用户名: 密码: 验证码:
高灵敏度GPS接收技术中几个关键问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,GPS (Global Positioning System,全球定位系统)已经在全世界得到了广泛的应用,但大多都是在信号条件较理想的环境中。当信号条件不理想时,例如在室内、森林和城市环境条件下,遮挡、多径和干扰等现象较严重,GPS就不能得到很好的应用。在GPS领域内,室内、森林和城市等复杂环境被统称为室内环境。与普通环境相比,GPS信号在室内环境中,能量有更多的削弱和衰落,到达时间有更大的延迟,接收信噪比有更大程度的恶化,所以,其可用性和普通GPS接收机的定位精度都会大大下降,GPS的总体性能会严重恶化,这样普通的GPS接收机将难以捕获和跟踪导航卫星信号。而室内环境恰是人类活动的主要环境之一,在室内环境中有很多重要的GPS应用需求,又高灵敏度GPS接收技术是一种满足室内环境要求的定位技术,所以,高灵敏度GPS接收技术的研究非常必要,高灵敏度GPS接收机已成为当前的研究热点。
     本文介绍了GPS信号特点,分析了室内环境GPS信号的特性,针对高灵敏度GPS接收技术中的几个关键问题,设计并实现了高灵敏度GPS接收技术研究平台。在此基础之上,设计了高灵敏度GPS接收机系统结构,对高灵敏度GPS捕获和跟踪技术进行了较深入的分析和研究,构造了高灵敏度GPS载波跟踪结构和高灵敏度GPS码多普勒补偿方法,创造性地提出了两种高灵敏度GPS互相关减轻方法∶并行互相关减去法和基于频差因子的并行互相关减去法,及两种高灵敏度GPS码相位测量精化方法∶二阶最小二乘拟合精化法和广义延拓逼近精化法。
     仿真实验结果表明∶互相关减轻的两种新方法去除互相关效果良好,较前人构造的方法实用性更强,基于频差因子的并行互相关减去法在计算量方面有更大的优势,可以加快高灵敏度GPS接收机信号捕获速度,节省基带信号处理时间;与其它方法相比,码相位测量精化的两种新方法在精确性、稳定性和跟踪作用等方面都分别具有较大优势。广义延拓逼近精化法的精化精度和跟踪精度最高,二阶最小二乘拟合精化法的稳定性最好,且该两种方法计算量小、易于实现,在低信噪比、大码多普勒的情况下引导跟踪,可以使码相位测量达到更好的效果。
     总之,这些方法在室内环境的高灵敏度GPS接收机中有较好的应用价值。
Now, GPS is applied broadly in the world, but in the situation, the users are usually in the environments where there are good GPS signals. When the users are in the environments where there are not good signals, such as, indoor, in forests and in cities, GPS will not be able to be used well because of shading, multipath, and interference and so on. Indoor, forests and cities and so on are able to be called indoor environments. Compared with the common circumstance, signal power, TOA and reception S/N of GPS signals will be worsened much severely, and positioning precision of GPS receivers, availability of GPS signals and general performances of GPS will be declined in the indoor circumstance, so usual GPS receivers will be hard to acquire and track the signals from navigation satellites. However, the indoor environment is one of the main environments where humans live. In indoor environments, there are a lot of application needs of GPS, and high sensitivity GPS receiving technique is a kind of technique meeting the needs of positioning in indoor environments, so researches on high sensitivity GPS receiving technique are necessary in the extreme and the researches on high sensitivity GPS receivers become hot points currently.
     In the dissertation, at first, traits of GPS signals were introduced, and the characteristics of indoor GPS signals were analyzed. In terms of several crucial problems in high sensitivity GPS receiving techniques, the research plat of high sensitivity GPS receiving techniques was designed and implemented. On the basis of them, the system architecture for high sensitivity GPS receivers was designed, high sensitivity GPS acquisition and tracking techniques were analyzed and researched deeply, high sensitivity GPS carrier tracking architecture and the method of compensating for code Doppler were constructed, and two new methods of cross correlation mitigation : the parallel cross correlation subtraction method and the parallel cross correlation subtraction method based on frequency difference coefficient, and two new methods of code phase measurement fining : the LS(Least Square) fitting fining method and the generalized extended approximation fining method were created.
     By simulation tests, the effects of the two cross correlation mitigation methods were good and the practicality of them was high compared with the foregoing methods. The parallel cross correlation subtraction method based on frequency difference coefficient had much advantage on computation quantity, and was able to accelerate the acquiring speed of high sensitivity receivers and save the time of baseband signals processing.
     Simulation tests proved that the two new methods of code phase measurement fining had great advantages in accuracy, stability, and tracking performance separately over the other methods. The accuracy and tracking performance of the fining method by generalized extended approximation were the best, and the stability of the fining method by LS (Least Square) fitting was highest. Their computation quantity was little, and they were able to be implemented very easily. In the situations of low signal noise ratio and great Doppler frequency, they can induct tracking and acquire code phase measurement fining effects.
     In conclusion, the new methods have good application values to high sensitivity GPS receivers in indoor environments.
引文
[1]蔡昌听,皮亦鸣.高灵敏度GPS技术的研究进展[J].全球定位系统,2006(2).
    [2] Skolnik M. I..Introduction to Radar Systems[M]. New York: McGraw-Hill, 1962.
    [3] Bassem R. Mahafza. MATLAB Simulations for Radar Systems Design[M]. London: Chapman & Hall/Crc, 2004.
    [4] Barton D. K..Modern Radar System Analysis[M]. Norwood, MA: Artech House, 1988.
    [5]田明坤.高动态GPS接收机设计中几个关键问题的研究[D].北京:北京航空航天大学, 2002.
    [6]薛文芳.高动态GPS接收机设计中几个关键问题的研究[D].北京:北京航空航天大学, 2002.
    [7]李小民.高动态环境GPS应用中的几个关键问题研究[D].北京:北京航空航天大学, 1999.
    [8] N.Agarwal, J. Basch. Algorithms for GPS Operation Indoors and Downtown[J]. GPS Solutions, 2002(3): 149-160.
    [9] Pierre-Yves Gilliéron, Daniela Büchel, Ivan Spassov, Bertrand Merminod. Indoor Navigation Performance Analysis[C]. ENC GNSS, Rotterdam, 2004.
    [10] Nesreen I. Ziedan. GNSS Receivers for Weak Signals[M]. Boston: Artech House Publishers, 2006.
    [11] David M Lin, James B. Y. Tsui. A Software Receiver for Weak Signals[C]. IEEE International Microwave Symposium, 2001.
    [12] Akos D.M., Normark P.L., Lee J.T., Gromov K.G., Tsui J.B.Y., Schamus J.. Low Power Global Navigation Satellite System (GNSS) Signal Detection and Processing[C]. Proceedings of the ION GPS 2000, Salt Lake City, UT, 2000: 784-791.
    [13] Starzyk J.A, Zhu Z. Averaging Correlation for C/A Code Acquisition and tracking in Frequency Domain[C]. Midwest Symposium on Circuits and Systems, Fairborn, Ohio, 2001: 905-909.
    [14] Zhu Z. Averaging Correlation for Weak Global Positioning System Signal Processing[D]. Ohio: Ohio University, 2002.
    [15] Psiaki M.L. Block Acquisition of Weak Signals in a Software Receiver[C]. ION GPS 2001, Salt Lake City, UT, 2001: 2838-2850,.
    [16] D. M. Lin, J.B.Y. Tsui. An Efficient Weak Signal Acquisition Algorithm for a Software GPS Receiver[C]. ION GPS 2001, Salt Lake City, UT, 2001: 115-119.
    [17] D. M. Lin, J.B.Y. Tsui, D. Howell. Direct P(Y)-Code Acquisition Algoithm for SoRware GPS Receivers[C]. ION GPS 99, Nashville, TN, 1999.
    [18] M. M. Chansarkar, L. Garin, Acquisition of GPS Signals at Very Low Signal to Noise Ratio[C]. ION NTM 2000, Anaheim, CA, 2000: 731-737.
    [19] Bo Zheng, Gérard Lachapelle. GPS Software Receiver Enhancements for Indoor Use[C]. Proceedings of ION GNSS 2005, Long Beach, CA, 2005.
    [20] David M. Lin, James B.Y. Tsui, Lee L. Liou. Sensitivity Limit of A Stand-Alone GPS Receiver and An Acquisition Method[C]. ION GPS 2002, Portland, OR, 2002.
    [21] John L. Shewfelt, Robert Nishikawa, Chuck Norman, and Geoffrey F. Cox. Enhanced Sensitivity for Acquisition in Weak Signal Environments through the Use of Extended Dwell Times[C]. ION GPS 2001, Salt Lake City, UT, 2001.
    [22] Mark L. Psiaki, Hee Jung. Extended Kalman Filter Methods for Tracking Weak GPS Signals[C]. ION GPS 2002, Portland, OR, 2002.
    [23] N. 1. Ziedan, J. L. Garrison. Bit Synchronization and Doppler Frequency Removal at Very Law Carrier to Noise Ratio Using a Combination of the Viterbi Algorithm with an Extended Kalman Filter[C]. ION GPS/GNSS 2003, Portland, OR, 2003.
    [24]李玉红,寇艳红,张其善.微弱GPS信号捕获算法研究[J].遥测遥控,2005(7).
    [25]皮亦呜,张婧,蔡昌听. GPS信号的差分相关捕获算法研究[J].全球定位系统, 2006(4).
    [26]巴晓辉,李金海,陈杰.不需辅助信息的室内GPS信号捕获算法[J].电子技术应用, 2006(9).
    [27]巴晓辉,李金海,陈杰.一种GPS软件接收机自适应门限快速捕获算法[J].信息与控制, 2007(1).
    [28] E. P. Glennon, A. G. Dempster. A Review of GPS Cross Correlation Mitigation Techniques[C]. The 2004 International Symposium on GNSS/GPS, Sydney,Australia, 2004.
    [29]éamonn P. Glennon, Andrew G. Dempster. A Novel GPS Cross Correlation Mitigation Technique[C]. ION GNSS 18th International Technical Meeting of the Satellite Division, Long Beach, CA , 2005.
    [30] Mattos P.. Solutions to the Cross Correlation and Oscillator Stability Problems for Indoor C/A Code GPS[C]. Proceedings of the 16th International Technical Meeting of the Satellite Division of the U.S. Inst. Of Navigation, Portland, Oregon, 2003: 654-659.
    [31] Y. T. Jade Morton. Assessment and Handling of CA Code Self-Interference during Weak GPS Signal Acquisition[C]. ION GPS/GNSS 2003, Portland, OR, 2003.
    [32] Van Dierendonck A, Erlandson R, McGraw G. Determination of C/A Code Self Interference Using Cross-Correlation Simulations and Receiver Bench Tests[C]. Proceedings of the 15th International Technical Meeting of the Satellite Division of the U.S. Inst. Of Navigation, Portland, Oregon, 2002: 630-642.
    [33] M·C·罗赫.用在全球定位系统中的互相关减轻方法和装置:中国, 03820125.9 [P]. 2003-7-10.
    [34] Tsui J.. Fundamentals of Global Positioning System Receivers[M]. New York: Wiley Inter-science, 2000.
    [35]施浒立,颜毅华,徐国华.工程科学中的广义延拓逼近法[M].北京:科学出版社, 2005.
    [36] Anonymous. Interface Control Document ICD-GPS-200[S]. Fountain Valley, CA: Arinc Research Corporation, 1991.
    [37] Elliot D Kaplan. Understanding GPS: Principles and Applications[M]. Norwood: Artech House Publisher, 1996.
    [38] Bradford W. Parkinson, James J.Spilker Jr.. Global Positioning System: Theory and Applications Volume I[M]. Cambridge, Washington DC: American Institute of Aeronautics and Astronautics, 1996.
    [39] TS. Rappaport. Wireless Communications: Principles and Practice[M]. Piscataway, NJ: IEEE Press, 1996.
    [40] Ray, J. K.. Advanced GPS Receiver Technology[R]. Canada, University of Calgary: Department of Geomatics Engineering, 2003.
    [41] Stavrou, S., S.R. Saunders. Factors Influencing Outdoor to Indoor Radio Wave Propagation[C]. 12th International Conference on Antennas and Propagation (ICAP 2003), 2003: 581 - 585.
    [42] Aguirre S., L. H. Loew, Yeh Lo. Radio Propagation into Buildings at 912, 1920, and 5990 MHz Using Microcells[C]. Proceedings of 3rd IEEE ICUPC, 1994: 129-134.
    [43] Ray, J. K.. Mitigation of GPS Code and Carrier Phase Multipath Effects Using a Multi-Antenna System[D]. Calgary: Department of Geomatics Engineering, University of Calgary, 2000.
    [44] Kraus J.D., K.R. Carver. Electromagnetics[M]. New York: McGraw-Hill Book Company, 1973.
    [45] Landron O., M. J. Feuerstein, T. S. Rappaport. A Comparison of Theoretical and Empirical Reflection Coefficients for Typical Exterior Wall Surfaces in a Mobile Radio Environment[J]. IEEE Transactions on Antennas and Propagation, 1996(3): 341-351.
    [46] Parsons J. D.. The Mobile Radio Propagation Channel[M]. John Wiley & Sons, Ltd, 2000.
    [47] Lachapelle G.. Navstar GPS: Theory and Applications[R]. Canada, University of Calgary: Department of Geomatics Engineering, 2002.
    [48] Changlin Ma, Gyu-In Jee, Glenn MacGougan, Gérard Lachapelle. GPS Signal Degradation Modeling[C]. ION GPS 2001, Salt Lake City, UT, 2001.
    [49] Gérard Lachapelle. Hardware Simulator Models and Methodologies for Controlled Indoor Performance Assessment of High Sensitivity AGPS Receivers[C]. GNSS 2003, Graz, Austria, 2003.
    [50] G. Lachapelle, H. Kuusniemi, D. T. H. Dao, G. MacGougan, M. E. Cannon. HSGPS Signal Analysis and Performance under Various Indoor Conditions[C]. ION GPS/GNSS 2003, Portland, OR, 2003.
    [51] Schwengler, T., M. Gilbert. Propagation Models at 5.8 GHz– Path Loss & Building Penetration[C]. RAWCON Conference, Denver, CO, 2000.
    [52] Klukas, R., O. Julien, L. Dong, M. E. Cannon, G. Lachapelle. Effects of Building Materials of UHF Ranging Signals[J]. GPS Solutions, 2004(8).
    [53] T. Haddrell, A. R. Pratt. Understanding the Indoor GPS Signal[C]. ION GPS 2001,Salt Lake City, UT, 2001.
    [54] G. Lachapelle, H. Kuusniemi, D. T. H. Dao, G. MacGougan, M. E. Cannon. HSGPS Signal Analysis and Performance under Various Indoor Conditions[C]. ION GPS/GNSS 2003, Portland, OR, 2003.
    [55] John Robert A. Watson. High-Sensitivity GPS L1 Signal Analysis for Indoor Channel Modelling[D]. Calgary: University Of Calgary, 2005.
    [56] Glenn D. MacGougan. High Sensitivity GPS Performance Analysis in Degraded Signal Environments[D]. Calgary: University Of Calgary, 2003.
    [57] G. MacGougan, G. Lachapelle, M.E. Cannon, G. Jee, M. Vinnins. GPS Signal Degradation Analysis Using a Simulator[C]. Annual Meeting, The Institute Of Navigation, Albuquerque, N.M., 2001.
    [58] Tao Hu. Controlled Indoor GPS Signal Simulation[D]. Calgary: University Of Calgary, 2006.
    [59] K. Krumvieda. A Complete IF Software GPS Receiver: A Tutorial about the Details[C]. Proceedings of the Institute of Navigation’s ION GPS 2001, Salt Lake City, UT, 2001.
    [60] Michael S. Braasch and A. J. Van Dierendonck, GPS Receiver Architectures and Measurements[C], Proceedings of the IEEE, VOL. 87, No.1, Jan 1999.
    [61] Alison Brown, Marvin May, Barry Tanju. Benefits of Software GPS Receivers for Enhanced Signal Processing[J]. GPS Solutions, 2000(1): 56-66.
    [62] Dennis Akos. A Software Radio Approach to Global Navigation Satellite System Receiver Design[D]. Ohio: Ohio University, 1997.
    [63] Kai Borre, Dennis Akos. A Software-Defined GPS and Galileo Receiver Single-Frequency Approach[M]. Boston: Birkä, 2007.
    [64] Peter Rinder. Design of A Single Frequency Software Receiver[D]. Aalborg: Aalborg University, 2004.
    [65] Ledvina B.M., S.P. Powell, P.M. Kintner, M.L. Psiaki. A 12 channel real-time GPS L1 software receiver[C]. ION NTM 2003 Meeting, Anaheim, CA, 2003.
    [66] Ma, C., G. Lachapelle, M. E. Cannon. Implementation of a Software GPS Receiver[C]. Proceeding of ION/GNSS 2004, Long Beach, CA, 2004: 956-970.
    [67]徐定杰,石吉利.动态环境下基于FFT实现伪码快速捕获[J].中国航海, 2003(2).
    [68]王伟,徐定杰.基于FFT的伪码快速捕获[J].哈尔滨工程大学学报, 2003(6).
    [69]薛文芳,邵定蓉,李署坚. GPS接收机中伪随机码快速捕获技术的研究[J].北京航空航天大学学报, 2003(6).
    [70] D.J.R Van Nee And A.J.R.M. Coenen. New Fast GPS Acquisition Technique Using FFT[J]. Electronic Letters 17th, 1991(2): 158-160.
    [71] David M Lin, James B.Y. Tsui. Acquisition Schemes for Software GPS Receiver[C]. Proceedings of ION GPS 98, Salt Lake City, UT, 1998: 317-326.
    [72] David M Lin, James B.Y. Tsui. Comparison of Acquisition Methods for Software GPS Receiver[C]. Proceedings of ION GPS 2000, Salt Lake City, UT, 2000: 2385-2390.
    [73] Ward, P.W.. GPS Receiver Search Techniques[C]. Proceedings of the IEEE 1996 Position, Location, and Navigation Symposium, Atlanta, GA, 1996: 604-611.
    [74] Sascha M. Spangenberg, Iain Scott , David Cruickshank ,Stephen McLaughlin. An FFT Based Approach for Fast Acquisition in Spread Spectrum Communication Systems[J]. Wireless Personal Communications, 2000(13): 27- 56.
    [75]孙礼,张其善. GPS数字接收机中C/A码搜索算法与实现[J].北京航空航天大学学报, 1998(5).
    [76]张厥盛.锁相技术[M].西安:西安电子科技大学出版社, 1994.
    [77] Roland E.Best. Phase-Locked Loops Design, Simulation, and Applications[M].北京:清华大学出版社, 2005.
    [78]李署坚,任俊涛,王丹志,邵定蓉.基于DSP的高动态数字解扩接收机的研究[J].航空学报, 2001(增刊): 85-86.
    [79] Charles R. Cahn, Donald K. Leimer, Charles L. Marsh et al. Software Implementation of a PN Spread Spectrum Receiver to Accommodate Dynamics[J]. IEEE Transactions On Communications, 1977(8): 834-846.
    [80]张文明,姜文利,周一宇. GPS接收机中DLL分析与仿真[J].计算机仿真, 2002(2).
    [81]周密,张晓玲. GPS接收机数字码跟踪环性能研究[J].航空电子技术, 2004(2).
    [82] Douglas Baker. How does“Parity Checking”used by GPS Satellites Work?[R]. GPS CREATION Application Note, 2004.
    [83]郭秋英,胡振琪. GPS卫星坐标的计算[J].全球定位系统, 2006(2).
    [84] Andreas Schmid, Andr′e Neubauer. Performance Evaluation of Differential Correlation for Single Shot Measurement Positioning[C]. ION GNSS 17th International Technical Meeting of the Satellite Division, Long Beach, CA, 2004.
    [85] Ayse Sicramaz Ayaz. Analysis of Differential Acquisition Methods by Using Monte-Carlo Simulations[C]. Ayse Sicramaz Ayaz Institute of Geodesy and Navigation. ION GNSS 18th International Technical Meeting of the Satellite Division, Long Beach, CA, 2005.
    [86] J.A. Rodriguez, T. Pany, B. Eisfeller. A Theoretical Analysis of Acquisition Algorithms for Indoor Positioning[C]. NAVITEC 2004, Noordwijk, Netherlands, 2004.
    [87] Wei Yu, Bo Zheng, Rob Watson, Gérard Lachapelle. Differential Combining for Acquiring Weak GPS Signals[J]. Signal Processing, 2007: 824–840.
    [88] Surendran K. Shanmugam, Robert Watson, John Nielsen, Gérard Lachapelle. Differential Signal Processing Schemes for Enhanced GPS Acquisition[C]. ION GNSS 18th International Technical Meeting of the Satellite Division, Long Beach, CA, 2005.
    [89]张伯川,常青,张其善,寇艳红.高动态GPS卫星信号模拟器导航电文生成[J].北京航空航天大学学报, 2005(3).
    [90] Lei Dong. IF GPS Signal Simulator Development and Verification[D]. Calgary: University Of Calgary, 2003.
    [91]贾科军,柯熙政.高动态GPS卫星信号模拟器设计与实现[J].宇航计测技术, 2006(5): 1-6.
    [92]赵军祥,张其善,常青,李建辉.高动态GPS卫星信号模拟器关键技术分析及应用[J].电讯技术, 2003(4): 49-54.
    [93]赵昀,张其善,寇艳红.基于Matlab的数字中频GPS信号生成模型[J].信号处理, 2005(3): 300-303.
    [94] Corbell, P. M., M. M. Miller. Design and Analysis of a Matlab Based Digitized IF GPS Signal Simulator and a Simulink Based Configurable GPS Receiver[C]. Proceedings of ION GPS 2000, Salt Lake City, UT, 2000: 1906-1915.
    [95] Alison Brown, Neil Gerein. Advancod GPS Hybrid Simulator Architecture[C].Procoddings of ION 57th Annum Meting, Albuquerque, 2001:1-8.
    [96] Olivier Julien, Bo Zheng, Lei Dong, Gérard Lachapelle. A Complete Software-Based IF GNSS Signal Generator for Software Receiver Development[C]. ION GNSS 2004, Long Beach, CA, 2004.
    [97] D. Ibrahim. GPSIM A Personal Computer Based GPS Simulator System[J]. Journal of Navigation, 1999: 126-135.
    [98]李保柱,张其善,杨东凯. GPS卫星信号模拟器中频信号处理与实现[J].北京航空航天大学学报, 2006(7): 811-814.
    [99] Dong, L., C. Ma, G. Lachapelle. Implementation and Verification of a Software-Based IF GPS Signal Simulator[C]. Proceedings of National Technical Meeting, Institute of Navigation, San Diego, 2004.
    [100] Alison Brown, et. al. Modeling and simulation of GPS using software signal generation and digital signal reconstruction[C]. Proceedings of the ION National Technical Meeting, Anaheim, CA, 2000.
    [101]李隽.卫星导航信号模拟器体系结构分析[J].无线电工程, 2006(8): 30-31.
    [102]寇艳红,常青,张其善.高动态GPS模拟器闭环测试系统结构与软件设计[J].北京航空航天大学学报, 2004(6): 534-538.
    [103]罗晓莉.单通道GPS模拟信号源的设计[J].工程物理研究院科技年报, 2004(1): 233-234.
    [104]张颖慧,常青,张其善,吴今培.高动态GPS信号模拟器的软件实现[J].无线电工程, 2003(7): 14-16.
    [105] Jong-Hoon Won, Sun-Jun Ko and Ja-Sung Lee. Design and Test Results of Software Based IF Level GPS Signal Simulator[C]. ION GNSS 17th International Technical Meeting of the Satellite Division, Long Beach, CA, 2004.
    [106] Hu T, G. Lachapelle, R. Klukas. Indoor GPS Signal Replication Using a Hardware Simulator[C]. Proceedings of GNSS 2005, Long Beach, CA, 2005.
    [107]杨铁军,靳婷. GPS中频信号模拟研究[J].全球定位系统, 2006(4): 21-25.
    [108]刘俊,张思东等. GPS系统建模与仿真技术研究[J].系统仿真学报, 2001(3): 329-330.
    [109]寇艳红,赵昀,张其善. GPS数字中频信号软件模拟器的研制[J].导航, 2004(1):40-45.
    [110] Phillip Martin Corbell. Design and Validation of An Accurate GPS Signal and Receiver Truth Model For Comparing Advanced Receiver Processing Techniques[D]. USAF, 2000.
    [111] Robert Gold. Optimal Binary Sequences for Spread Spectrum Multiplexing[J]. IEEE Correspondence, 1966.
    [112] Mark Roh. Cross-correlation mitigation method and apparatus for use in a global positioning system receiver USA, 60,395,217 [P]. 2003.
    [113] Steven.M.Key著,罗鹏飞等译.统计信号处理基础—估计与检测理论[M].北京:电子工业出版社, 2002.
    [114]岳晓奎,袁建平. Galileo系统的特点分析[J].全球定位系统, 2004(4).
    [115]施浒立等.转发器卫星导航原理[M].北京:科学出版社, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700