用户名: 密码: 验证码:
光镊中粒子辐射捕获力的实验研究与理论分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了光镊技术的原理及其应用,分析了高斯光束作用于小粒子的理论研究方案。研究了单光束光镊系统的搭建方法,完成了实验系统的设计、系统参数的设定,仪器选择等一系列工作,成功搭建成一套简单有效的实验室光镊系统,对聚焦激光束作用于小粒子的情况进行了分析,完成了对聚苯乙烯小球的实验捕获。在理论方面,结合广义米理论,通过数值模拟,研究了不同捕获条件下,单层和多层球形粒子受到的捕获力情况。结合实验,分析了改变激光功率、波长对捕获产成的影响,分析了光镊系统在横向和径向的捕获力分布情况,以及球形捕获对象在不同折射率分布,不同吸收特性分布的条件下的,其捕获情况的变化。
In this thesis, the optical tweezers technology is introduced here. By using of optical tweezers, we could catch particles and moved them in three-dimensional. The experiment for optical tweezers is designed and built up. The phenomena of light scatting by polystyrene spherical particle is observed. And the polystyrene is caught by the focusing Gaussian beam. The principle of optical tweezers is discussed, and radiation trapping forces for particles are calculated. The generalized Lorenz-Mie theory(GLMT) is used here to calculate the trapping forces of the focusing Gaussian beam on a spherical particle. We discussed the influence of different parameter, such as beam waist radius and power of the laser, on trapping forces. The influences on the axial and transverse radiation trapping forces by such parameters are also analyzed here. The numerical simulation is given to analyze the trapping of multilayered spherical particle with different absorbing coefficients and relative refractive indexes distributing.
引文
[1] A.Ashkin. Acceleration and trapping of particles by radiation pressure. Phys. Rev.Lett. 1970. 24. 156-159.
    [2] A.Ashkin,J.M.Dziedzic. Optical levitation by radiation pressure. Appl. Phys. Let. . 1971. 19. 283-285.
    [3] A.Ashkin,J.M.Dziedzic. Stability of optical levitation by radiation pressure. Appl.Phys.Lett. 1974. 24. 586-588.
    [4] A.Ashkin,J.M.Dziedzic. Optical levitation in high vacuum. Appl. Phys.Lett. 1976. 28. 333-335.
    [5] A.Ashkin,J. M. D. Science. Optical levitation of liquid drops by radiation pressure. 1975. 187. 1073-1075.
    [6] A.Ashkin. Application of laser radiation pressure. Science. 1980. 210. 1081-1087.
    [7] A. Ashkin,J. M. Dziedzic. Optical trapping and manipulation of viruses and bacteria. Science 1987. 235. 1517-1520.
    [8] A. Ashkin.,J. M. Dziedzic. Optical trapping and manipulation of single cells using infrared laser beams. Nature. 1987. 330. 769-771.
    [9] A.Ashkin,J.M.Dziedzic,J. E. Bjorkholm, et al. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 1986. 11. 288-290.
    [10] J. S. Kim,S. S. Lee. Scattering of laser beams and the optical potential well for a homogeneous sphere. J.Opt. Soc. Am. 1983. 73. 303-312.
    [11] G. Gouesbet,G. Grehan and B. Maheu. Localized interpretation to compute all the coefficients in the generalized Lorenz–Mie theory. J. Opt. Soc. Am. A. 1990. 7. 998-1007
    [12] G. Gouesbet,B. Maheu and G. Gréhan. Light scattering from a sphere arbitrarily located in a Gaussian beam , using a Bromwich formalism. J. Opt. Soc. Am. A. 1988s. 5. 1427-1443.
    [13] K. F. Ren,G. Gréhan and G. Gouesbet. Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory and associated resonance effects. Opt. Commun. 1994. 108. 343-354.
    [14] K. F. Ren,G. Gréhan and G. Gouesbet. Prediction of reverse radiation pressure bygeneralized Lorenz–Mie theory,. Appl Opt 1996. 35. 2702–2710.
    [15] F. Onofri,G.Gréhan and G. Gouesbet. Electromagnetic scattering from a multilayered sphere located in an arbitrary beam. Appl.Opt. 1995. 34. 7113-7124.
    [16] H. Polaert,G. Gréhan and G. Gouesbet. Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam. Opt. Commun. 1998,. 155. 169-179.
    [17] J. P. Barton. Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused light beam. J. Appl. Phys. 1988. 64. 1632-1639.
    [18] J. P. Barton, D. R. Alexander. Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam. J. Appl. Phys. 1989. 66. 2800-2802.
    [19] J. P. Barton,D. R. Alexander and S. A. Schaub. Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam. J. Appl. Phys. 1989. 66. 4594-4602.
    [20] A.Ashkin. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 1992. 61. 569-582.
    [21] Y. Harada,T. Asakura. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Optics Communications 1996. 124. 529-541.
    [22] T. C. Bakker Schut, G. Hesselink and B. G. de Grooth. Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps. Cytometry 1991. 12. 479–485.
    [23] S. Nemoto,H. Togo. Axial force acting on a dielectric sphere in a focused laser beam. Appl.Opt. 1998. 37. 6386-6394.
    [24] P. C. Chaumet,M. Nieto-Vesperinas. Time-averaged total force on a dipolar sphere in an electromagnetic field. Opt. Lett. 2000. 25. 1065-1067.
    [25] J. A. Lock. Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration. Appl.Opt. 2004. 43. 2532-2544.
    [26] J. A. Lock. Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory.II. On-axis trapping force. Appl.Opt. 2004. 43. 2545-255.
    [27] E. Fallman,O. Axner. Influence of a glass–water interface on the on-axis trapping of micrometer-sized spherical objects by optical tweezers,. Appl.Opt.2003. 42. 3915-3926.
    [28] Robert C. Gauthier. Laser-trapping properties of dual-component spheres. Appl. Opt. 2002. 41. 7135-7144.
    [29] T. A. Nieminen,H. Rubinsztein-Dunlop and N. R. Heckenberg. Numerical modelling of optical trapping,. Computer Physics Communications,. 2001. 142. 468-471.
    [30] M. J. Lang,S. M. Block. Laser-based optical tweezers. Am.J.Phys. 2003. 71(3). 201-215.
    [31] 崔国强.李银妹. 环形光对光阱有效捕获力的提高. 中国激光. 2001. 28(89-92).
    [32] 李银妹. 生命科学新技术-光镊原理技术和应用. 中国科学技术大学出版社. 1996.
    [33] 李银妹等. 细胞激光微操作系统. 中国科学院科技成果鉴定. 1996.10.
    [34] 李银妹等. 光学操作微加工装置与技术. 中国科学院科技成果鉴定. 2000.8.
    [35] 陈洪涛,李银妹.楼立人等. 光阱刚度与实验条件的依赖关系. 中国激光. 2004. 31(11). 1361-1366.
    [36] 沈为民,李银妹.乐加昌. 光镊技术测量生物大分子间的结合强度. 24(4). 2004. 应用激光. 233-236.
    [37] 郭红莲,曹勤红.任东涛. 激光光钳法细胞膜弹性测量技术的建立和白细胞膜弹性的测量. 科学通报. 2003. 48(3). 246-251.
    [38] 郭红莲,姚新程.李兆霖. 光镊系统中微小颗粒的位移和所受力的测量. 中国科学技术大学出版社. 2002. 32. 97-101.
    [39] 郭红莲. 双光镊系统及其在生物学中的应用 博士论文.
    [40] 降雨强,郭红莲.刘春香. 低频响及低采样频率下用布朗运动分析法测量光阱刚度. 物理学报. 2004. 53(6). 1721-1726.
    [41] 刘春香,郭红莲.降雨强. 光镊系统中光放大倍数对测量结果的影响. 物理学报. 2005. 54(3). 1162-1166.
    [42] 姚新程,李兆霖,程丙英.双层介质球体所受光作用力的分析与计算. 光学学报. 2000. 20. 1305-1310.
    [43] 降雨强. 激光的生物学效应. 博士论文. 2004.6.
    [44] 毛方林,邢岐荣.王锴等.飞秒激光光镊横向光学力的理论分析,光子学报,2004,33:513-516.
    [45] 田洁. 光镊技术在光子晶体领域应用中的探索. 硕士论文. 2003.5.
    [46] 王晓娜. 基于激光捕捉技术的微细加工. 硕士论文. 2004.2.
    [47] 徐春华.用光镊研究微管系统的分子力学特征. 博士论文. 2005.6.
    [48] 魏光辉.朱宝亮. 激光束光学,北京,北京工业学院出版社. 1988.6. 1-144.
    [49] 吕百达. 激光光学:光束描述、传输变换与光腔技术物理,北京,高等教育出版社. 2003.12 7-122.
    [50] J. A. Lock. Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle. J. Opt. Soc. Am. A. 1993. 10. 693-706.
    [51] 姚启钧. 光学教程. 北京:高等教育出版社. 1989.10 125,294.
    [52] W. DA. Numerical modeling of optical gradient traps using the vetor finite element method. J Comput Phys. 2000. 159. 13-37.
    [53] Volakis JL,Chatterjee A and Kempel LC. Finite element method for ele- ctromagnetics : antennas, microwave circuits, and scattering appli- cations. IEEE. 1998.
    [54] Taflove.A. Computational electrodynamics----the finite difference time --domain method. Boston : Artech House. 1995.
    [55] D. A. White. Vector finite element modeling of optical tweezers. Comp.Phy.Comm. 2000. 128.
    [56] Wriedt.T. Electromagnetic scattering programs. http://www. t-matrix.de/.
    [57] Flatau.PJ. SCATTERLIB. http://atol.ucsd.edu./~pflatau/scb/scatterlib.htm.
    [58] 吴振森,郭立新.吴成明. 离轴多层球对高斯波束的光散射. 光学学报. 1998. 18 682-687.
    [59] C. F.BOHREN. Aborsorption and Scattering of Light by Small Particles. 1940. 83-129.
    [60] 杜云刚. 光镊中粒子辐射捕获力的研究. 硕士论文.
    [61] 吴成明.吴振森. 两种时间因子下波束因子 的比较. 葛洲坝水电工程学院学报. 1996. 18(3). 41-47.
    [62] J. Bechhoefera,S. Wilson. Faster, cheaper, safer optical tweezers for the undergraduate laboratory. Am.J.Phys. 2002. 70. 393-400.
    [63] S. P. Smith,S. R. Bhalotra and A. L. Brody, et al. Inexpensive optical tweezers for undergraduate laboratories. Am.J.Phys. 1999. 67. 26-35.
    [64] D. N. Moothoo,J. Arlt and R. S. Conroy, et al. Beth’s experiment using optical tweezers,. Am.J.Phys. 2001. 69. 271-276.
    [65] 谈爱玲.史锦珊. 单模光纤微探头式技术. 激光与光电子学进展. 2004. 41(6). 38-40.
    [66] 胡朝晖,王佳.梁晋文. 远场光钳与近场光钳的发展. 光学技术. 2003. 29(3). 266-272.
    [67] R. Pastel,A. Struthers and R. Ringle. Laser trapping of microscopic particles forundergraduate experiments. Am. J. Phys. 2000. 68. 993-1001.
    [68] http://www.isibrno.cz/omitec/index.php? sbt.html
    [69] Simmons.R.M,Finer.J.T and Chu. S. Quantitative measurements of force and displacement using an optical trap. Biophys. J. 1996. 70. 1831-1822.
    [70] 黃钧正,吴崇安.邱而德. 光学嵌住之技术简介. 物理双月刊. 2000. 20(5). 477-484.
    [71] D. C. Appleyard,K. Y. Vandermeulen and H. Lee. Optical trapping for undergraduates. Am. J. Phys. 2007. 75. 5-14.
    [72] 王乃宁. 颗粒粒径的光学测量技术及应用. 北京原子能出版社. 2000. 82-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700