用户名: 密码: 验证码:
光合细菌利用低分子有机酸产氢的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢能由于高效、可再生以及无污染的特性,被认为是最具发展潜力的未来能源。同传统产氢方法相比,生物制氢方法对发展清洁高效的可再生能源和减少环境污染具有重要意义,符合可持续发展战略。目前,生物产氢的研究主要分为发酵和光合两种方法。由于发酵产氢过程中产生的低分子有机酸(VFAs)不能进一步有效的分解,而且这些低分子有机酸的累积在一定程度上阻碍了产氢底物的充分有效地利用。光合细菌能够利用这些低分子有机酸产氢。因而将光合细菌和发酵细菌耦合产氢是理想的产氢选择。其中,光合细菌利用低分子有机酸产氢是耦合法产氢的关键步骤。
     本文主要研究光合细菌沼泽红假单胞菌Rh.Palustris Z02利用这些低分子有机酸,如乙酸、丙酸、丁酸和乳酸等,进行光合产氢的试验研究。由于菌体是生物产氢过程中的关键因素,因而本文对光合细菌利用低分子有机酸的生长特性进行了研究。通过对比确定了修正的Gompertz模型作为光合细菌利用低分子有机酸生长的动力学模型。并对影响光合细菌的生长因素进行了试验研究。结果表明在pH7.0、温度30℃和光强2300 lux是光合细菌Rh.Palustris Z02最适宜的生长条件。
     微生物反应动力学是研究各种环境因素与微生物代谢活动之间相互作用随时间变化的规律。因而反应过程的参数对产氢研究是很重要的。本文建立了利用VFAs产氢过程中的菌体生长、产物形成、有机酸消耗、反应液pH变化以及有机酸降解等反应动力学模型,并进行了试验验证。同时通过试验发现有机酸为产氢抑制性底物,所以在Monod方程基础上进行修正,得到有机酸抑制的反应动力学方程(Andrew底物抑制模型),并通过试验验证了模型的可靠性。
     利用响应曲面法确定出适合光合细菌利用低分子有机酸的产氢条件。结果得到最佳产氢条件为pH7.0、温度30℃和光强6700 lux,菌体有最大的产氢率1.90 mol H_2/mol乙酸、2.38 mol H_2/mol丙酸、3.02 mol H_2/mol丁酸和1.75 mol H_2/mol乳酸。同时通过ANOVA分析发现,温度和pH具有相关性,而光强与pH和温度不偶联,所以光强可以作为产氢的独立影响因子进行单独研究。由于碳酸盐的缺乏会限制有机酸的利用和产氢,所以针对不同浓度NaHCO_3对Rh.Palustris Z02利用有机酸产氢的影响进行了研究。结果发现光合细菌Rh.Palustris Z02利用丙酸和丁酸产氢时需要NaHCO_3作为电子受体。本文还研究了抑制光合细菌产氢的两大因素:氧以及氨氮,结果表明NH_4~+古对于光合细菌利用低分子有机酸产氢的抑制是一贯的;大量O_2的存在抑制光合产氢,而微量的O_2可以促进产氢。当以氩气和微量的氧混合时达到最大产氢率。
     进一步研究了有机酸浓度对光合细菌Rh.Palustris Z02产氢的影响,主要对累积产氢量、产氢率和氢转化率几个指标进行探讨,并对这几个指标进行了试验研究和分析,分别建立以有机酸浓度为变量的累积产氢量、产氢率和氢转化率的数学模型,同时通过数学模型和试验数据的分析确定了氢转化率适合作为衡量不同有机酸不同浓度时菌体产氢能力的指标。结果表明试验范围内有机酸浓度对光合产氢的影响很大,过高浓度的有机酸对产氢有明显的抑制作用,产氢过程中这几种低分子有机酸均各自存在着一个最佳的产氢浓度值。并通过对数学模型的优化,发现三种低分子有机酸达到各自产氢时最佳有机酸浓度值的大小顺序分别为:乙酸>丙酸>丁酸。这说明丁酸浓度对产氢的影响作用要大于乙酸和丙酸。本文除对单一有机酸产氢的研究外,同时还进行了混合酸产氢的研究。由于乙酸和丁酸是发酵法产氢能力的指标也是发酵产氢的主要液相产物,所以本文对混合有机酸产氢的研究主要是集中在乙酸和丁酸混合的光合细菌产氢。而乙酸和丁酸的浓度比直接影响着光合产氢效果,通过响应曲面法(RSM)确定最佳的乙酸和丁酸浓度比为3.792,乙酸浓度为0.0383 mol/L时,达到最大的氢转化率43.88%。
     为了提高光合细菌利用低分子有机酸产氢以及抗环境因素干扰的能力,对这些低分子有机酸进行了固定化菌体光合产氢特性的试验研究。结果表明固定化能提高产氢率,以海藻酸钠为固定化载体的产氢效果最佳。同时发现固定化菌体利用有机酸产氢也存在最佳有机酸浓度,固定化菌体产氢的最佳有机酸浓度要高于游离态的最佳有机酸浓度。对于乙酸、丙酸和丁酸这三种小分子羧酸,其最佳有机酸浓度的大小同样随着有机酸碳原子数的增加而减小,即乙酸(0.043 mol/1)>丙酸(0.029 mol/1)>丁酸(0.022 mol/1)。其中乙酸的氢转化率最高,达到65.3%。在利用低分子有机酸所产生气相成分中,氢气含量因有机酸类型的不同而不同,并不受有机酸浓度,以及菌体固定化与否的影响。对于乙酸、丙酸和丁酸,氢气含量随着有机酸碳原子数的增加而增大。
     本文最后基于光合细菌利用VFAs产氢特性的研究结果,通过三种耦合方式产氢试验的对比,确定了两级串联生物产氢反应系统为最佳的耦合方式。
Hydrogen is the fuel of the future mainly due to its high conversion efficiency, recyclability and nonpolluting nature. Biological hydrogen production processes are found to be more environment friendly and less energy intensive as compared to traditional hydrogen production processes. It can be divided into two main categories, photosynthetic and fermentation process. The fermentative bacteria ferment organic wastes to H_2 and organic acids, but cannot utilize the organic acids as electron donors. Accumulation of these organic acids restrained hydrogen production and substrate adequate utilization. However, the photosynthetic bacteria can use these small-molecular organic acids as electron donors for the hydrogen production at the expense of light energy. Therefore, a more promising method of hydrogen production was combining the fermentative and phototrophic hydrogen production. And phototrophic hydrogen production from volatile fatty acids (VFAs) using phototrophic bacteria was the key approach of the hybrid system.
     In this paper, hydrogen production by photosynthetic bacteria (PSB) Rh.Palustris Z02 from individual VFAs, i.e. acetate, propionate, butyrate, lactic acid, which were the main effluent from the fermentative H_2 production reactor, was investigated. Bacteria is a key factor of biohydrogen production process, so the growth feature of PSB Rh.Palustris Z02 using VFAs were investigated. The modified Gompertz model was determined to describe the growth kinetics of Rh.Palustris Z02 by models comparison. And the growth factor was investigated also. The result showed that pH7.0, temperature 30℃and light intensity 2300 lux was the most suitable condition for the growth of Rh.Palustris Z02.
     Reaction kinetics of microorganism is research on relationship of all kinds of environmental factors and microorganism metabolism. Reaction parameters was vital for hydrogen production. In this paper, several reaction kinetic models were used to describe the growth of hydrogen producing microorganisms, consumption of VFAs, formation of product ,pH change and VFAs degradation in this work. The experimental data were subjected to numerical simulation to estimate the unknown kinetic constants for the substrate utilization, microbial growth and product formation in this hydrogen-producing process. Based on monad equation, Andrew substrate inhibitory model was used as the reaction kinetics equation of VFAs inhibition because higher concentration of VFAs was detrimental to hydrogen production. The results showed that the experimental data could be described by the proposed kinetic models with good agreements.
     The effects of pH, temperature and light intensity on the maximum hydrogen yield (mol/mol) were evaluated using a response-surface methodology (RSM). Experimental results showed that pH, temperature and light intensity all had an influence on hydrogen production. The maximum hydrogen yield of 1.90 mol H_2/mol acetate, 2.38 mol H_2/mol propionate, 3.02 mol H_2/mol butyrate, 1.75 mol H_2/mol lactic acid was estimated under the optimum conditions of pH 7, temperature 30℃and light intensity 6700 lux. The effect of pH and temperature were significant, but light intensity was insignificant with pH and temperature by ANOVA analysis. Since the absence of carbonate limits VFAs utilization and hydrogen production, the effect of various NaHCO_3 concentrations on hydrogen production from VFAs were evaluated. The results obtained in this research showed that the phototrophic hydrogen production from propionate and butyrate required carbonate as an electron acceptor. Furthermore, two main inhibitory factor of phototrophic hydrogen production (oxygen and NH_4~+-N_2) were investigated. the results showed that the inhibitory effect of NH_4~+ for phototrophic hydrogen production from VFAs was obvious. A large amount of O_2 in gas phase was toxic for phototrophic hydrogen production. However, a small quantity of O_2 can promote hydrogen production. When Argon gas and a small quantity of O_2 mixed together, the highest hydrogen yield was achieved.
     Effects of individual initial VFAs concentration (acetate and propionate ranging from 0.015 mol/l to 0.090 mol/l, and butyrate ranging from 0.005 mol/l to 0.090 mol/l) on phototrophic hydrogen production were evaluated by using PSB Rh.Palustris Z02. Experimental results indicated that VFAs concentration had a substantial effect on phototrophic hydrogen production. Hydrogen yield, cumulative hydrogen production volume and hydrogen conversion efficiency were evaluated at various initial VFAs concentration. The quadratic model was calculated for hydrogen yield and hydrogen conversion efficiency when initial VFAs concentration was variable. A modified cubic model was calculated for accumulative hydrogen production. The results demonstrated that H_2 conversion efficiency as a good indicator is more effective than the other two indices, hydrogen yield and cumulative hydrogen production volume. The observation demonstrated that higher VFAs concentration was detrimental to phototrophic hydrogen production. There was an optimal VFAs concentration within trial stretch for three VFAs individually. The optimal VFAs concentration of H_2 conversion efficiency followed the order of acetate > propionate > butyrate. Furthermore, hydrogen production from a mixture of the butyrate and acetate, which were the main effluent from the fermentative H_2 production reactor, was investigated. The ratio of acetate to butyrate (HAc/HBu ratio) had a substantial effect on phototrophic hydrogen production from mixture VFAs. HAc/HBu ratio on the maximum hydrogen conversion efficiency was evaluated using RSM. Experimental results showed that acetate concentration and butyrate concentration had an influence on hydrogen conversion efficiency. The effect of acetate concentration and butyrate concentration on hydrogen conversion efficiency were significant. A maximum hydrogen conversion efficiency of 43.88% was estimated at HAc/HBu ratio of 3.792, when acetate concentration was 0.0383 mol/L.
     In order to enhance hydrogen yield from VFAs, phototrophic hydrogen production from VFAs by immobilized Rh.Palustris Z02 were investigated. The results indicated that hydrogen yield of immobilized cells is higher than that of free cells, and sodium alginate is a suitable immobilized carrier for hydrogen production. Furthermore, pH change, hydrogen conversion efficiency and the effect of initial concentration of VFAs on hydrogen production were analyzed. The results demonstrated that higher concentration of VFAs was still detrimental to hydrogen production. However, the optimal VFAs concentration of immobilized cells was higher than that of free cells, the optimal initial concentration decreasing with carbon atomicity of VFAs increasing also, and following the order of acetate(0.043 mol/l)>propionate(0.029 mol/l)> butyrate(0.022 mol/l). The highest hydrogen conversion efficiency of 65.3% was achieved from acetate by immobilized cells. For acetate, propionate and butyrate, hydrogen content of biogas is increasing with carbon atomicity of VFAs increasing. But, initial VFAs concentration and immobilization of cells has no effect on hydrogen content.
     Finally, the mechanism and the feasibility of the hybrid biohydrogen production system of using fermentative and photosynthetic bacteria was analyzed and verified individually. Three hybrid approaches were tested, two-stage tandem connection biohydrogen production system was the best among three methods.
引文
[1]K.Vijayaraghavan,D.Ahmad,C.Soning.Bio-hydrogen generation from mixed fruit peel waste using anaerobic contact filter[J].International Journal of Hydrogen Energy,2007,doi:10.1016/j.ijhydene.2007.07.001.
    [2]K.-J.Wu,Y.-C.Lo,S.-D.Chen et al.Fermentative production of biofuels with entrapped anaerobic sludge using sequential HRT shifting operation in continuous cultures[J].Journal of the Chinese Institute of Chemical Engineers,2007,doi:10.1016/j.jcice.2007.04.006.
    [3]S.Venkata Mohan,V.Lalit Babu,P.N.Sarma.Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate[J].Bioresource Technology,2007,doi:10.1016/j.biortech.2006.12.004.
    [4]傅秀梅,王亚楠,王长云等.生物制氢--能源、资源、环境与经济可持续发展策略[J].中国生物工程杂志,2007,27(2):119-125.
    [5]X.Zeng,Y.Ma,L.Ma.Utilization of straw in biomass energy in China[J].Renewable and Sustainable Energy Reviews,2007,11(5):976-987.
    [6]中国新能源与可再生能源1999白皮书[M].中国计划出版社出版,2000
    [7]韩志国,李爱芬,龙敏南等.微藻光合作用产氢--能源危机的最终出路?[J].生态科学,2003,22(2):104-108.
    [8]D.-Y.Cheong,C.L.Hansen.Feasibility of hydrogen production in thermophilic mixed fermentation by natural anaerobes[J].Bioresource Technology,2007,95(11):2229-2239.
    [9]S.W.Van Ginkel,B.Logan.Increased biological hydrogen production with reduced organic loading[J].Water Research,2005,39(16):3819-3826.
    [10]S.Oh,B.E.Logan.Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies[J].Water Research,2005,39(19):4673-4682.
    [11]E.C.Vagia,A.A.Lemonidou.Thermodynamic analysis of hydrogen production via steam reforming of selected components of aqueous bio-oil fraction[J].International Journal of Hydrogen Energy,2006,doi/:10.1016/j.ijhydene.2006.08.021.
    [12]K.Vijayaraghavan,M.Amin Mohd Soom.Trends in biological hydrogen production--a review[J].International Journal of Hydrogen Energy,2004,doi:10.1016/j.ijhydene.2004.10.007.
    [13]张涛.氢能经济渐行渐近[J].太阳能,2004,(4):45-46.
    [14]杨志祥,张岩,王永胜.生物制氢的研究进展和应用前景[J].山西建筑,2006,32(5):161-182.
    [15]P.Yang,R.Zhang,J.A.McGarvey et al.Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities[J].International Journal of Hydrogen Energy,2007,doi:10.1016/j.ijhydene.2007.07.038.
    [16]Y.Mu,G.Wang,H.-Q.Yu.Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures[J].Bioresource Technology,2006,97(11):1302-1307.
    [17]S.Weil,S.Hamel,W.Krumm.Hydrogen energy from coupled waste gasification and cement production--a thermochemical concept study[J].International Journal of Hydrogen Energy,2005,doi/10.1016/j.ijhydene.2005.12.015.
    [18]王景儒.制氢方法及储氢材料研制进展[J].化学推进剂与高分子材料,2004,2(2):13-17,21.
    [19]周洁,郑颖平,谢吉虹.制氢技术研究进展及在燃料电池中的应用前景[J].化工时刊,2007,21(5):71-75.
    [20]S.Ust'ak,B.Havrland,J.O.J.Munoz et al.Experimental verification of various methods for biological hydrogen production[J].International Journal of Hydrogen Energy,2006,doi:10.1016/j.ijhydene.2006.12.010.
    [21]v.L.F.Stoll RE.Hydrogen-what are the costs?[J].Hydrocarbon Process,2000,79:42-46.
    [22]孙孝仁.21世纪的制氢技术[J].科技情报开发与经济,1995,5(4):17-18.
    [23]郑兴文,刘利,崔文权.可见光分解水制氢催化剂的研究进展[J].四川理工学院学报,2007,20(1):69-71.
    [24]L.Soler,J.Macanas,M.Munoz et al.Electrocatalytic production of hydrogen boosted by organic pollutants and visible light[J].International Journal of Hydrogen Energy,2006,31(1):129-139.
    [25]D.Das,T.N.Veziroglu.Hydrogen production by biological processes:a survey of literature[J].International Journal of Hydrogen Energy,2001,26(1):13-28.
    [26]A.Majizat,Y.Mitsunori,W.Mitsunori et al.Hydrogen gas production from glucose and its microbial kinetics in anaerobic systems[J].Water Science and Technology,1997,36(6-7):279-286.
    [27]H.Zhu,M.Beland.Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge[J].International Journal of Hydrogen Energy,2006,doi:10.1016/j.ijhydene.2006.01.019.
    [28]C.-Y.Lin,C.-Y.Lee,I.C.Tseng et al.Biohydrogen production from sucrose using base-enriched anaerobic mixed microflora[J].Process Biochemistry,2006,41(4):915-919.
    [29]王海宾,贾万利,柳耀辉.生物制氢的现状与发展趋势[J].生物技术,2005,15(4):90-93.
    [30]I.K.Kapdan,F.Kargi.Bio-hydrogen production from waste materials[J].Enzyme and Microbial Technology,2006,38(5):569-582.
    [31]闵航,陈美慈,赵宇华等.厌氧微生物学[M].杭州:浙江大学出版社,1993
    [32]Patrick C.Hallenbeck,J.R.Benemann.Biological hydrogen production;fundamentals and limiting processes[J].International Journal of Hydrogen Energy,2002,27:1185-1193.
    [33]柯水洲,马晶伟.生物制氢研究进展(Ⅰ)--产氢机理与研究动态[J].化工进展,2006,25(7):2001-1005,1010.
    [34]杨素萍,赵春贵,曲音波等.生物产氢研究与进展[J].中国生物工程杂志,2002,22(4):44-48.
    [35]杨素萍.光合细菌生物制氢研究[D].山东大学博士论文,2002,
    [36]刘如林,刁虎欣,梁凤来等.光合细菌及其应用[M].北京:中国农业科技出版社,1991
    [37]H.Gest,M.D.Kamen.Photoproduction of molecular hydrogen by Rhodospirillum rubrum[J].Science,1949,(109):558-559.
    [38]朱核光,赵琦琳,史家梁.光合细菌Rhodopseudomonas产氢的影响因子实验研究[J].应用生态学报,1997,8(2):194-198.
    [39]周汝雁,尤希凤,张全国.光合微生物制氢技术的研究进展[J].中国沼气,2006,24(2):31-34.
    [40]朱章玉,俞吉安,林志新等.光合细菌的研究及其应用[M].上海:上海交大出版社,1991
    [41]朱建良,何世颖.活性污泥降解有机物制氢技术[J].化工时刊,2003,17(4):5-9.
    [42]B.Fabiano,P.Perego.Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes[J].International Journal of Hydrogen Energy,2002,27(2):149-156.
    [43]尤希凤.光合产氢菌群的筛选及其利用猪粪污水产氢因素的研究[D].河南农业大学,2005
    [44]P.C.Hallenbeck,J.R.Benemann.Biological hydrogen production;fundamentals and limiting processes[J].International Journal of Hydrogen Energy,2002,27(11-12):1155-1193.
    [45]朱建良,冯有智.固氮类微生物产氢机理研究进展[J].南京工业大学学报:自然科学版,2003,25(1):102-106.
    [46]刘晶晶,龙敏南.氢酶结构及催化机理研究进展[J].生物工程学报,2005,21(3):348-353.
    [47]魏琪,孙启玲,张兴宇.关于生物制氢[J].微生物学杂志,2002,22(6):52-54.
    [48]欧阳平凯,韦萍等.生物化工研究现状与发展趋势[J].化工进展,2003,22(1):1-7.
    [49]王艳辉,吴迪镛.氢能及制氢的应用技术现状及发展趋势[J].化工进展,2001,(1):6-8
    [50]刘江华.氢能源-未来的绿色能源[J].新疆石油科技,2007,17(1):72-77.
    [5l]任南琪,李建政.生物制氢技术[J].太阳能,2003,(2):4-5.
    [52]任南琪,王宝贞.有机废水处理生物制氢技术[J].中国环境科学,1994,14(6):411-415.
    [53]李建政.有机废水发酵法生物制氢技术研究[D].哈尔滨建筑大学,1999.
    [54]李建政,任南琪.生物制氢技术的研究与发展[J].新能源与工艺,2001,218-20.
    [55]任南琪,王宝贞.有机废水发酵法生物制氢技术.原理与方法[M].哈尔滨:黑龙江科学技术出版社,1994.
    [56]任南琪,王宝贞,马放.有机废水产酸发酵的生理生态学分析[J].中国沼气,1995,13(1):1-6.
    [57]任南琪.产酸发酵细菌演替规律研究[J].哈尔滨建筑大学学报,1999,32(2):29-34.
    [58]孙寓姣,任南琪,王勇.丁酸型产氢-产酸发酵细菌pH生态位探讨[J].太阳能学报,2004,25(2):232-235.
    [59]李白昆,吕炳南,任南琪.厌氧产氢细菌发酵类型和生态学的研究[J].中国沼气,1997,15(2):3-7.
    [60]李建政,任南琪.产酸相最佳发酵类型工程控制对策[J].中国环境科学,1998,18(5):398-402.
    [61]任南琪.Control of fermentation types in continuousflow acidogenic reactorseffects of pH and redox potential[J].Journal of Harbin Institute of Technology(New Series),2001,8(2):116-119.
    [62]秦智,任南琪,李建政.丁酸型发酵产氢的运行稳定性[J].太阳能学报,2004,25(1):46-51.
    [63]任南琪,李建政,林明等.产酸发酵细菌产氢机理探讨[J].太阳能学报,2002,23(1):124-128.
    [64]王勇,任南琪,孙寓姣等.乙醇型发酵与丁酸型发酵产氢机理及能力分析[J].太阳能学报,2002,22(3):366-373.
    [65]任南琪,秦智,李建政.不同产酸发酵菌群产氢能力的对比与分析[J].环境科学,2003,24(1):70-74.
    [66]李白昆,吕炳南,任南琪.厌氧活性污泥与几株产氢细菌的产氢能力及协同作用研究[J].环境科学学报,1997,17(4):459-463.
    [67]林明,任南琪,王爱杰等.混合菌种在发酵法生物产氢中的协同作用[J].环境科学,2003,24(2):54-59.
    [68]Ren.N.,Wang.X.,Xiang.Wensheng.Hydrogen Production with High Evolution Rate and High Yield by Immobilized Cells of Hydrogen-producing Bacteria Strain B49 in a Column Reactor[y].HIGH TECHNOLOGY LETTERS,2002,8(4):21-25
    [69]林明,任南琪,王爱杰等.高效产氢发酵细菌在不同气相条件下产氢[J].中国沼气,2002,20(2):3-7,23.
    [70]林明,任南琪,王爱杰等.几种金属离子对高效产氢细菌产氢能力的促进作用[J].哈尔滨工业大学学报,2003,35(2):147-151.
    [71]王勇.任南琪,孙寓姣.Fe对产氢发酵细菌发酵途径及产氢能力影响[J].太阳能学报,2003, 24(2):222-226.
    [72]任南琪,丁杰,丁兰等.Effect of Cu^2+ concentration on hydrogen fermentation by mixed culture[J].Journal of Harbin Institute of Technology(哈尔滨工业大学学报:英文版),2004,11(1):11-16.
    [73]林明,任南琪,马汐平等.产氢发酵细菌培养基的选择和改进[J].哈尔滨工业大学学报,2003,35(4):398-402.
    [74]李秋波,邢德峰,任南琪等.C/N比对嗜酸细菌X-29产氢能力及其酶活性的影响[J].环境科学,2006,27(4):810-814
    [75]李永峰,任南琪,郑国香等.碳氮质量比对发酵细菌产氢性能的影响[J].化学工程,2005,33(4):41-43.
    [76]王勇,孙寓姣,任南琪等.C/N对细菌产氢发酵类型及产氢能力的影响[J].太阳能学报,2004,25(3):375-378.
    [77]任南琪,林明,马汐平等.厌氧高效产氢细菌的筛选及其耐酸性研究[J].太阳能学报,2003,24(1):80-84.
    [78]许丽英,任南琪,王兴祖等.产氢新种Ethanoligenens harbinese B49的氮素营养与代谢特征[J].环境科学学报,2006,26(10):1643-1650.
    [79]李永峰,任南琪,杨传平等.一株产氢产酸厌氧细菌的16S rDNA序列分析[J].东北林业大学学报,2005,33(2):65-67.
    [80]李永峰,任南琪,胡立杰等.高效产氢新菌种的分离鉴定与16S rDNA全序列[J].哈尔滨工业大学学报,2005,37(3):287-289.
    [81]李永峰,任南琪,杨传平等.16S rDNA测序快速鉴定废水生物处理系统目标细菌[J].哈尔滨工程大学学报,2005,26(6):806-810.
    [82]邢德峰,任南琪,宫曼丽.PCR-DGGE技术解析生物制氢反应器微生物多样性[J].环境科学,2005,26(2):172-176.
    [83]邢德峰,任南琪,宋业颖等.DG-DGGE分析产氢发酵系统微生物群落动态及种群多样性[J].生态学报,2005,25(7):1818-1823.
    [84]李永峰,任南琪,杨传平,李建政,王兴祖,李鹏.一株Clostridium属厌氧菌的分子鉴定与产氢特性[J].太阳能学报,2006,27(2):208-211.
    [85]N.Ren,J.Li,B.Li et al.Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system[J].International Journal of Hydrogen Energy,2006,31(15):2147-2157.
    [86]刘敏,陈滢,任南琪.模拟淀粉废水厌氧发酵生物制氢[J].四川大学学报(工程科学版),2006,38(2):55-59.
    [87]李建政,任南琪,林明等.有机废水发酵法生物制氢中试研究[J].太阳能学报,2002,23(2):252-256.
    [88]李永峰,任南琪,史英.有机废水生物制氢的连续流发酵工艺[J].新能源及工艺,2004,
    [89]R.Nandi,S.Sengupta.Microbial Production of Hydrogen:An Overview[J].Critical Reviews in Microbiology,1998,24(1):61-84.
    [90]徐方成,洪华生,龙敏南.通气提高Klebsiella oxytoca HP1发酵产氢[J].厦门大学学报(自然科学版),2006,45(6):832-835.
    [9l]陈双雅,牛莉莉,东秀珠.厌氧细菌Acetanaerobacterium elongatum从葡萄糖的产氢特性研究[J].微生物学报,2006,46(2):233-237.
    [92]黄锦丽,龙敏南,傅雅婕等.产酸克雷伯氏菌的吸附固定及其产氢研究[J].厦门大学学报(自然科学版),2005,44(5):710-713.
    [93]P.-Y.Lin,L.-M.Whang,Y.-R.Wu et al.Biological hydrogen production of the genus Clostridium:Metabolic study and mathematical model simulation[J].International Journal of Hydrogen Energy,2007,doi:10.1016/j.ijhydene.2006.12.009.
    [94]D.B.Levin,R.Islam,N.Cicek et al.Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates[J].International Journal of Hydrogen Energy,2006,31(11):1496-1503.
    [95]N.Kumar,D.Das.Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08[J].Process Biochemistry,2000,35(6):589-593.
    [96]J.-H.Shin,J.Hyun Yoon,A.Eun Kyoung et al.Fermentative hydrogen production by the newly isolated Enterobacter asburiae SNU-1[J].International Journal of Hydrogen Energy,2007,32(2):192-199.
    [97]杏艳,赵金安,樊耀亭等.含纤维素类生物质的生物制氢[J].太阳能学报,2006,27(7):656-660.
    [98]徐瑛,张茂林,杏艳等.纤维素类生物质厌氧发酵产氢的研究[J].2005,16(2):6-8.
    [99]Y.-T.Fan,Y.-H.Zhang,S.-F.Zhang et al.Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost[J].Bioresource Technology,2006,97(3):500-505.
    [100]张高生,李红卫,樊耀亭等.脱油芝麻饼厌氧发酵生物制氢[J].化学研究,2004,15(1):1-4.
    [101]Y.-T.Fan,G.-S.Zhang,X.-Y.Guo et al.Biohydrogen-production from beer lees biomass by cow dung compost[J].Biomass and Bioenergy,2006,30(5):493-496.
    [102]吴薛明.申宁,何冰芳.活性污泥处理高浓度基质发酵产氢条件的优化[J].南京工业大学学报,2006,28(3):28-32,73.
    [103]吴薛明.Biolog鉴定产氢发酵细菌及其产氢能力的研究[J].应用化工,2006,35(7):491-493.
    [104]卢文玉,闻建平,陈宇等.激光诱变选育耐酸产氢菌产气肠杆菌[J].化工进展,2006,25(7):799-802.
    [105]郑先君,陈志军,魏丽芳等.不同底物种类对厌氧发酵产氢的影响[J].河南化工,2005,22(7):12-14.
    [106]赵玉山,腾晓峰,张鹏等.混合厌氧微生物产氢研究[J].北京化工大学学报,2005,32(4):1-4.
    [107]李永峰,张文启,刘大伟等.活性污泥制氢系统中发酵细菌的分离与鉴定[J].哈尔滨商业大学学报(自然科学版),2005,21(5):563-565,71.
    [108]蔡木林,刘俊新.污泥厌氧发酵产氢的影响因素[J].环境科学,2005,26(2):98-101.
    [109]左宜,左剑恶,张薇.利用有机物厌氧发酵生物制氢的研究进展[J].环境科学与技术,2004,27(1):97-99.
    [110]左宜,左剑恶,张薇.利用河底污泥进行连续厌氧生物产氢的试验研究[J].中国沼气,2004,22(4):22-25.
    [111]任保增,唐大惠,李扬等.厌氧发酵生物制氢试验研究[J].郑州大学学报(工学版),2004,25(4):64-66.
    [112]卢怡,尹德升,张无敌等.牛粪、鸡粪发酵产氢潜力的研究[J].可再生能源,2004,(2):37-39.
    [113]卢怡,张无敌,宋洪川等.猪粪发酵产氢潜力的研究[J].可再生能源,2003,(2):11-13.
    [114]卢怡,张无敌,宋洪川等.稻草发酵产氢潜力的研究[J].新能源与工艺,2003,3:26-28.
    [115]赵春芳.邝生鲁,奚强.以葡萄糖为基质的消化污泥厌氧发酵产氢气的研究[J].化学工业与工程技术,2001,22(4):4-5.
    [116]C.-Y.Lin,H.-P.Chen.Sulfate effect on fermentative hydrogen production using anaerobic mixed microflora[J].International Journal of Hydrogen Energy,2006,31(7):953-960.
    [117]C.-N.Lin,S.-Y.Wu,J.-S.Chang.Fermentative hydrogen production with a draft tube fluidized bed reactor containing silicone-gel-immobilized anaerobic sludge[J].International Journal of Hydrogen Energy,2006,31(15):2200-2210.
    [118]C.-H.Wang,W.-B.Lu,J.-S.Chang.Feasibility study on fermentative conversion of raw and hydrolyzed starch to hydrogen using anaerobic mixed microflora[J].International Journal of Hydrogen Energy,2007,doi:10.1016/j.ijhydene.2007.05.009.
    [119]李建昌,张无敌,宋洪川,刘土清,马欢。夏朝凤.pH值调控对发酵产氢的影响[J].2004,(6):28-31.
    [120]洪天求,郝小龙,俞汉青.Na~+离子浓度对厌氧发酵产氢气影响的实验研究[J].水处理技术,2004,30(5):270-275.
    [121]H.Yang,J.Shen.Effect of ferrous iron concentration on anaerobic bio-hydrogen production from soluble starch[J].International Journal of Hydrogen Energy,2006,doi:10.1016/j.ijhydene.2006.02.009.
    [122]D.-H.Kim,S.-K.Han,S.-H.Kim et al.Effect of gas sparging on continuous fermentative hydrogen production[J].International Journal of Hydrogen Energy,2006,31(15):2158-2169.
    [123]M.B.Salerno,W.Park,Y.Zuo et al.Inhibition ofbiohydrogen production by ammonia[J].Water Research,2006,40(6):1167-1172.
    [124]V.Ginkel,S.W,L.Bruce.Increased biological hydrogen production with reduced organic loading[J].Water Research,2005,39(16):3819-3826.
    [125]Z.Yongfang,L.Guangzhen,S.Jianquan.Hydrogen production in batch culture of mixed bacteria with sucrose under different iron concentrations[J].International Journal of Hydrogen Energy,2005,30:855-860.
    [126]Y.Zhang,J.Shen.Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria[J].International Journal of Hydrogen Energy,2006,31:441-446.
    [127]牛莉莉,刘晓黎,陈双雅,东秀珠.一个新的高温产氢菌及产氢特性的研究[J].微生物学报,2006,46(2):280-284.
    [128]龙敏南,龙传南,邬小兵等.高产氢耐热菌株的分离鉴定及其放氢特性[J].厦门大学学报:自然科学版,2003,42(6):687-690.
    [129]A.Bisaillon,J.Turcot,P.C.Hallenbeck.The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli[J].International Journal of Hydrogen Energy,2006,31(11):1504-1508.
    [130]Minnan L,Jinli H,Xiaobin W et al.Isolation and characterization of a high H2-producing strain Klebsialle oxytoca HP1 from a hot spring[J].Res Microbiol,2005,(156):76-81.
    [131]P.K.Takahashi.Hydrogen Energy From Renewable Resources[J].Final Report to the Solar Energy Research Inst,Subcontract XK-5-05097-1,1986,1
    [132]陈因,方大维.蓝藻的光合放氢和参与放氢的酶[J].植物生理学报,1985,11(1):33-41.
    [133]顾天青,王发珠.螺旋藻整体细胞放氢特性的研究[J].植物生理学报,1984,10(1):1-9.
    [134]冉春秋,张卫,虞星炬,金美芳,邓麦村.解偶联剂CCCP对莱茵衣藻光照产氢过程的调控[J].高等学校化学学报,2006,27(1):62-66.
    [135]Z.L.Melis A,Forestier M,Ghirardi ML,Seibert M.Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii[J].Plant Physiol,2000,122(1),127-136.
    [136]T.Flynn,M.L.Ghirardi,M.Seibert.Accumulation of O2-tolerant phenotypes in H_2-producing strains of Chlamydomonas reinhardtii by sequential applications of chemical mutagenesis and selection[J].International Journal of Hydrogen Energy,2002,27(11-12):1421-1430.
    [137]J.K.Horner,M.A.Wolinsky.A power-law sensitivity analysis of the hydrogen-producing metabolic pathway in Chlamydomonas reinhardtii[J].International Journal of Hydrogen Energy,2002,27(11-12):1251-1255.
    [138]T.V.Laurinavichene,I.V.Tolstygina,R.R.Galiulina et al.Dilution methods to deprive Chlamydomonas reinhardtii cultures of sulfur for subsequent hydrogen photoproduction[J].International Journal of Hydrogen Energy,2002,27(11-12):1245-1249.
    [139]A.A.Tsygankov,S.N.Kosourov,I.V.Tolstygina et al.Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions[J].International Journal of Hydrogen Energy,2006,31(11):1574-1584.
    [140]李建昌,张无敌,宋洪川等.生物质产氢的研究现状与发展[J].能源工程,2001,615-19.
    [141]龙敏南等.螺旋菌放氢的研究[J].厦门大学学报(自然科学版),1998,37(6):921-924.
    [142]张全国,原玉丰,李鹏鹏,王艳锦.猪粪污水浓度对球形红假单胞菌光合制氢的影响[J].太阳能学报,2005,26(6).808-810.
    [143]张全国,王素兰,尤希凤.光合菌群产氢量影响因素的研究[J].农业工程学报,2006,22(10):181-185.
    [144]张军合,张全国,师玉忠,尤希风,刘振波.光合细菌高效产氢菌群在猪粪污水中产氢量的研究[J].河南农业大学学报,2006,40(2):177-180.
    [145]张军合,张全国,杨群发,王艳锦.光照度对猪粪污水条件下红假单胞菌光合产氢的影响[J].农业工程学报,2005,21(9):134-136.
    [146]张全国.尤希凤,雷廷宙等.太阳能光合生物制氢光转化效率的影响因素研究[J].河南农业大学学报,2004,38(1):96-99.
    [147]何德良,周舟,张小华,陈四海.几株荚膜红细菌变异体的光合制氢研究[J].2005,32(1):73-77.
    [148]杨素萍,赵春贵,曲音波等.铁和镍对光合细菌生长和产氢的影响[J].微生物学报,2003,43(2):257-263.
    [149]杨素萍,赵春贵,刘瑞田等.沼泽红假单胞菌乙酸光合放氢研究[J].生物工程学报,2002,18(4):486-491
    [150]H.Zhu,H.H.P.Fang,T.Zhang et al.Effect of ferrous ion on photo heterotrophic hydrogen production by Rhodobacter sphaeroides[J].International Journal of Hydrogen Energy,2007,doi:10.1016/j.ijhydene.2007.06.010.
    [151]H.Zhu,S.Ueda,Y.Asada et al.Hydrogen production as a novel process of wastewater treatment--studies on tofu wastewater with entrapped R.sphaeroides and mutagenesis[J].International Journal of Hydrogen Energy,2002,27(11-12):1349-1357.
    [152]徐向阳,俞秀娥,郑平等.固定化光合细菌产氢过程的基质利用动力学[J].生物工程学报,1995,11(1):51-57.
    [153]徐向阳,俞秀娥.固定化光合细菌利用有机物产氢的研究[J].生物工程学报,1994,10(4):362-368.
    [154]刘双江,孙燕,杨慧芳等.红假单胞菌H菌株生长细胞光照放氢条件的研究[J].微生物学通报, 1994,21(5):259-263.
    [155]刘双江,孙燕.固定化光合细菌处理豆制品废水产氢研究[J].环境科学,1995,16(1):42-44.
    [156]李捷,杨大庆,朱章玉.胶质红假单胞菌J_2菌株光合产氢的研究[J].上海交通大学学报,1994,28(2):76-82.
    [157]X.-Y.Shi,H.-Q.Yu.Response surface analysis on the effect of cell concentration and light intensity on hydrogen production by Rhodopseudomonas capsulata[J].Process Biochemistry,2005,40(7):2475-2481.
    [158]B.Uyar,I.Eroglu,M.Yucel et al.Effect of light intensity,wavelength and illumination protocol on hydrogen production in photobioreactors[J].International Journal of Hydrogen Energy,2007,doi:10.1016/j.ijhydene.2007.07.002.
    [159]E.-J.Kim,J.-S.Kim,M.-S.Kim et al.Effect of changes in the level of light harvesting complexes of Rhodobacter sphaeroides on the photoheterotrophic production of hydrogen[J].International Journal of Hydrogen Energy,2006,31(4):531-538.
    [160]C.-Y.Chen,C.-M.Lee,J.-S.Chang.Hydrogen production by indigenous photosynthetic bacterium Rhodopseudomonas palustris WP3-5 using optical fiber-illuminating photobioreactors[J].Biochemieal Engineering Journal,2006,32(1):33-42.
    [161]H.Takabatake,K.Suzuki,I.-B.Ko et al.Characteristics of anaerobic ammonia removal by a mixed culture of hydrogen producing photosynthetic bacteria[J].Bioresource Technology,2004,95:151-158.
    [162]T.Wakayama,J.Miyake.Light shade bands for the improvement of solar hydrogen production efficiency by Rhodobacter sphaeroides RV[J].International Journal of Hydrogen Energy,2002,27(11-12):1495-1500.
    [163]H.Koku,I.Eroglu,U.Gunduz et al.Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides[J].International Journal of Hydrogen Energy,2002,27(11-12):1315-1329.
    [164]S.Hoekema,M.Bijmans,M.Janssen et al.A pneumatically agitated flat-panel photobioreactor with gas re-circulation:anaerobic photoheterotrophic cultivation of a purple non-sulfur bacterium[J].International Journal of Hydrogen Energy,2002,27(11-12):1331-1338.
    [165]I.Akkerman,M.Janssen,J.Rocha et al.Photobiological hydrogen production:photochemical efficiency and bioreactor design[J].International Journal of Hydrogen Energy,2002,27:1195-1208.
    [166]M.Tadashi,H.Tomoyuki,Y.Akiyo.Microaerobic Hydrogen production by photosynthetic bacteria in a double phase photobioreactor[J].Biotechnology and Bioengineering,2000,68(6):647-651.
    [167]I.Eroglu,K.Asian,U.Gunduz et al.Substrate consumption rates for hydrogen production by Rhodobacter sphaeroides in a column photobioreactor[J].Journal of Biotechnology,1999,70(1-3):103-113.
    [168]H.Younesi,G.Najafpour,K.S.Ku Ismail et al.Biohydrogen production in a continuous stirred tank bioreactor from synthesis gas by anaerobic photosynthetic bacterium:Rhodopirillum rubrum[J].Bioresource Technology,2007,1:171.
    [169]Y.Ozturk,M.Yucel,F.Daldal et al.Hydrogen production by using Rhodobacter capsulatus mutants with genetically modified electron transfer chains[J].International Journal of Hydrogen Energy,2006,31(11):1545-1552.
    [170]M.-S.Kim,J.-S.Back,J.K.Lee.Comparison of H_2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant[J].International Journal of Hydrogen Energy,2006,31(1):121-127.
    [171]T.Kondo,M.Arakawa,T.Hirai et al.Enhancement of hydrogen production by a photosynthetic bacterium mutant with reduced pigment[J].Journal of Bioscience and Bioengineering,2002,93(2):145-150.
    [172]L.Vasilyeva,M.Miyake,E.Khatipov et al.Enhanced hydrogen production by a mutant of Rhodobacter sphaeroides having an altered light-harvesting system[J].Journal of Bioscience and Bioengineering,1999,87(5):619-624.
    [173]E.Eroglu,U.Gunduz,M.Yucel et al.Photobiological hydrogen production by using olive mill wastewater as a sole substrate source[J].International Journal of Hydrogen Energy,2004,29(2):163-171.
    [174]T.Kondo,M.Arakawa,T.Wakayama et al.Hydrogen production by combining two types of photosynthetic bacteria with different characteristics[J].International Journal of Hydrogen Energy,2002,27(11-12):1303-1308.
    [175]M.Yetis,U.Gunduz,I.Eroglu et al.Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U.001[J].International Journal of Hydrogen Energy,2000,25(11):1035-1041.
    [176]J.Miyake,T.Wakayama,J.Schnackenberg et al.Simulation of the daily sunlight illumination pattern for bacterial photo-hydrogen production[J].Journal of Bioscience and Bioengineering,1999,88(6):659-663.
    [177]K.K.Largus T.Angenent,Muthanna H.Al-Dahhan,Brian A.Wrenn,Rosa Domi'guez-Espinosa.Production of bioenergy and biochemicals from industrial and agricultural wastewater[J].TRENDS in Biotechnology,2004,22(9):477-485.
    [178]D.Li,H.Chen.Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation[J].International Journal of Hydrogen Energy,2007,doi:10.1016/j.ijhydene.2006.12.011.
    [179]D.-Y.Cheong,C.L.Hansen.Acidogenesis characteristics of natural,mixed anaerobes converting carbohydrate-rich synthetic wastewater to hydrogen[J].Process Biochemistry,2006,41(8):1736-1745.
    [180]N.Q.Ren,H.Chua,S.Y.Chan et al.Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors[J].Bioresource Technology,2006,doi:10.1016/j.biortech.2006.07.026.
    [181]X.Liu,Y.Zhu,S.-T.Yang.Butyric acid and hydrogen production by Clostridium tyrobutyricum ATCC 25755 and mutants[J].Enzyme and Microbial Technology,2006,38(3-4):521-528.
    [182]I.Hussy,F.R.Hawkes,R.Dinsdale et al.Continuous fermentative hydrogen production from sucrose and sugarbeet[J].International Journal of Hydrogen Energy,2005,30(5):471-483.
    [183]C.Collet,N.Adler,J.-P.Schwitzguebel et al.Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose[J].International Journal of Hydrogen Energy,2004,29(14):1479-1485.
    [184]张全国,尤希凤,张军合.生物制氢技术研究现状及其进展[J].生物质化学工程,2006,40(1):27-31.
    [185]杨素萍,赵春贵,李建波等.高效选育产氢光合细菌的研究[J].山东大学学报:理学版,2002,37(4):353-358.
    [186]N.Kataoka,A.Miya,K.Kiriyama.Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria[J].Water Science and Technology,1997,36(6-7):41-47.
    [187]H.H.P.Fang,H.Liu,T.Zhang.Phototrophic hydrogen production from acetate and butyrate in wastewater[J].International Journal of Hydrogen Energy,2005,30(7):785-793.
    [188]M.J.Barbosa,J.M.S.Rocha,J.Tramper et al.Acetate as a carbon source for hydrogen production by photosynthetic bacteria[J].Journal of Biotechnology,2001,85(1):25-33.
    [189]Y.-K.Oh,E.-H.Seol,M.-S,Kim et al.Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4[J].International Journal of Hydrogen Energy,2004,29(11):1115-1121.
    [190]X.Y.Shi,H.Q.Yu.Conversion of individual and mixed volatile fatty acids to hydrogen by Rhodopseudomonas capsulata[J].International Biodeterioration & Biodegradation,2006,doi:10.1016/j.ibiod.2006.07.004.
    [191]X.-Y.Shi,H.-Q.Yu.Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas capsulata[J].International Journal of Hydrogen Energy,2006,31(12):1641-1647.
    [192]B.JO'M.The origin of ideas on a hydrogen economy and its solution to the environment[J].International Journal of Hydrogen Energy,2002,27:731-740.
    [193]C.-M.Lee,P.-C.Chen,C.-C.Wang et al.Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent[J].International Journal of Hydrogen Energy,2002,27(11-12):1309-1313.
    [194]D.He,Y.Bultel,J.-P.Magnin et al.Hydrogen photosynthesis by Rhodobacter capsulatus and its coupling to a PEM fuel cell[J].Journal of Power Sources,2005,141(1):19-23.
    [195]任保增,唐大惠,胡庆丽,李扬,樊耀亭.清洁制氢技术[J].河南化工,2004,(11):5-7.
    [196]郑耀通,闵航.共固定光合和发酵性细菌处理有机废水生物制氢技术[J].污染防治技术,1998,11(3):187-189.
    [197]曹军卫,马辉文.微生物工程[J].科学出版社
    [198]刘艳玲,任南琪,刘敏等.气相色谱法厌氧反应器中的挥发性脂肪酸(Vfa)[J].哈尔滨建筑大学学报,2000,33(6):31-34.
    [199]李博,李里特,辰巳英三等.豆腐(豆浆)中屎肠球菌生长的温度预测模型[J].中国农业大学学报,2003,849-54.
    [200]汤琳,曾光明,孙伟等.Logistic方程在微生物分批培养动力学中的应用[J].湖南大学学报(自然科学版),2004,31(3):23-28.
    [201]杨海明,徐琪,戴国俊.禽类三种常用生长曲线浅析[J].中国家禽,2004,8(1):164-166.
    [202]邢黎峰,孙明高,王元军等.生物生长的Richards模型[J].生物数学学报,1998,13(3):348-353.
    [203]贾士儒.生物反应工程原理[M].科学出版社,2003.
    [204]孙军德,张恩禄,赵春燕等.沼泽红假单胞菌培养条件研究[J].沈阳农业大学学报,2003,34(1):28-30.
    [205]D.N.M,K.D.B.The inhibition by CO2 of the growth and metabolism of microorganisms[J].J Appl Baeteriol,1989,67(2):109-136.
    [206]J.R.P,,G.P.F.Efects of carbon dioxide on yeast growth and fermentation[J].Enzyme Mierob Teehnol,1982,4(4):210-223.
    [207]尚龙安,范代娣,Ho Nam Chang.高密度Ralstonia eutropha细胞培养过程中二氧化碳的生成及其抑制作用[J].高校化学工程学报,2004,18(5):633-638.
    [208]M.c.M,M.c.B.Morphogenetic an d biochemical efects of dissolved carbon dioxide on filamentous fungi in subm erged cultivation[J].I Appl Mierobiol Bioteehnol,1998,50(2):291-298.
    [209]方一丰,林逢凯,陆柱.补加营养元素对活性污泥法处理工业废水的优化作用[J].水处理技术,2006,32(9):15-18.
    [210]S.Jansen,G.Gonzalez-Gil,H.P.van Leeuwen.The impact of Co and Ni speciation on methanogenesis in sulfidic media--Biouptake versus metal dissolution[J].Enzyme and Microbial Technology,2007,40(4):823-830.
    [211]尤希凤,张全国,杨群发,原玉丰.天然混合产氢红螺菌培养条件[J].太阳能学报,2006,27(4):331-334.
    [212]M.O'zilgen.Kinetics of multiproduct acidogenic and solventogenic batch fermentations[J].Appl Microbiol.Biotechnol,1998,(29):536-543.
    [213]C.C.Chen,Lin,J.S.,Chang,J.S.Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose and the limiting substrate[J].Appl.Microbiol.Biotechnol.,2001,57:56-64.
    [214]W.C.Hu,Thayanithy,K.,Forster,C.F.A kinetic study of the anaerobic digestion of ice-cream wastewater[J].Process Biochemistry,2002,37:965-971
    [215]H.Fujikawa,Kai,A.,Morozumi,S.A.New logistic model for Escherichia coli growth at constant and dynamic temperatures[J].Food Microbiol,2004,21:501-509.
    [216]J.-J.Lay,Y.-J.Lee,T.Noike.Feasibility of biological hydrogen production from organic fraction of municipal solid waste[J].Water Research,1999,33(11):2579-2586.
    [217]Y.Mu,X.-L Zheng,H.-Q.Yu et al.Biological hydrogen production by anaerobic sludge at various temperatures[J].International Journal of Hydrogen Energy,2006,31(6):780-785.
    [218]Y.Mu,H.-Q.Yu,G.Wang.A kinetic approach to anaerobic hydrogen-producing process[J].Water Research,2007,41(5):1152-1160.
    [219]Y.Z.Fan,Wang,Y.Y.,Qian,P.Y.,Gu,J.D.Optimization of phthalic acid batch biodegradation and the use of modified Richards model for modelling degradation[J].Int.Biodeter.Biodegr,2004,53:57-63.
    [220]M.m.W.Parawira,R.Zvauya,B.Mattiasson.Comparative performance of a UASB reactor and an anaerobic packed-bed reactor when treating potato waste leachate[J].Renewable Energy,2006,31:893-903.
    [221]P.R.G.Plaza,O.Pacheco,A.Saravia Toledo Anaerobic treatment of municipal solid waste[J].Water Science Technology,1996,33(3):169-175.
    [222]T.S.S.Deswaef,S.Hiligsmann,X.Taillieu,N.Milande,Ph,Thonart,M.Crine.Treatment of gypsum waste in a two stage anaeroic reactor[J].Water Science Technology,1996,34(5):367-374.
    [223]S.K.Michal Perle,Gedaliah Shelef.Some biochemical aspects of the anaerobic degradation of dairy wastewater[J].Water Resources,1994,29(6):1549-1554.
    [224]S.-K.Han,S.-H.Kim,H.-S.Shin.UASB treatment ofwastewater with VFA and alcohol generated during hydrogen fermentation of food waste[J].Process Biochemistry,2005,40(8):2897-2905.
    [225]H.Yang,P.Shao,T.Lu et al.Continuous bio-hydrogen production from citric acid wastewater via facultative anaerobic bacteria[J].International Journal of Hydrogen Energy,2006,31(10):1306-1313.
    [226]H.H.P.Fang,H.Yu.Mesophilic acidification of gelatinaceous wastewater[J].Journal of Biotechnology,2002,93(2):99-108.
    [227]孙琦,徐向阳.光合细菌产氢条件的研究[J].微生物学报,1995,35(1):65-73.
    [228]X.Chen,Y.Sun,Z.Xiu et al.Stoichiometric analysis of biological hydrogen production by fermentative bacteria[J].International Journal of Hydrogen Energy,2006,31(4):539-549.
    [229]洪天求,郝小龙,俞汉青.有机废水厌氧发酵产氢技术的现状与发展[J].合肥工业大学学报:自然科学版,2003,26(5):947-952.
    [230]罗欢,黄兵,包云.固定化微生物制氢技术的研究进展[J].江西农业学报,2007,19(4):89-93.
    [23l]杨素萍,赵春贵,曲音波等.光合细菌产氢研究进展fJ].水生生物学报,2003,27(1):85-91.
    [232]D.NR,L.DKJ.Small response-surface designs.[J].Technometrics,1990,(32):187-94.
    [233]F.J.Cui,Y.Li,Z.H.Xu et al.Optimization of the medium composition for production of mycelial biomass and exo-polymer by Grifola frondosa GF9801 using response surface methodology[J].Bioresource Teehnology,2006,(97):1209-1216.
    [234]P.Reddy,G.Reddy,G.Seenayya.Production of thermostable pullulanase by Clostridium thermesulfurogenes SV2 in solid-state fermentation:optimization of nutrients levels using response surface methodology.[J].Bioprec Eng,1999,21:497-503.
    [235]A.Sircar,P.Sridhar,P.K.Das.Optimization of solid state medium for the production of clavulanic acid by Streptomyces clavuligerus[J].Process Biochemistry,1998,33(3):283-289.
    [236]赵海珍,陆兆新,吕凤霞,别小妹.脂肪酶催化猪油与辛酸酸解制备功能性脂反应条件的优化[J].中国生物工程杂志,2005,25(9):78-83.
    [237]宫衡,李小明,伦世仪.响应面法优化赖氨酸发酵培养基[J].生物技术,1995,5(4):13-15.
    [238]F.Omil,P.Lens,L.W.H.Pol et al.Characterization of biomass from a sulfidogenic,volatile fatty acid-degrading granular sludge reactor[J].Enzyme and Microbial Technology,1997,20(3):229-236.
    [239]计红芳,陈锡时,王爱杰.光合细菌光合产氢的研究进展[J].微生物学杂志,2002,22(5):44-46.
    [240]张明,史家良.光合细菌光合产氢机理研究进展[J].应用于环境生物学报,1999,5(增)25-29.
    [241]刘如林,梁凤来,刁虎欣等.光合细菌及其应用[M].北京:北京农业科技出版社,1991
    [242]H.Ooshima,S.Takakuwa,T.Katsuda et al.Production of hydrogen by a hydrogenase-deficient mutant of Rhodobacter capsulatus[J].Journal of Fermentation and Bioengineering,1998,85(5):470-475.
    [243]杨素萍,曲音波.光合细菌生物制氢[J].现代化工,2003,23(9):17-22.
    [244]吴永强,陈秉俭,仇哲.球红假单胞菌在暗处发酵生长时的固氮酶、吸氢酶以及放氢机制的研究[J].微生物学通报,1991,18(2):71-75.
    [245]陈华癸,樊庆笙.微生物学[M].华中农业大学,南京农业大学主编,1995
    [246]孙金华,宋鸿遇.光与氨对Rhodopseudomonas capsulata固氮活性的调节[J].植物生理学报,1982,11(1):84-92.
    [247]吴永强,宋鸿遇.光合细菌固氮分子生物学研究进展[J].植物生理学通讯,1991,27(3):161-166.
    [248]Hillmer P,G.H.H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata:H2production by growing cultures[J].Bacteriol,1977,129(2):724-731.
    [249]X.Y.Shi,H.Q.Yu.Conversion of individual and mixed volatile fatty acids to hydrogen by Rhodopseudomonas capsulata[J].International Biodeterioration and Biodegradation,2006,58(2):82-88.
    [250]L.Jun,Z.Z.jia,L.Z.rong et al.Removal of organic matter and nitrogen from distillery wastewater by a combination of methane fermentation and denitrification/nitrification processes[J].Journal of Environmental sciences,2006,18:654-659.
    [251]张立宏.周俊虎,陈明等.NH~(+4)对混合菌种的生长及光合产氢的影响[J].太阳能学报,已录用,
    [252]C.-Y.Lin,R.-C.Chang.Fermentative hydrogen production at ambient temperature[J].International Journal of Hydrogen Energy,2004,29(7):715-720.
    [253]Y.Asada,J.Miyake.Photobiological hydrogen production[J].Journal of Bioscience and Bioengineering,1999,88(1):1-6.
    [254]C.M.Buchanan RL.A mathematical approach toward defining and calculating the duration of lag phase[J].Food Microbiol,1990,(7):237-40.
    [255]D.-Y.Cheong,C.L.Hansen.Acidogenesis characteristics of natural,mixed anaerobes converting carbohydrate-rich synthetic wastewater to hydrogen[J].Process Biochemistry,2006,41(8):1736-1745.
    [256]T.Notice,H.Takabatake,O.Mizuno et al.Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria[J].International Journal of Hydrogen Energy,2002,27(11-12):1367-1371.
    [257]A.J.Guwy,F.R.Hawkes,D.L.Hawkes et al.Hydrogen production in a high rate fluidised bed anaerobic digester[J].Water Research,1997,31(6):1291-1298.
    [258]R.Conrad,M.Klose.Anaerobic conversion of carbon dioxide to methane,acetate and propionate on washed rice roots[J].FEMS Microbiology Ecology,1999,30(4,for sentence):147-155.
    [259]F.Omil,P.Lens,L.Hulshoff Pol et al.Effect of upward velocity and sulphide concentration on volatile fatty acid degradation in a sulphidogenic granular sludge reactor[J].Process Biochemistry,1996,31(7):699-710.
    [260]H.Liu,A.Shao et al.Production of Electricity from Acetate or Butyrate Using a Single-Chamber Microbial Fuel Cell[J].Environ.Sci.Technol,2005,39,658-662.
    [261]S.K.Khanal,W.H.W.-H.Chen,L.Li et al.Biological hydrogen production:effects of pH and intermediate products[J].International Journal of Hydrogen Energy,2004,29(11):1123-1131.
    [262]Oh SE,lyer P,Bruns M et al.Biological hydrogen production using membrane bioreactor[J].Biotech Bioeng,2004,(1):119-27.
    [263]P.-Y.Lin,L.-M.Whang,Y.-R.Wu et al.Biological hydrogen production of the genus Clostridium:Metabolic study and mathematical model simulation[J].International Journal of Hydrogen Energy,2007,doi:10.1016/j.ijhydene.2006.12.009.
    [264]J.Wang,P.Liu,Y.Qian.Biodegradation of phthalic acid esters by immobilized microbial cells[J].Environmental International,1997,(23):775-782.
    [265]Y.Wang,Y.Fan,J.-D.Gu.Dimethyl phthalate ester degradation by two planktonic and immobilized bacterial consortia[J].International Biodeterioration & Biodegradation,2004,(53):93-101.
    [266]G.L.A.Lata A,Diaz M.Analysis and description of the evolution of alginate immobilized cells systems[J].Journal of Biotechnology,2000,80:203-215.
    [267]H.Zhu,T.Suzuki,A.A.Tsygankov et al.Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels[J].International Journal of Hydrogen Energy,1999,24:305-310.
    [268]李捷,杨大庆,朱章玉.胶质红假单胞菌j2菌株光合产氢的研究[J].上海交通大学学报,1994,28(2):76-82.
    [269]林祺能.固定化细胞产氢[D].台湾逢甲大学化学工程研究所.2002,
    [270]Yokoi H,Tokushige T,Hirose J et al.Hydorgen production by immobilized cells of aciduric Eneterobacter aerogenes strain HO-39[J].J Ferment Bioeng,1997,(83):482-484.
    [271]J.O.Kim,Y.H.Kim,J.Y.Ryu et al.Immobilization methods for continuous hydrogen gas production biofilm formation versus granulation[J].Process Biochemistry,2005,40(3-4):1331-1337.
    [272]任南琪,唐婧,宫曼丽.生物载体强化的连续流生物制氢反应器的运行特性[J].环境科学,2006,27(6):1177-1181.
    [273]N.Kumar,D.Das.Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08using lignocellulosic materials as solid matrices[J].Enzyme and Microbial Technology,2001,29(4-5):280-287.
    [274]Wang Xiangjing,Ren Nanqi.Comparative analysis of hydrogen-producing bacteria and its immobilized cells for characteristics of hydrogen production[J].Journal of harbin institute of technology,2003,10(4):403-408.
    [275]Z.-P.Zhang,J.-H.Tay,K.-Y.Show et al.Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor[J].International Journal of Hydrogen Energy,2007,32(2):185-191.
    [276]K.-J.Wu,J.-S.Chang.Batch and continuous fermentative production of hydrogen with anaerobic sludge entrapped in a composite polymeric matrix[J].Process Biochemistry,2007,42(2):279-284.
    [277]S.-Y.Wu,C.-N.Lin,J.-S.Chang et al.Biohydrogen production with anaerobic sludge immobilized by ethylene-vinyl acetate copolymer[J].International Journal of Hydrogen Energy,2005,30(13-14):1375-1381.
    [278]徐向阳,郑平,俞秀娥.固定化光合细菌处理有机废水过程产氢的研究---红假单胞菌菌株D利用有机物光产氢的特性[J].太阳能学报,1993,14(4):288-294.
    [279]T.V.Laurinavichene,A.S.Fedorov,M.L.Ghirardi et al.Demonstration of sustained hydrogen photoproduction by immobilized,sulfur-deprived Chlamydomonas reinhardtii cells[J].International Journal of Hydrogen Energy,2006,31(5):659-667.
    [280]S.A.Markov,M.J.Bazin,D.O.Hall.Hydrogen photoproduction and carbon dioxide uptake by immobilized Anabaena variabilis in a hollow-fiber photobioreactor[J].Enzyme and Microbial Technology,1995,17(4):306-310.
    [281]王雪梅,于明锐,谭天伟.海藻酸钠复合载体固定化细胞拆分D,L-泛解酸内酯[J].北京化工大学学报,2006,33(3):28-32.
    [282]F.Omil,P.Lens,L.W.H.Pol et al.Characterization of biomass from a sulfidoenic volatile fatty acid-degrading granular sludge reactor[J].Enzyme and Microbial Technology,1997,(20):229-236.
    [283]C.Collet,N.Adler,J.-P.Schwitzgu et al.Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose[J].International Journal of Hydrogen Energy,2004,29(14):1479-1485.
    [284]梁建光,吴永强.生物产氢研究进展[J].微生物学通报,2002,29(6):81-85.
    [285]马欢,李建昌,刘士清,张无敌.乙酸对发酵产氢过程的抑制影响[J].可再生能源,2005,4:23-25.
    [286]H.Liu,G.Stephen et al.Electrochemically Assisted Microbial Production of Hydrogen from Acetate[J].Environ.Sci.Technol,2005,39:4317-4320.
    [287]Y.Tao,Y.Chen,Y.Wu et al.High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose[J].International Journal of Hydrogen Energy,2006,doi:10.1016/j.ijhydene.2006.06.034.
    [288]李冬敏,陈洪章,李佐虎.生物制氢技术的研究进展[J].生物技术通报,2003,(4):1-5.
    [289]H.Zhu,T.Wakayama,Y.Asada et al.Hydrogen production by four cultures with participation by anoxygenic phototrophic bacterium and anaerobic bacterium in the presence of NH_4~+[J].International Journal of Hydrogen Energy,2001,26(11):1149-1154.
    [290]H.H.P.Fang,H.Zhu,T.Zhang.Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and Rhodobacter sphaeroides[J].International Journal of Hydrogen Energy,2006,doi:10.1016/j.ijhydene.2006.03.005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700