preclinical and clionical pharmacology of the 5-HT3 receptor antagonists. Scand J Rheumatol Suppl.2000.113(4):37-45
    9.聂克.呕吐动物模型的研究进展及评价.中国药理学通报.2007;23(4):555-557
    10. Florczyk AP, Schurig JE, Bradner WT. Cisplatin-induced emesis in the ferret: a new animal model. Cancer Treat Rep,1982,66(1):187-189
    11.岳旺,张芳,王蕾,等.一种新型呕吐动物模型——水貂.药学学报,2003,38(2):89-91
    12. Aapro M.5-HT(3)-receptor antagonists in the management of nausea and vomiting in cancer and cancer treatment. Oncology.2005;69(2):97-109.
    13. Stable R, Andrews PL R, Bailey HE, et al, Antiemetic properties of the 5-HT3 receptor antagonist, GR38032F. Cancer Treat Rev,1987,14:333-336
    14. Ferrier CM, Witte HH., Straatman H. et al.,Comparison of immunohisto- chemistry with immune assay(ELISA) for the detection of components of the plasminogen activation system in human tumour tissue.British Journal of Cancer,1999,79(2):1534-154
    15.梁万年,李春雨.恶心和呕吐.中国全科医学,2002,5(4):259-261
    16. Grunberg SM, Hesketh PJ.Control of chemothe.rapy-induced emesis.N Engl J Med,1993,329(24): 1790-1796
    17. Bradley PB, Engel G, Feniuk W, et al. Proposals for the classification and nomenclature of functio-nalreceptors for 5-hydroxytryptamine. Neuropharmacology,1986,25(6):563-576
    18. Lang IM. Noxious stimulation of emesis.Dig Dis Sci,1999,44(8):58-63
    19. Takeda N, Morita M, Horii A, et al. Neural mechanisms of motion sickness. J Med Invest,2001,48 (2):44-59
    20. Leeser J,Lip H. Prevention of postoperative nausea and vomiting using ondansetron, a new, selec-tive 5-HT3 receptor antagonist.Anesth Analg,1991,72(6):751-755.
    21. Kilpatrick GJ, Jones BJ, Tyers MB. Binding of the 5-HT3 ligand, [3H]GR65630, to rat area postrema, vagus nerve and the brains of several specie. Eur J Pharmacol,1989,159:157-164.
    22.王枫,罗文纪,连建伟.小半夏汤对小鼠胃排空、小肠推进的影响.浙江中医学院学报.2001,25(2):48-49.
    23.许红,邱德文,舒树芳,等.小半夏汤对家兔实验性呕吐胃电变化影响的研究.中国中西医结合 杂志.1996,16(特辑):153-155
    24.金有豫.药理学第5版.北京:人民卫生出版社,2001.263-264
    25. Missale C,Nash SR,Robinson SW,et al.Dopamine receptors from structure to function.Physiol Rev1998,78(1):189-225
    26.高萱,孙立宁,孔哲,等.恶心呕吐及其神经化学机制的研究.医学综述.2007,13(14):1043-1045
    27. Sunahabra RK, Guan HC, O'Dowd BF,et al. Cloning of the gene for a human dopamine D5 recep-torwith higher affinity for dopamine than D1.Nature,1991,350(6319):614-619.
    28. Liolitsa D,Powell JF.Prince M,et al.Association study of the 5-HT(2A) receptor gene polymorphi-sm, T102C and essential hypertension.J Hum Hypertens,2001,15(5):335-339
    29. Hawthorn J, Cunningham D.Dexamethasone can potentiate the anti-emetic action of a 5HT3 receptor antagonist on cyclophosphamide induced vomiting in the ferret. Br J Cancer. 1990,61(1):56-60
    30. Minami M,Ogawa T,Endo T, et al.Cyclophosphamide increase 5-hydroxytryptamine release from the isolated ileum of the rat.Res Commun Mol Pathol Pharmacol,1997,97(1):13-24
    31. Schworer H, Racke K, Kilbinger H. Cisplatin increases the release of 5-hydroxytryptamine (5-HT) from the isolated vascμlarly perfused small intestine of the guinea-pig: involvement of 5-HT3 receptors..Naunyn-Schmtedebergs Arch Pharmacol,1991,344(2):143-149.
    32.贡心燕.药理学和药物治疗学(下册).北京:人民卫生出版社,2000,1321-1322.
    33. Wolf H. Preclinical and clinical pharmacology of the 5-HT3 receptor antagonists. Scand J Rheumatol Suppl,2000,113:37-45
    34. Buchheit KH, Costall B, Engel G, et al.5-Hydroxytryptamine receptor antagonism by metoclopramide and ICS 205-930 in the guinea-pig leads to enhancement of contractions of stomach muscle strips induced by electrical field stimμlation and facilitation of gastric emptying in-vivo. J Pharm Pharmacol.1985,37 (9):664-667.
    35. Hawthorn J, Cunningham D.Dexamethasone can potentiate the anti-emetic action of a 5HT3 receptor antagonist on cyclophosphamide induced vomiting in the ferret. Br J Cancer.1990 Jan;61(1):56-60
    36. Andrews MD,Bunce KT, Tyers MB. The role of 5-HT in postoperative nausea and vomiting.Br J Anaesth,1992,69(7):60-62
    37. Elizabethli R, Ettinger DS.5-HT3 receptor Antagonists for the prevention of chemotherapy-induced nausea and vomiting.Drugs,1998,55(2):173-189
    38. CubeddμlX. erotonin mechanisms in chemotherapy-induced emesis in cancer patients. Oncology, 1996,53(1):18-25
    39. Von Eμlex US, Caddum J H.An unidentified deprdssor substance in certain tissue extraets.Physiol, 1931,72:74-89
    40. Saito R, Ariumi H, Kubota H, et al. The role of tachykinin NK-1 receptors in emetic action in the area postrema of ferrets. Nippon Yakurigaku Zasshi,1999,114(1):209-214
    41.何舒.化疗止吐药的研究进展.国外医学药学分册.2003,30(6):333-337.
    42. Diemunsch P, Grelot L. Potential of substance P antagonists as antiemetics. Drugs, 2000,60(3):533-546.
    43. Golembiewski J, Tokumaru S. Pharmacological prophylaxis and management of adμlt postoperative/postdischarge nausea and vomiting. J PerianesthNurs,2006,21(6):385-397.
    44. Quaynor H,Raeder J C. Incidence and severity of postoperative nausea and vomiting are similar after metoclopramide 20 mg and ondansetron 8 mg given by the end of laparoscopic cholecystectomies.Acta Anaesthesiol Scand,2002,46(1):109-113.
    45. Wolf.H. Preclinical and cionical pharmacology of the 5-HT3 receptor antagonists.Scand J Rheumatol Suppl,2000.113(4):37-45.
    46.张再康,冯瑞雪,王亚利,等.中西医抗化疗呕吐的研究现状和研究方向.中国中西医结合杂志,2004,24(4):362-363
    47. Majumdar AK, McCrea JB, Panebianco DL.,et al. Effects of aprepitant on eytochrome P450 3A4 activity using.midazolam as a probe.Clin Pharmacol Ther,2003.74(2):150-156
    48. Pendergrass K, Hargreaves R, Petty KJ, et al. Aprepitant:An oral NK1 antagonist for the prevention of nausea and vomiting induced by highly emetogenic chemotherapy.Drugs Today,2004,40(10):853-863
    49. Huang QR, Iwamoto M, Aoki S,et al. Anti-5-hydroxytryptamine3 effect of galanolactone, diterpenoid isolated from ginger. Chem Pharm Bull,1991,39(2):397-399
    50. Mitchell D, Krusemark ML, HafnerD. Pica:a species relevan behavioral assay of motion sickness in the rat.Physiol Behav,1977,18(1):125-130.
    51. Maggi CA.Capsaicin sensitive nerves in the gastrointestinal tract.Areh Int Pharmacodyn Ther,1990, 30(3):157-166
    52.赵德雪.生姜的抗呕吐作用研究.中国优秀硕士学位论文全文数据库,2007,(03):12-14
    53.赵德雪,杨志宏,李明,等.生姜对呕吐模型水貂止呕作用的研究.中国药事,2006,20(10):601-604
    54.马素起.小半夏汤防治化疗性恶心呕吐的实验研究.中国优秀硕士学位论文全文数据库,2007,(04):10-12
    55. Yue W, Li GR, Minami M. Trends in the research of vomit model.Shandong Med Ind 1999,18(1):32-34
    56. Ueno S, Matsuki N, Saito H. Suncus murinus: a new experimental model in emesis research..Life Sci,1987,41(4):513-518.
    57. Matsuki N, Ueno S, Kaji T, et al. Emesis induced by cancer chemotherapeutic agents in the Suncus murinus:a new experimental model. Jpn J Pharmacol,1988,48(2):303-306
    58. Sam TS, Cheng JT, Johnston KD et al. Action of 5-HT3 receptor antagonists and dexamethasone to modify cisplatin-induced emesis in Suncus murinus(house musk shrew) EurJ Pharmacol, 2003,472(1-2):135-145.
    59. Watson JW, Gonsalves SF, Fossa AJ. The role of the NK1 receptor in emetic responses:the anti-emetic effects of CP-99,994 in the ferret and the dog. Br J Pharmacol,1995,115(1):84-94.
    60. Zhang F, Wang L, Yang ZH, et al. Value of mink vomit model in study of anti-emetie drugs.World J Gastroenterol,2006,12(8):1300-1302.
    61. Miller AD, Nonaka S. Mechanisms of vomiting induced by serotonin-3 receptor agonists in the cat: effect of vagotomy, splanchnicectomy or area postrema lesion.J Pharmacol Exp Ther,1992,260(2):509-517
    62. Scarantino CW, Ornitz RD, Hoffman LG, et al. Radiation-induced emesis: effects of ondansetron. Semin Oncol.1992,19(6):38-43
    63. Von Euler US, Caddum JH.An unidentified deprdssor substance in certain tissue extraets. J Physiol,1931,72(1):74-89
    64. Saito R,Ariumi H,Kubota B,et al. The role of tachykinin NK-1 receptors in emetic action in the area postrema of ferrets. Nippon Yakurigaku Zasshi,1999,114(1):209-214
    65. Diemunsch P, Grelot L. Potential of substance P antagonists as antiemeties. Drugs, 2000,60(3):533-546.
    66. Krowicki ZK, Hornby PJ. Substance P in the dorsal motor nucleus of the vagus evokes gastric motor inhibition via neurokinin 1 receptor in rat. J Pharmacol Exp Ther,2000,293(1):214-221
    67. Shiroshita Y, Koga T, Fukuda H. Capsaicin in the 4th ventricle abolishes retehing and transmission of emetic vagal afferents to solitary nucleus neurons. Eur J Pharmacol,1997,339(2-3):183-192.
    68. Ariumi H, Satio R. The role of tacykinin NK1 recptors in the area pstrema of ferrets in emesis.Neurosci Lett,2000,286(2):123-126.
    69. Zaman S, Woods AJ, Watson JW, et al.The effect of the NK1 receptor antagonist CP-99,994 on emesis and c-fos protein induction by loperamide in the ferret. Neuropharmaeology,2000,39(2): 316-323.
    70. Reynolds DJ, Barber NA, Grahame-Smith DG, et al. Cisplatin-evoked induction of c-fos protein in the brainstem of the ferret: the effect of cervical vagotomy and the anti-emetic 5-HT3 receptor antagonist granisetron (BRL 43694). Brain Res,1991,565(2):231-236.
    71. Rudd JA, Jordan CC, Naylor RJ.The action of the NK1 tachykinin receptor antagonist, CP99,994, in antagonizing the acute and delayed emesis induced by cisplatin in the ferret. Br J Pharmaeol, 1996,119(5):931-936.
    72. Kris MG, Radford JE, Pizzo BA, et al. Use of an NK1 receptor antagonist to prevent delayed emesis after cisplatin. J Natl Cancer Inst,1997,89(11):817-818.
    73. Diemunsch P, Grelot L. Potential of substanee P antagonists as antiemeties. Drugs, 2001,60(3):533-546.
    74. Mitchell D,Wells C,Hoch N, et al.Poison induced pica in rats. Physiol Behav.1976;17(4):691-697
    75. Takeda N, Hasegawa S, Morita M, et al. Pica in rats is analogous to emesis:an animal model in emesis research. Pharmacol Biochem Behav.1993;45(4):817-821
    76. Saeki M, Sakai M, Saito R et al. Effects of HSP-117,a novel tachykinin NK1-receptor antagonist,on cisplatin-induced pica as a new evaluation of delayed emesis in rats. Pharmacol,2001;86(3):359-362
    77. Gass P, HerdegenT, Bravo Rt, et al.Induction of immediate early gene encoded proteins in the rat hippocampus after bicucμlline-induced seizures,diferential expression of KROx-24,Fos and Jun proteins. Neuroscience,1992,48(2):315-324.
    78. Morgan JI,Curran T.Stimμlus-transcription coupling in the nervous system: involvement of the inducible proto-oncogene fos and jun. Annu Rev Neurosci,1991,14:421-451
    79.程记伟,白宇.即刻早期基因c-fos与癫痫关系的研究进展.现代医药卫生,2008,24(2):221-222
    80. Morgan JI, Cohen KR, Hempstead JL, et al.Mapping patterns of c-fos expression in the central nervous system after seizure.Science,1987,237(4811):192-197.
    81. Mihaly A, Szakacs R, Bohata C,,et al.Time-dependent distribution and neuronal localization of c-fos protein in the rat hippocampus following 4-aminopyridine seizures.Epilepsy Res,2001,44(2):97-108
    82. Werme M,Ringholm A,Olson L,et al.Differential patterns of reduction of NG F1-B,Norl and c-fos mRNAs in striatal subregions by haloperidol and clozapin.Brain Res,2000,863(1):112.
    83. Silveira DC, Sogawa Y, Holmes GL. The expression of fos following kainic acid-induced seizures is age-dependent.EurJ Neurosci,2002,15(2):329-344
    84. Miller AD, Ruggiero DA. Emetic reflex are revealed by expression of the immediate-early gene c-fos in the cat. J Neurousci,1994,14(2):871-888.
    85. Billig I, Yates BJ, Rinaman L. Plasma hormone levels and central c-fos erpression in ferrets after systemic administration of cholecystokinin. Am J Physiol,2001,281(4):1243-1255.
    86.孔哲,季淑梅,高萱,等.腹腔注射催吐剂后非呕吐动物大鼠脑内呕吐反应区Fos阳性神经元的表达.中国临床康复,2005,9(21):222-225
    87.崔轶霞,王海军,魏晓萍.胆囊收缩素与胃肠道运动的研究进展.延安大学学报.2004,2(3):62-63
    88. Liddle RA. Cholecystokinin:its role in health and disease. Curr Opin Endocrinol Diabetes,2003, 10(1):50-54.
    89. Matzinger D, Degen L, Drewe J, et al. The role of long chain fatty acids in regulating food intake and cholecystokinin release in humans. Gut,2000,46(5):688-693.
    90. Blevins JE, Stanley BG, Reidelberger RD. Brain regions where cholecystokinin suppresses feeding in rats. Brain Res,2000,860(1-2):1-10.
    91. Rosenfeld MG, Mermod JJ, Amara SG, et al. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature.1983,304(5922):129-35.
    92. Weihe E, Krekel J. The neuroimmune connection in human tonsils. Brain Behav Immun,1991, 5(1):41-54
    93.李启祥.降钙素基因相关肽与胃肠运动的调节.国外医学.消化系统疾病分册,2000,20(1):20-23.
    94.冯国营,刘桂香.降钙素基因相关肽对胃肠作用的相关研究进展.滨州医学院学报,2008,31(4):291-294
    95. Hatanaka S, Hosokami T, Kawarabayashi K, et al. Pharmacological characteristics ofDQ-2511 as a prokinetic agent Arech Int Pharmacodyn The,1995,330(3):322.
    96. Brown JC, Mutt V, Dryburgh JR. The further purification of motilin, a gastric motor activity stimμlating polypeptide from the mucosa of the small intestine of hogs. Can J Physiol Pharmacol,1971,49(5):399-405.
    97. Konturek JW, Thor P, MaczkaM, et al. Role ofcholecystokininin the control of gastric emptying and secretory response to a fatty meal in normal subjects and duodenal μlcer patients. Stand J Gastroenterol.1994,29(7):583-590
    98. Liu H, Zhu T, Ma Y, et al. Effect of erythromycin on contractile response of uterine smooth muscle strips in non-pregnant rats. Pol J Pharmacol 2003,55(1):57-62.
    99. Miller P, Trudel L, St-Pierre S, et al. Neural and muscular receptors formotilin in the rabbit Colon.Peptides,2000,21(2):283-287
    100. Bormans V, Peeters TL, Vantrappen G. Motilin receptors in rabbit stomach and small intestine. Regμl Pept 1986,15(2):143-153.
    101. Depoortere I, Peeters TL, Vantrappen G. Distribution and characterization of motilin receptors in the cat. Peptides,1993,14(6):1153-1157.
    102. Thielemans L, Depoortere I, Van Assche G, et al. Demonstration of a function almotilin receptor in TE671 cells from human cerebellume. Brain Res,2001,895(1-2):119-128.
    103. Wang L, Zhoμl, Tian R. Role of the area postrema of medμlla oblongata in the regulation of canine interdigestive migrating motor complex. Chin Med J,2002,115(3):384-388.
    104.陈元方.胃肠肽类激素与临床,北京:北京医科大学中国协和医科大学联合出版社,1997:328
    105. Kamerling IM, van Haarst AD, Burggraaf J,et al. Exogenous motilin affects postprandial proximal gastric motor function and visceral sensation. Dig Dis Sci,2002,47(8):1732-1736
    1. Elizabeth GR, Ettinger DS,5-HT3 receptor antagonists for the prevention of chemotherapy-induced nausea and Vomiting. Drugs,1998,55(2):173-189
    2. Borison HL, Wang SC. Physiology and pharmacology of vomiting. Pharmcol Rev,1953,5:193-230
    3.石丽娟,王德山.中医药治疗肿瘤化疗所致呕吐的研究进展.辽宁中医杂志.1998,25(3):143-144
    4.江苏新医学院编中药大辞典.上海:上海科学技术出版社;1975:655-658
    5.李时珍.本草纲目.北京:人民卫生出版社,1999:1318-1322
    6.国家中医药管理局《中华本草》编委会.《中华本草》.上海:上海科学技术出版社1999.
    7.于荣.经方生姜应用浅析.浙江中医药大学学报,200,31(9):591
    8.孙建实.仲景对小半夏汤的应用.吉林中医药,1988:46
    9.王静,聂克.小半夏汤镇呕止痛作用研究概述.中华中医药学会中药实验药理分会第八届学术会议论文摘要.2009:332-336
    10.敖慧.小半夏汤药理和临床研究现状.黑龙江中医药,2009,43-44
    11.熊曼琪.中医药学高级丛书伤寒论.北京:人民卫生出版社.2000:758
    12.张婷,王敏伟,陈思维.吴茱萸汤醇提各组分植物活性的研究.中国中药杂志,2002,27(11):862-866
    13.李冀,柴剑波.吴茱萸汤抗大鼠幽门结扎型胃溃疡作用机理的实验研究.中医药信息.2007,24(6):53-54
    14.唐映红,窦昌贵.吴茱萸汤温脾止泻作用的实验研究.中药药理与临床,1990,6(11):6-9.
    15.唐映红,窦昌贵.吴茱萸汤治疗脾虚证的实验研究.辽宁中医杂志,1990,14(10):43-46
    16.杜力军,孙虹,李敏,等.精制吴茱萸胶囊对偏头痛小鼠的作用.中药药理与临床,1999,15(3):3-5
    17.杜力军,李敏,孙虹,等.精制吴茱萸胶囊镇痛镇静和对脑血流的作用.中药与临床,1999,15(5):9-11
    18.黄如栋,窦昌贵.吴茱萸汤注射液回阳固脱作用的实验研究.中药药理与临床,1991,7(2):1-5.
    19.张荣珍.《伤寒论》五泻心汤类方证探析.中国中医基础医学杂志.2006,12(12):890-891
    20.周凤梧.周凤梧方剂学.山东:山东科学技术出版社,2005:286-287
    21.孙晓波,徐惠波.现代方剂药理与临床.天津:天津科技翻译出版公司,2005:159-160
    22. Emst E, Pittler MH. Efficacy of ginger for nausea and vomiting:a system atic review of randomiazed clinical trials. British J Anaesthesia,2000(3):367-371
    23. Power ML. A survey on the management of nausea and vomiting in pregnancy by obstertrician/gynecologists., Prim Care Update Ob Gyns,2001(2):6972
    24.苏雪艳.妊娠呕吐及其治疗.妇幼卫生,2002(2):32
    25. Vutyavanich T, Kraisarin T, Ruangsri R. Ginger for nausea and vomiting in pregnancy:randomized double-masked placebo-controlled trial. Obstet Gynecol,2001,97(4):577-582
    26. Pongrojpaw D, Chiamchanya C.The efficacy of ginger in prevention of post-operative nausea and vomiting after outpatient gynecological laparoscopyJ Med. Assoc Thai,2003(3):244-250
    27.刘礼秀,张智利.生姜片嚼服预防手术患者术后恶心呕吐效果观察.护理学报,2007,14(5):75-76
    28.王金华,薛宝云,梁爱华.生姜与干姜药理活性的比较研究.中国医药学杂志,2000,(3):163-165
    29. Sharma SS, Kochupillai V, Gupta SK, et al, Antiemetic efficacy of ginger (Zingiber officinale) against cisplatin-induced emesis in dogs.Ethnonharmacol,1997,57(2):93-96
    30.赵德雪,杨志宏,岳旺.生姜对呕吐模型水貂止呕作用的研究.中国药事,2006,20(10):601-604.
    31. Ahmed RS,Seth V,Pasha ST, et al. Influence of dietary ginger (Zingiber officinales Rosc) on oxidative stress induced by malathion in rats.Food Chem Toxicol,2000,38 (5):443-450.
    32. Fuhrman B, Rosenbat M, Hayek T, et al, Ginger extract consumption reduces plasma cholesterol, inhibits LDL oxidation and attenuates development of atherosclerosis in atherosclerotic, apolipoprotein E-deficient mice.J Nutr,2000,130(5):1124-1131
    33.刘宁,霍贵成,张玲.生姜对高血脂大鼠脂质过氧化作用的研究.卫生研究,2003,32(1):22-23.
    34.何文珊.生姜中一种新化合物的抗氧化活性,中国病理生理杂志,2001,17(5):461-463.
    35.阎惠英,张杰梅,乔晓君.姜和蒜抑制活性氧作用的研究,包头医学院学报,1997,13(1):10-12
    36. Bhandari U, Sharma JN, zafar R. The protective action of ethanolic ginger (Zingiber officinale) extract in Cholesterol fed rabbits. J Ethnopharmacol,1998,61 (2):167-171.
    37. Fuhrman B, Rosenblat M, Hayek T, et al. Ginger extract consumption reduces plasma cholesterol. inhibits LDL oxidation and attenuates development of atherosclerosis in atherosclerotic, apolipoprotein E-deficient mice. J Nutr.2000,130(5):1124-31
    38. Penna SC. Medeiros MV, Aimbire FS, et al, Anti-inflammatory effect of the hydralcoholic extract of Zingiber officinale rhizomes on rat paw and skin edema.Phytomedicine,2003,10(5):381-385.
    39. Penna SC. Medeiros MV, Aimbire FS, et al, Anti-inflammatory effect of the hydralcoholic extract of Zingiber officinale rhizomes on rat paw and skin edema.Phytomedicine,2003,10(5):381-385.
    40.刘辉.生姜醇提物对荷瘤鼠免疫功能的影响.卫生研究,2002,31(3):208-209.
    41. Florczyk AP, Schuring JE, Bradner WT. Cisplatin-induced emesis in the ferret: A new animal model. Cancer Treat Rep,1982,66(1):187-189.
    42.李安林.光度法测定姜香调味油中姜辣素的含量.中国调味品,1995.(11):30-32
    43.向云峰,杨佳祝,李光辉,等.生姜油树脂微胶囊生产工艺研究.中国调味品,1996,(9):15-20.
    44.韩菊,魏福祥,王改珍,等.生姜中姜酚的性能研究.食品科技.2004(4):63-65
    45.杨春海,易杨慧,余爱农.溶出伏安法测定姜中姜辣素含量的研究.食品科学,2003,24(2):110-112
    46.袁干军,董伍爱,文昌湖,等.薄层扫描法测定干姜中6-姜醇.中草药,2004,35(10):1187-1188.
    47.李丽,袁干军,薄层扫描法测定生姜中6—姜醇的含量.中国药房,2004,15(5):302-303.
    48. Sane RT, Phadke M, Hijli PS, et al. Geographical variation study on gingeml(a pungent principle from Zingiber officinale) and gingeroil, using HPTLC technique and accelerated stability study on gingerol from Zingiber officinale using HPTLC method. Indian Drugs,1998,35(1):37-44
    49. Chen CC, Gas chromatographic analysis of the thermal degredation products of gingerol compounds in steam-distilled oil from ginger (Zingiber of Gcinale Roscoe). Chromatogr,1987,38(7):499-504.
    50 Harvey DJ, GC and MS studies of ginger constituments identification of gingerols and new hexahydrocurcum in analogues. Chmmatogr,1981,21(2):75-88.
    51. Jiang H, Solyom AM, Timmermann BN, et al. Charaeterization of gingerol-related compounds in ginger rhizome(Zingiber officinale Rose.)by high-performance liquid chromatographhy/elec-trospray ionization mass spectrometry. Rapid Commun Mass Speetrom,2005,19(20):2957-2964
    52. Huang QR, Iwamoto M, Aoki S, et al. Anti-5-hydroxytryptamine3 effect of galanolactone, diterpenoid isolated from ginger. Chem Pharm Bull,1991,39 (2):397-399
    53. Mitchell D, Krusemark ML, Hafner D. Pica: a species relevant behavioral assay of motion sickness in the rat. Physiol Behav,1977,18(1):125-130.
    54. Maggi CA. Capsaicin-sensitive nerves in the gastrointestinal tract. Arch Int Pharmacodyn Ther,1990,30(3):157-166
    55.赵德雪.生姜的抗呕吐作用研究.中国优秀硕士学位论文全文数据库,2007,(03):12-14
    56.包力.生姜国外研究进展.新疆中医药,1993(2):52-53
    57.黄启荣.生姜的辛味成分[6]-姜酚对胃粘膜损伤的作用.国外医学一中医中药分册,1989,6(1):32
    58.彭平健.生姜的药理研究和临床应用.中国中药杂志,1992,17(6):370-372.
    59.李素民,杨秀岭,赵智等.干姜和生姜药理研究进展.中草药,1999,30(6):471-473
    60.张竹心.生姜油对中枢神经的抑制作用.中草药,1988,19(9):23-25
    61. Surh YJ. Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities:a short review. Food Chem Toxicol,2002,40(8):1091-1097.
    62. Bode AM, Ma WY, Surh YJ, et al.Inhibition of epidermal growth factor-induced cell transformation and activator protein 1 activation by [6]-gingerol. Cancer Res, 2001,61(3):850-853.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700