用户名: 密码: 验证码:
虚拟自然场景建模和可视化的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虚拟自然场景的建模和可视化是一个极富挑战性的研究课题,在GIS、娱乐与游戏、研究与教学、合成环境、飞行仿真、数字展示、虚拟战场等众多领域都具有广阔的应用前景。
     自然场景所包含的内容非常广泛,包括天空、陆地和海洋,以及空中、地上、水上水下的各种现象,这些场景和现象的建模和可视化方法多种多样,非常复杂。虚拟自然场景是一个典型的交叉研究领域,所涉及的领域非常多,包括生物学、物理学、计算机科学等。本文的研究主要从计算机科学与技术的角度出发,针对自然场景建模和可视化研究中所广泛关注的三大目标,即真实性、实时性和可展示性,围绕该领域中关于单株植物的快速建模和可视化、大规模地形的实时绘制、大规模自然场景的软硬件环境构建和交互方法几个主要问题进行了深入研究。本文的具体内容包括:
     第一,研究了基于L系统的虚拟植物生长模拟。这类模拟通常是计算和数据密集的过程。本文基于L系统内在的分支结构,利用二叉树作为底层数据组织方式重新实现了一类带括号的随机的上下文相关参数L系统。和传统的利用数组作为底层数据结构的L系统相比,新系统在生长模拟环节有更高的时空效率,且具备更好的可扩展性。此外,利用单株植物生长过程内在的并行逻辑,研究了单株植物的并行生长模拟算法,并实现了单株植物的sort-last并行绘制算法。数值实验证明了多处理器架构下我们并行算法的有效性。
     第二,研究了基于不规则三角网的分块地形绘制算法。随着GPU技术的发展,地形实时绘制算法研究的焦点转移到如何充分利用GPU的渲染和计算能力,减轻CPU的实时计算负担上。通过一个预处理过程,分块LOD算法可达到上述目的。但现有算法主要是基于半规则三角网生成技巧设计的,与之相伴的顶点冗余现象会造成实际网格规模要远大于用户的需要。本文基于Bowyer-Watson增量插点技巧,实现了一个健壮的Delaunay网格生成算法,用于生成不包含任何冗余顶点的不规则三角网。典型应用中,新算法能使网格规模降低3成左右,这不仅显著减少了预处理所产生的中间文件大小,也有利于提升后续的绘制效率。
     第三,研究了大规模自然场景半沉浸式展示平台的设计方法。该平台使用微机集群进行并行绘制,使用投影机阵列拼接构成大尺寸高分辨率的显示环境,使用摄像机跟踪手势进行人机交互和场景漫游。主要工作包括:(1)系统研究了新型的完全基于通用硬件的大规模自然场景展示平台构建方法,包括整个系统的软硬件架构、并行绘制体系,以及投影仪的几何和色彩校正。(2)提出和实现了一种基于摄像机的手势交互方法。该方法使用经验模型进行肤色分割实现手的检测,使用CamShift算法进行手的跟踪,使用Freeman算法进行轮廓抽取,并根据曲率实现手势识别。最终将手势识别结果转换为通用的鼠标和键盘指令,对场景进行操纵。
     最后,为验证和展示上述研究成果,本文以显示墙为显示终端,将本文实现的虚拟植物建模及地形可视化算法,与其他三类景物元素(植被、水和天空)的常用可视化算法相集成,实现了一套具有多种组成元素的复杂场景系统。利用手势交互,用户可以有效地在这些场景中漫游,获取半沉浸式的交互感。
Modeling and visualization of virtual nature scenes is a challenging research area, which is used in a wide variety of applications, such as GIS, 3D game, education, synthesized environment, flight simulation, digital exhibition and virtual battle.
     A nature scene consists of plants, terrain, sky, water, and various associated natural phenomena. Research on nature scenes is related to a wide variety of subjects including biology, physics, computer science and so on, therefore it is a typical cross-disciplinary research area. There exist a great number of ways to model and visualize nature sceness, yet most of them are complicated. Motivated by popular objectives from the view of computer science and technology, hoping to render large scale virtual nature scenes in a way of realisticity, real-time and scalibility, this paper addresses some new approaches to modeling and visualizing individual plants, rendering terrains in real time, and exhibiting large scale nature scenes on a display wall with high resolution and interaction functionality. Following are details about our research contents.
     Firstly, a new approach to model and visualize individual plants based on L-System is investigated. It usually is a process with intensive computation and datasets. This new approach takes the binary tree as a fundamental data structure, so that it could make great use of the internal branch structure of L-System. Based on this structure, a bracketed, stochastic, context-sensitive and parametric L-System is re-implemented. Compared with traditional L-System based on the array structure, the new algorithm has shown higher efficiency in terms of processing time and space, as well as scalability at the stage of plant development. Furthermore, this paper presents a new parallel algorithm for simulating the growth of individual plants, and also implements a parallel sort-last rendering algorithm. Results of numerical experiments have demonstrated that our parallel strategy works effectively on clusters with a multi-processors architecture.
     Secondly, a new chunked LOD algorithm based on Triangulated Irregular Netwrok (TIN) is proposed. With the rapid development of GPU technology, the focus of terrain rendering algorithms has been gradually moved from CPU to GPU, whose objective is to make use of the powerful capability of computation and rendering on GPU, so as to decrease the burden on CPU. Chunked LOD was designed originally for this purpose. However, the current version of chunked LOD is mainly aiming to semi-regular triangular network. The problem is that it easily produces redundant vertices, which will cause the grid scale tremendously expanded. Based on Bowyer-Watson incremental point insertion technique, this paper presents a robust Delaunay algorithm for TIN creation. The new algorithm avoids production of redundant vertices, therefore the grid scale has been greatly decreased about 3 times for typical applicagtion examples. The benefit is not only the decrease of interim file size, but also the efficiency of terrain rendering.
     Thirdly, a new approach to construct a semi-immersive display wall for exhibiting large scale nature scenes is introduced. It utilizes sort-first parallel rendering based on PC clusters for a high ratio of performance/price, a software seamless alignment method for great scalability, and also hand gestures based on computer vision for flexible human computer interaction. The major contribution includes: (1) A construction method of a display wall based on popular commodity hardware has been systematically studied, including system architecture, geometry calibration, color calibration, parallel rendering, software platform, and etc. (2) A hand gesture interaction method based on computer vision is introduced. The method detects hands by using the color segmentation model, tracks hands by the CamShift algorithm, extracts hand contour by Freeman algorithm, and at last captures hand gestures by fingers curvature. Once the hand gestures are recognized, they are then mapped to the common keyboard and mouse instructions, which are used to control roaming on nature scenes.
     To demonstrate the effectiveness of our research achievement, finally we have designed a platform for exhibiting complex nature scenes, which integrates both the algorithms of virtual plant modeling and terrain visualization mentioned above, as well as regular algorithms for visualizing other elements, including plant communities, water and sky. Several examples have been exhibited. Through hand gesture interaction, users are able to experience the dramatic feeling of interactive, half-immersive roaming on the beautiful nature scenes.
引文
[1]胡包钢,赵星,严红平,等.植物生长建模与可视化-回顾与展望.自动化学报,2001,27(6):816-835.
    [2]唐泽圣.三维数据场可视化.清华大学出版社,北京,1999.
    [3]赵星,Reffye Pd,熊范纶,等.虚拟植物生长的双尺度自动机模型.计算机学报,2001,24(6):608-615.
    [4]Lindenmayer A.Mathematical Models for Cellular Interactions in Development,Parts Ⅰ and Ⅱ.Journal of Theoretical Biology,1968,18(3):280-315.
    [5]Bamsley MF.Fractals Everywhere.Morgan Kaufmann Publisher,San Francisco,USA,1993.
    [6]王东生,曹磊.混沌、分形及其应用.中国科学技术出版社,合肥,1995.
    [7]Reeves WT,Blau R.Approximate and Probabilistic Algorithms for Shading and Rendering Structured Particle Systems.Computer Graphics,1985,19(3):313-322.
    [8]Reeves WT.Particle Systems-A Technique for Modeling a Class of Fuzzy Objects.Computer Graphics,1983,2(2):91-108.
    [9]Reffye Pd,Edelin C,Francon J,et al.Plant Models Faithful to Botanical Structure and Development.Computer Graphics,1988,22(4):151-158.
    [10]Reffye Pd,Houllier F.Modeling Plant Growth and Architecture:Some Recent Advance and Applications to Agronomy and Forestry.Current Science,1997,73(11):984-991.
    [11]丁维龙.虚拟植物生长模型及其与智能系统集成研究.博士学位论文,中国科学技术大学,2004.
    [12]Smith GS,Curtis JP,Edwards CM.A Method for Analyzing Plant Architecture As It Relates to Fruit Quality Using Three-Dimensional Computer Graphics.Annals of Botany,1992,70(3):265-269.
    [13]郭焱,李保国.玉米冠层的数学描述与三维重建研究.应用生态学报,1997,10(1):39-41.
    [14]Smith AR.Plants,Fractals and Formal Languages.Computer Graphics,1984,18(3):1-10.
    [15]Herman GT,Schiff GL.Developmental Systems and Languages.Elsevier Science Inc.,New York,USA,1975.
    [16] Rozenberg G, Salomaa, A. The Mathematical Theory of L Systems. Academic Press, Orlando, USA, 1980.
    [17] Prusinkiewicz P, Hanan J. Visualization of Botanical Structures and Processes Using Parametric L-Systems. In: Thalmann D, eds.,Scientific Visualization and Graphics Simulation, John Wiley & Sons, Inc., New York, USA, 1990,183-201.
    [18] Mech R, Prusinkiewicz P, Hanan. J. Extensions to the Graphical Interpretation of L-Systems Based on Turtle Geometry. Ph.D Thesis, University of Calgary, Canada, 1987.
    
    [19] Prusinkiewicz P, Hanan J. Visualization of Botanical Structures and Processes Using Parametric L-Systems. Scientific Visualization and Graphics Simulations, J.Wiley & Sons 1990,183-201.
    
    [20] Prusinkiewicz P. Applications of L-Systems to Computer Imagery. Proceedings of the 3rd International Workshop on Graph-Grammars and Their Application to Computer Science, 1986, 534-548.
    [21] Yokomori T. Stochastic Characterizations of EOL Languages. Information and Control, 1980,45(1):26-33.
    [22] Eichhorst P, Savitch WJ. Growth Functions of Stochastic Lindenmayer Systems. Information and Control, 1980,45(3):217-228.
    [23] Lindenmayer A, Rozenberg G. Automata, Languages, Development. North-Holland Publishing Co., New York, USA, 1976.
    [24] Salomaa A. Formal Languages. Academic Press, New York, USA, 1973.
    [25] Baker RW, Herman GT. Simulation of Organisms Using a Developmental Model Part I. International Journal of Bio-Medical Computing, 1972,3(3):201-215.
    [26] Baker RW, Herman GT. CELIA—A Cellular Linear Iterative Array Simulator. Proceedings of the Fourth Conference on Applications of Simulation, 1970, 64-73.
    [27] Prusinkiewicz P, James M, Mech R. Synthetic Topiary. Proceedings of SIGGRAPH'94, Orlando, USA, 1994, 351-358.
    [28] Prusinkiewicz P, Hammel MS, Mjolsness E. Animation of Plant Development. Proceedings of SIGGRAPH'93, Anaheim, USA, 1993,351-360.
    [29] Prusinkiewicz P. A Look At the Visual Modeling of Plant Using L-Systems. Agronomic, 1990,29:211-224.
    [30] Hanan JS. Parametric L-Systems and Their Application to the Modelling and Visualization of Plants. Ph. D Thesis, University of Regina, Canada, 1992.
    [31] Prusinkiewicz P, Lindenmayer A. The Algorithmic Beauty of Plants. Springer-Verlag New York, Inc., New York, USA, 1990.
    [32] Prusinkiewicz P, Hammel M, Hanan JS, Mech R. Visual Models of Plant Development. In: Rozenberg G., Salomaa A, eds., Handbook of Formal Languages, Vol. 3: Beyond Words, Springer-Verlag New York, Inc., New York, USA, 1997, 535-597.
    [33] Pajarola R, Gobbetti E. Survey on Semi-Regular Multiresolution Models for Interactive Terrain Rendering. The Visual Computer, 2007,23(8):583-605.
    [34] Miller CL, Laflamme RA. The Digital Terrain Model-Theory and Applications. Photogrammetic Engineering. Photogramm Eng. Remote Sensing, 1958, 24(3):433-442.
    [35] Cignoni P, Ganovelli F, Gobbetti E, et al. BDAM-Batched Dynamic Adaptive Meshes for High Performance Terrain Visualization. Computer Graphics Forum, 2003,22(3):505-514.
    [36] Cignoni P, Ganovelli F, Gobbetti E, et al. Planet-Sized Batched Dynamic Adaptive Meshes (P-BDAM). Proceedings of IEEE Visualization, 2003,147-155.
    [37] Lario R, Pajarola R, Tirado F. Hyperblock-QuadTIN: Hyperblock Quadtree Based Triangulated Irregular Networks. Proceedings of IASTED International Conference on Visualization, Imaging and Image Processing (VHP), 2003, 733-738.
    [38] Rusinkiewicz S, Levoy M. QSplat: A Multiresolution Point Rendering System for Large Meshes. Proceedings of SIGGRAPH'OO, New Orleans, USA, 2000, 343-352.
    [39] Rusinkiewicz S, Levoy M. Streaming QSplat: A Viewer for Networked Visualization of Large, Dense Models. Proceedings of 2001 ACM Symposium on Interactive 3D Graphics, 2001. 63-68.
    [40] Wald I, Dietrich A, Slusallek P. An Interactive Out-of-Core Rendering Framework for Visualizing Massively Complex Models. ACM SIGGRAPH 2005 Courses, Los Angeles, USA, 2005.
    [41] Funkhouser TA, Sequin CH. Adaptive Display Algorithm for Interactive Frame Rates During Visualization of Complex Virtual Environments. Proceedings of SIGGRAPH'93,1993,247-254.
    [42] Clark JH. Hierarchical Geometric Models for Visible Surface Algorithms. Communications of the ACM 1976,19(10):547-554.
    [43] Correa WT, Klosowski JT, Silva CT. Interactive Out-of-Core Rendering of Large Models. Technical Report TR-653-02, Princeton University, 2002.
    [44] Assarsson U, Moller T. Optimized View Frustum Culling Algorithms for Bounding Boxes. Journal o f Graphics Tools, 2000, 5(1):9-22.
    [45] Levi O, Zohar R, Klimovitski A. A Compact Method for Backface Culling. Computers and Graphics,1995,25(5):483-487.
    [46]潘李亮.基于LOD的大规模真实感室外场景实时渲染技术的初步研究.博士学位论文,西北工业大学,2005.
    [47]谭兵,徐青,周杨.大区域地形可视化技术的研究.中国图像图形学报,2003,8(5):578-584.
    [48]尤克非,明得烈,王广君,等.基于局部熵和四叉树结构的地形简化算法.中国图像图形学报,2002,7(10):1083-1888.
    [49]Hoppe H.Smooth View-Dependent Level-of-Detail Control and Its Application to Terrain Rendering.Proceedings of IEEE Visualization 1998,1998,35-42.
    [50]Willem H,Boer de.Fast Terrain Rendering using Geometrical Mipmapping.2000,http://www.flipcode.org/archives/article_geomipmaps.pdf.
    [51]Ulrich T.Rendering Massive Terrains Using Chunked Level of Detail Control.ACM SIGGRAPH 2002 Courses,2002.
    [52]Lindstrom P,Pascucci V.Terrain Simplification Simplified:A General Framework for View-Dependent Out-of-Core Visualization.IEEE Transaction on Visualization and Computer Graphics,2002,8(3):239-254.
    [53]张明.GPU加速的实时三维海洋漫游系统.硕士学位论文,大连理工大学,2006.
    [54]Vanecek P,Kolingerova I.Comparison of Triangle Strips Algorithms.Computer and Graphics,2007,31(1):100-118.
    [55]Hoppe H.Progressive Meshes.Proceedings of SIGGRAPH'96,1996,99-108.
    [56]Hoppe H.View-Dependent Refinement of Progressive Meshes.Proceedings of SIGGRAPH'97,1997,189-198.
    [57]Duchaineau M,Woinsky M,Sigeti DE,et al.ROAMing Terrain:Real-Time Optimally Adapting Meshes.Proceedings of IEEE Visualization 1997,1997,81-88.
    [58]Jonathan B.Terrain Rendering at High Levels of Detail.Proceedings of the 2000Game Developers Conference,2000,1-6.
    [59]Evans F,Skiena SS,Varshney A.Optimizing Triangle Strips for Fast Rendering.Proceedings of IEEE Visualization 1996,1996,319-326.
    [60]Evans W,Kirkpatrick D,Townsend G.Right Triangulated Irregular Networks.Algorithmica,2001,30(2):264-286.
    [61]Lindstrom P,Koller D,Ribarsky W,et al.Real-Time,Continuous Level of Detail Rendering of Height Fields.Proceedings of SIGGRAPH'96,1996,109-118.
    [62]Lindstrom P,Pascucci V.Visualization of Large Terrains Made Easy.Proceeding of IEEE Visualization 2001,San Diego,USA,2001,363-370.
    [63] Gersner T. Top-Down View-dependent Terrain Triangle Triangulation Using the Octagon Metric. Technical Report, Institut fur Angewante Mathematik, 2003.
    [64] Losasso F, Hoppe H. Geometry Clipmaps: Terrain Rendering Using Nested Regular Grids. Proceedings of SIGGRAPH'04,2004, 769-776.
    [65] Tanner C, Migdal C, Jones M. The Clipmap: A Virtual Mipmap. Proceedings of SIGGRAPH'98, 1998, 151-158.
    [66] Li K, Chen H, Chen Y, et al. Building and Using a Scalable Display Wall System. Computer Graphics and Applications, IEEE Computer Graphics and Applications, 2000,20(4):29-37.
    [67] Czerwinski M, Smith G, Regan T, et al. Toward Characterizing the Productivity Benefits of Very Large Displays. Proceedings of Interact. 2003,2003,9-16.
    [68] PowerWall. http://www.lcse.umn.edu/research/powerwall/powerwall.html.
    [69] Yang R, Gotz D, Hensley J, et al. PixelFlex: A Reconfigurable Multi-Projector Display System. Proceedings of IEEE Visualization 2001,2001, 167-174.
    [70] Raij A, Gill G, Majumder A, et al. PixelFlex2: A Comprehensive, Automatic, Casually-Aligned Multi-Projector Display. Proceedings of IEEE International Workshop on Projector-Camera Systems, 2003,203-211.
    [71] Wei B, Silva C, Koutsofios E, et al. Visualization Research with Large Displays. IEEE Computer Graphics and Applications, 2000,20(4):50-54.
    [72] Hereld M, Judson IR, Paris J, et al. Developing Tiled Projection Display Systems. Proceedings of the 4th Immersive Projection Technology Workshop, 2000.
    [73] Jeong B, Jagodic R, Renambot L, et al. Scalable Graphics Architecture for High-Resolution Displays. Proceedings of IEEE Information Visualization Workshop, 2005.
    [74] Bresnahan G, Gasser R, Abaravichyus A, et al. Building a Large-Scale High-Resolution Tiled Rear-Projected Passive Stereo Display System Based on Commodity Components. Stereoscopic Displays and Virtual Reality Systems. In: Woods AJ, Bolas MT, Merritt JO, Benton SA, eds., Stereoscopic Displays and Virtual Reality Systems X, Proceedings of SPIE 5006,2003,19-30.
    [75] Surati RJ. Scalable Self-Calibrating Display Technology for Seamless Large-Scale Displays. Ph. D Thesis, Massachusetts Institute of Technology, USA, 1999.
    [76] Chen Y, Clark DW, Finkelstein A, et al. Automatic Alignment of High-Resolution Multi-Projector Display Using an Un-Calibrated Camera. Proceedings of the IEEE Visualization 2000, 2000:125-130.
    [77] Chen H, Sukthankar R, Wallace G, Li K. Scalable Alignment of Large-Format Multi-Projector Displays Using Camera Homography Trees.Proceedings of IEEE Visualization 2002,2002,339-346.
    [78]Stone MC.Color and Brightness Appearance Issues in Tiled Displays.IEEE Computer Graphics and Applications,2001,21(5):58-66.
    [79]Stone MC.Color Balancing Experimental Projection Displays.Proceedings of the 9th IS&T/SID Color Imaging Conference,2001,342-347.
    [80]Bern M,Eppstein D.Optimized Color Gamuts for Tiled Displays.Proceedings of the 9th Annual Symposium on Computational Geometry,2003,274-281.
    [81]Wallace G,Chen H,Li K.Color Gamut Matching for Tiled Display Walls.Proceedings of the Workshop on Virtual Environments,2003,293-302.
    [82]Majumder A,Jones D,McCrory M,et al.Using a Camera to Capture and Correct Spatial Photometric Variation in Multi-Projector Displays.IEEE International Workshop on Projector-Camera Systems,2003.
    [83]Majumder A,Stevens R.Perceptual Photometric Seamlessness in Projection-Based Tiled Displays.ACM Transactions on Graphics,2005,24(1):118-139.
    [84]Segal M,Akeley K.The OpenGL Graphics System:A Specification(Version 2.0).http://wwwopenglorg/documentation/specs/version20/glspec20pdf,2004.
    [85]Igehy H.Scalable Graphics Architectures:Interface and Texture.Ph.D Thesis,Stanford University,USA,2000.
    [86]解利军.基于可伸缩立体显示墙的可视计算环境构建.博士学位论文,浙江大学.2007.
    [87]Welch GF.SCAAT:Incremental Tracking with Incomplete Information.Ph.D Thesis:University of North Carolina at Chapel Hill,USA,1996.
    [88]Rebecca CA,Peter AJ,Jingyuan Z.Enhanced Interactive Datawall:Display Architecture for Data Fusion and Collaboration in C2 Environments.In:James CB,Daniel DD,Eric WF,et al,eds.,Proceedings of SPIE,the International Society for Optical Engineering,2006,156-166.
    [89]Krumbholz C,Leigh J,Johnson A,et al.Lambda Table:High Resolution Tiled Display Table for Interacting with Large Visualizations.Proceedings of the 5th Workshop on Advanced Collaborative Environments,Redmond,Washington,2005.
    [90]Brown MS,Wong WKH.Laser Pointer Interaction for Camera-Registered Multiprojector Displays.Proceedings of 2003 International Conference on Image Processing,2003.
    [91]Guimbretikre F,Stone M,Winograd T.Fluid Interaction with High-Resolution Wall-Size Displays.Ph.D Thesis,Stanford University,USA,2002.
    [92]Jedrysik PA,Moore J,Brykowytch M,et al.The Interactive DataWall.Proceedings of the Command and Control Research and Technology Symposium,1999.
    [93]Rebecca CA,Peter AJ,Jingyuan Z.Enhanced Interactive Datawall:Display Architecture for Data Fusion and Collaboration in C2 Environments.In:James CB,Daniel DD,Eric WF,et al,editors.;SPIE;2006,156-166.
    [94]任海兵,祝远新.基于视觉手势识别的研究综述.电子学报,2000,28(2):118-121.
    [95]王修辉.面向多投影显示墙的画面校正与三维交互技术研究.博士学位论文,浙江大学;2007.
    [96]Wu Y,Huang TS.Hand Modeling,Analysis and Recognition.IEEE Signal Processing Magazine,2001,18(3):51-60.
    [97]任海兵,徐光祜.基于特征线条的手势识别.软件学报,2002,13(5):987-993.
    [98]Cui Y,Weng J.View-Based Hand Segmentation and Handsequence Recognition with Complex Backgrounds.Proceedings of the 13th International Conference on Pattern Recognition,1996,617-621.
    [99]Kim H,Fellner DW.Interaction with Hand Gesture for a Back-Projection Wall.Proceedings of IEEE International Conference on Computer Graphics,2004,395-402.
    [100]Kim H,Albuquerque G;Havemann S,et al.Tangible 3D:Immersive 3D Modeling through Hand Gesture Interaction.Proceedings of the 9th International Workshop on Immersive Projection Technology,2004.
    [101]Vogel D,Balakrishnan R.Distant Freehand Pointing and Clicking on Very Large,High Resolution Displays.Proceedings of the 18th Annual ACM Symposium on User Interface Software and Technology,2005,33-42.
    [102]Malik S,Ranjan A,Balakrishnan R.Interacting with Large Displays from a Distance with Vision-Tracked Multi-Finger Gestural Input.Proceedings of the 18th Annual ACM Symposium on User Interface Software and Technology,2005,43-52.
    [103]Ringel M,Berg H,Jin Y,Winograd,et al.Barehands:Implement-Free Interaction with a Wall-Mounted Display.Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,2001,367-378.
    [104]Rekimoto J.A Multiple Device Approach for Supporting Whiteboard-Based Interactions.Proceedings of the SIGCHI Conference on Human Factors in Computing Systems 1998,344-351.
    [105]Osawa N.Automatic Adjustments for Efficient and Precise Positioning and Release of Virtual Objects.Proceedings of the 2006 ACM International Conference on Virtual Reality Continuum and Its Applications,2006,121-128.
    [106]Blundell BG,Schwarz AJ.The Classification of Volumetric Display Systems:Characteristics and Predictability of the Image Space.IEEE Transactions on Visualization and Computer Graphics,2002,8(1):66-75.
    [107]Leigh J,Dawe G,Talandis J,et al.AGAVE:Access Grid Augmented Virtual Environment.Proceedings of the Access Grid Retreat,Argonne,Illinois,2001.
    [108]Pape D,Anstey J,Dawe G.Low-Cost Projection-Based Virtual Reality Display.Proceedings of SPIE 2003,2003,4660:483-490.
    [109]Andrea Esuli's website,http://www.esuli.it/archives/2006/04/entry_12.html
    [110]Stripe Homepage.http://www.cs.sunysb.edu/-stripe/.
    [111]Shewchuk JR.Delaunay Refinement Mesh Generation.Ph.D Thesis.Cameigie Mellon University,USA,1997.
    [112]Bowyer A.Computing Dirichlet Tessellations.The Computer Journal,1981,24:167-172.
    [113]Watson D.Computing the N-Dimensional Delaunay Tessellation with Application to Voronoi Polytopes.The Computer Journal,1981,24:167-172.
    [114]Baker TJ.Three-Dimensional Mesh Generated by Triangulation of Arbitrary Point Sets.AIAA Paper 87-1124-CP,Proceedings of AIAA 8th Computational Fluid Dynamics Conference,Hawaii,USA,1987..
    [115]Baker TJ.Automatic Mesh Generation for Complex Three-Dimensional Regions Using a Constrained Delaunay Triangulation.Engineering with Computers 1989,5:161-175.
    [116]陈建军.非结构化网格生成及其并行化的若干问题研究.博士学位论文,浙江大学,2006.
    [117]Elevation File Repository.http://www.vterrain.org/BT/
    [118]Large Geometric Models Archive.http://www.cc.gatech.edu/projects/large_models/
    [119]Chen H,Chen Y,Finkelstein,et al.Data Distribution Strategies for High-Resolution Displays.Computers and Graphics 2001,25(5):811-818.
    [120]Molnar S,Cox M,Ellsworth D,et al.A Sorting Classification of Parallel Rendering.IEEE Computer Graphics and Applications,1994,14(4):23-32.
    [121]Mueller C.Hierarchical Graphical Databases in Sort-First.Proceedings of the IEEE Symposium on Parallel Rendering,1997,49-57.
    [122]Mueller C.The Sort-First Rendering Architecture for High-Performance Graphics. Proceedings of the 1995 Symposium on Interactive 3D Graphics, 1995, 75-84.
    [123]Harrell CB, Fouladi F. Graphics Rendering Architecture for a High Performance Desktop Workstation. Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, 1993,93-100.
    [124]Akeley K. Reality Engine Graphics. Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, 1993,109-116.
    [125]Montrym JS, Baum DR, Dignam DL, et al. InfiniteReality: a Real-Time Graphics System. Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, 1997,293-302.
    [126]Fuchs H, Israel L, Poulton J, et al. Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics System Using Processor-Enhanced Memories. Proceedings of the 16th Annual Conference on Computer Graphics and Interactive Techniques, 1989,79-88.
    [127]Igehy H, Stoll G, Hanrahan P. The Design of a Parallel Graphics Interface. Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, 1998,141-150.
    [128]Molnar S, Eyles J, Poulton J. PixelFlow: High-Speed Rendering Using Image Composition. Computer Graphics 1992,26(2):231-240.
    [129]Eyles J, Molnar S, Poulton J, et al. PixelFlow: the Realization. Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Wokshop on Graphics Hardware. 1997, 57-68.
    [130] Stoll G, Hanrahan P, Eldridge M, et al. Lightning-2: A High-Performance Display Subsystem for PC Clusters. Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, 2001,141-148.
    [131]Moll L, Heirich A, Shand M. Sepia: Scalable 3D Compositing Using PCI Pamette. Proceedings of the 7th Annual IEEE Symposium on Field-Programmable Custom Computing Machines., 1999,146-155.
    [132]Cunniff R. Visualize Fx Graphics Scalable Architecture. Proceedings of EUROGRAPHICS /SIGGRAPH Hot3D, 2000,29-38.
    [133] Humphreys G, Houston M, Ng R, et al. Chromium: a Stream-Processing Framework for Interactive Rendering on Clusters. ACM Transactions on Graphics, 2002,21(3):693-702.
    [134] Buck I, Humphreys G, Hanrahan P. Tracking Graphics State for Networked Rendering. Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, 2000, 87-95.
    [135] Humphreys G.A Stream Processing Approach to Interactive Graphics on Clusters of Workstations. Ph. D Thesis, Stanford University, USA, 2002.
    [136]Majumder A, He Z, Towles H, et al. Achieving Color Uniformity Across Multi-Projector Displays. Proceedings of IEEE Visualization 2000, Salt Lake City, USA, 2000,117-124.
    [137]Bordes N, Pailthorpe B. High Resolution Scalable Displays: Manufacturing and Use. Proceedings of the 2004 Australasian Symposium on Information Visualization, 2004,151-156.
    [138]Debevec PE, Malik J. Recovering High Dynamic Range Radiance Maps from Photographs. Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, 1997, 369-378.
    
    [139] 胡友树.手势交互技术综述.中国科技信息,2005,2(41):42-42.
    
    [140] Freeman WT, Roth M. Orientation Histograms for Hand Gesture Recognition. Proceedings of IEEE International Workshop on Automatic Face and Gesture Recognition, Zurich, 1995.
    [141]Segen J, Kumar S. Video-Based Gesture Interface to Interactive Movies. Proceedings of the Sixth ACM International Conference on Multimedia: Technologies for Interactive Movies, 1998,39-42.
    [142]Hardenberg CV, Berard F. Bare-Hand Human-Computer Interaction. Proceedings of the 2001 Workshop on Perceptive User Interface, 2001,1-8.
    [143]Malik S, Laszlo J. Visual Touchpad: A Two-Handed Gestural Input Device. Proceedings of the 6th International Conference on Multimodal Interfaces,, 2004, 289-296.
    [144] Viola P, Jones M. Rapid Object Detection Using a Boosted Cascade of Simple Features. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), 2001.
    [145]Kolsch M, Turk M, Hollerer T. Vision-Based Interfaces for Mobility. Proceedings of the Inernational Conference on Mobile and Ubiquitous Systems, 2004.
    [146]Argyros AA, Lourakis MIA. Real-Time Tracking of Multiple Skin-Colored Objects with a Possibly Moving Camera. Proceedings of the 8th European Conference on Computer Vision (ECCV 2004), 2004, 368-379.
    [147]Dhawale P, Masoodian M, Rogers B. Bare-Hand 3D Gesture Input to Interactive Systems. Proceedings of the 7th ACM SIGCHI New Zealand Chapter's International Conference on Computer-Human Interaction: Design Centered HCI, Christchurch, New Zealand, 2006,25-32.
    [148]Kuch JJ, Huang TS. Vision Based Hand Modeling and Tracking for Virtual Teleconferencing and Telecollaboration.Proceedings of the 5th International Conference on Computer Vision,1995.
    [149]Lui TY,Izquierdo E.Automatic Detection Of Human Faces in Natural Scene Images by Use of Skin Color and Edge Distribution.Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition,1998,112-117.
    [150]彭娟春,顾立忠 苏剑波.基于Camshift和Kalman滤波的仿人机器人的手势跟踪.上海交通大学学报,2006,40(7):1161-1165.
    [151]Argyros AA,Lourakis MIA.Vision-Based Interpretation of Hand Gestures for Remote Control of a Computer Mouse,Proceedings of ECCV Workshop on HCI 2006,2006,40-51.
    [152]马骏,朱衡君,龚建华.基于Cg和OpenGL的实时水面环境模拟.系统仿真学报,2006,8(2):395-400.
    [153]米剑,刘鹏远,张锡恩,等.视景仿真中天空背景的真实感改进.系统仿真学报,2001,13(11):220-223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700