用户名: 密码: 验证码:
太阳风暴的综合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强烈的太阳活动事件,如耀斑、日珥爆发、日冕物质抛射(CME)等,常引发X射线暴、粒子暴和等离子体物质的快速抛出,它们会在地球空间引起各种效应,如磁暴、电离层暴、热层暴和高能粒子暴等等.太阳风暴是指剧烈太阳活动释放巨大能量和物质的现象.它常引发日地空间环境的急剧变化,对空间和地面的技术系统产生严重的干扰和破坏,是空间天气学研究的重点之一.本文主要以分析观测资料为主,同时通过物理模型和数值模拟,对太阳风暴中相关现象以及太阳风暴预报方法进行了研究.本文的主要工作概括如下:
     1.太阳风暴预报方法研究.把每次具体空间天气事件的状态分析—“望诊”与定量预报—“切脉”结合在一起,提出了用于预报太阳风暴到达地球的时间及其引起的磁扰大小的两步法.以2003年10月28日和29日的两次特大太阳风暴(激波)事件为预报试验对象,第一步,“望诊”,对太阳源表面磁场分布、行星际闪烁观测资料和ACE卫星观测的联合分析表明,源表面的大尺度磁位形造成了激波相对于爆发源法向非对称传播,地球处在接近激波传播最快、能量最大的方向上;这两次激波都是强激波事件,高速、强磁场、高温的日冕物质抛射以及高速的背景太阳风都有利于激波的快速传播.第二步,“切脉”,采用新建立的快速激波渡越时间的从属函数于ISF方法中,对其渡越时间和引起的地磁扰动进行了预报试验.预报结果是:两次激波事件到达地球时间的预报值与观测值相比较,相对误差分别为1.8%和6.7%;磁扰幅度ΣKp指数的预报,相对误差分别为4.1%和3.1%;此外,比较两步法与国际流行的五种统计或数值预报方法,结果表明两步法对此类强激波事件的地磁扰动预报是有优势的.该方法充分考虑了每次事件的真实空间天气状态,在背景场描述方面优于其他基于统计的预报模型,有利于改善预测太阳风暴到达时间及其引起的地磁扰动幅度大小的能力.
     2.利用新的日地观测资料,太阳风暴传播特征的统计研究.以1997~2005年期间的180次行星际激波和与之相联系的日冕物质抛射事件为样本,分析了日球电流片对激波传播特性及其相应地磁效应的影响,得到的结果是: (1)太阳上日冕电流片及其附近区域有利于产生CME等太阳爆发活动;随着离开电流片角距的增加,爆发活动数目明显减少; (2)当地球和太阳爆发源位于电流片同侧时,地球附近飞船观测到激波事件的频次以及地磁扰动事件频次明显高于它们分处电流片异侧时的频次; (3)激波阵面参数的跃变量呈现出同侧高于异侧,强激波多在同侧观测到; (4)地磁扰动强弱程度也呈现了同侧高于异侧,而且,磁扰强度随着地球离开日球电流片角距的增加而减弱的趋势明显; (5)得到了利用激波初速度预测其到达地球时间的经验公式,并尝试了分别对同、异侧事件进行分类预测.上述研究结果表明,日球电流片是一个重要的物理特征面,它对行星际激波事件的传播以及相应地磁扰动的产生和强弱水平有重要影响.此外,结合日冕源表面磁场分布与单点飞船的行星际磁场方位角观测,发现激波在传播过程中遇到电流片时,会对电流片形态产生明显的局部扰动.
     3.太阳风暴传播特征的三维运动学模拟研究.利用三维运动学HAF模型,了解太阳风暴的三维传播特性,对激波到达地球时间和重现型磁暴的发生进行了预报试验;还分析了CME对日球电流片的可能影响.对于2004年4月4日日冕物质抛射事件驱动的激波, HAF模型预测的激波到达地球时间比实际到达时间延迟了约6小时.对于第1995卡林顿周, HAF模型较好预测出了该卡林顿周内的三次重现型磁暴的发生.此外,通过比较有无CME事件发生时HAF模型的模拟结果,分析了CME/激波系统对日球电流片的可能影响.初步结果表明, CME/激波系统能对日球电流片产生明显的挤压效应,其结果是使扇形边界的形状发生变化,而且扇形边界到达地球的时间也会随之发生明显变化.
Solar eruptive phenomena, such as ?are, erupting prominence and coronamass ejection (CME), usually induce radiation storm, particle storm and fastejection of plasma, which may be impact the Earth greatly and result in geomag-netic storm, ionospheric storm, thermospheric storm and so on. Solar storms,the manifestation of hazard weather in space mentioned above, have a number ofphysical effects in the solar-terrestrial environment. As an important cause thatcan inffuence the performance and reliability of space- and ground-based techno-logical systems and can endanger human life, solar storm plays an pivotal role inspace weather research. On the basis of the observations of the solar-terrestrialenvironment, the following aspects are studied observationally, theoretically andnumerically.
     1. Study on forecast model of solar storm. Aiming at two intense shockevents on 28 and 29 October 2003, this paper presents a Two-Step method,which combines synoptic analysis of space weather–”observing”and quantita-tive prediction–”palpating”, and uses it to test predictions. In the first step,”observing”, on the basis of observations of the solar source surface magneticfield, interplanetary scintillation (IPS) and ACE spacecraft, we find that thepropagation of the shocks is asymmetric relative to the normal direction of theirsolar sources, and the Earth is located near the direction of the fastest speedand the greatest energy of the shocks. Being two fast ejection shock events, thefast explosion of coronal mass of the extremely high temperature and the strongmagnetic field, and the high speed background solar wind, are also helpful totheir rapid propagation. In the second step,”palpating”, we adopt a new mem-bership function of the fast shock events for the ISF method. The predictedresults here show that for the arrival time of the shock at the Earth, the relativeerrors between the observational and the predicted results are 1.8% and 6.7%;and for the magnetic disturbance magnitude, the relative errors are 4.1% and3.1%, respectively. Furthermore, the comparison among the predicted results of our Two-Step method with those of five other prevailing methods shows that theTwo-Step method is advantageous.
     2. Statistical study of the propagation of solar storms. Using 180 interplan-etary (IP) shock events associated with CMEs during 1997–2005, we investigatethe inffuence of heliospheric current sheet (HCS) upon the propagation and geo-effectiveness of IP shocks Statistically. Our preliminary results are: (1) Themajority of CME–driving IP shocks occurred near the HCS. (2) The numbers ofshock events and related geomagnetic storms observed when the Earth and thesolar source are located on the same side of the HCS, are obviously higher thanthose when the Earth and the solar source are located on the opposite sides ofthe HCS. (3) Parameter jumps across the shock fronts for the same-side eventsare also higher than those for the opposite-side events, and the stronger shocksare mainly attributed to be same-side events. (4) The level of the geomagneticdisturbances is higher for the same-side events than that for the opposite-sideevents. (5) We propose an empirical model to predict the arrival time of theshock at the Earth, whose accuracy is comparable to the other prevailing mod-els. These results show that the HCS is an important physical structure, whichprobably plays an important role in the propagation of interplanetary shocks andtheir geoeffectiveness.
     3. 3-D kinematic simulation study of the propagation of solar storms. Usingthe 3-D kinematic model, HAF model, to predict the shock arrival time at theEarth and the occurrence of recurrent magnetic storm, and to analyze the impactof CMEs on HCS. Taking the shock associated with CME, erupted on 2004 April4, for example, its arrival time at the Earth predicted by the HAF model is about6 hours later than the observations. The HAF model forecasts the recurrentmagnetic storms in Carrington Rotation 1995 fairly well. In addition, simulationresults show that the ejected plasma of CME and its driving IP shocks willinteract with the sector boundary. Then the interactions will change both theshape of the sector boundary and its arrival time at the Earth substantially.
引文
Akasofu, S.-I., Polar and Magnetospheric Substorms, New York, NY: Springer-Verlag, 280, 1968.
    Akasofu, S.-I., Prediction of development of geomagnetic storms using the solarwind-magnetosphere energy coupling function ε, Planet. Space Sci., 29, 1151-1158, 1981.
    Akasofu S.-I. and Fry C.F., A first generation numerical geomagnetic storm pre-diction scheme, Planet Space. Sci., 34(1), 77-92, 1986.
    Americo J., Alejandro, L., Eduardo, P., Alfredo, S. and Gopalswamy, N., Anumerical study on the acceleration and transit time of coronal mass ejectionsin the interplanetary medium, J. Geophys. Res., 108(A1), 1039-1045, 2003.
    Arnoldy, R.L., Signature in interplanetary medium for substorms, J. Geophys.Res., 76, 5189-5201, 1971.
    Aschwanden M.J., Physics of the Solar Corona, Springer, 2004.
    Axford, W.I. and Hines, C.O., A unifying theory of high-latitude geophysicalphenomena and geomagnetic storms, Canadian J. Phys., 39, 1433-1464, 1961.
    Ballatore, P., E?ects of fast and slow solar wind on the correlations betweeninterplanetary medium and geomagnetic activity, J. Geophys. Res., 107(A9),1227, doi:10.1029/2001JA000144, 2002.
    Barbieri, L.P. and Mahmot, R.E., October–November 2003’s space weather andoperations lessons learned, Space Weather, 2(9), S09002, 2004.
    Brueckner G.E., Delaboudiniere J.-P., Howard R.A., Paswaters S.E., St. CyrO.C., Schwenn R., Lamy P., Simnett G M., Thompson B., Wang D., Geomag-netic storms caused by coronal mass ejections (CMEs): March 1996 throughJune 1997, Geophys. Res. Lett., 25(15), 3019-3022, 1998.
    Bruno R., Burlaga L.F. and Hundhausen, A.J., Quadrupole distortions of theheliospheric current sheet in 1976 and 1977, J. Geophys. Res., 87, 10339-10346,1982.
    Burlaga, L.F., and Lepping R.P., The causes of recurrent geomagnetic storms,Planet. Space Sci., 25, 1151-1160, 1977.
    Burlaga L.F., Hundhausen, A.J., Zhao Xuepu, The coronal and interplanetaycurrent sheet in early 1976, J. Geophys. Res., 86, 8893-8898, 1981a.
    Burlaga, L., Sittler, E., Mariani, F. and Schwenn, R., Magnetic loop behind aninterplanetary shock: Voyager, helios, and IMP 8 observations, J. Geophys.Res., 86(A8), 6673-6684, 1981b.
    Burlaga, L.F., Behannon, K.W. and Klein, L.W., Compound stream, magneticclouds, and major geomagnetic storms, J. Geophys. Res., 92, 5725, 1987.
    Burlaga, L.F., Magnetic clouds and force-free field with constant alpha, J. Geo-phys. Res., 93, 7217-7224, 1988.
    Burlaga, L.F., Skoug, R.M., Smith, C.W., Webb, D.F., Zurbuchen, T.H. andReinard, A., Fast ejecta during the ascending phase of solar cycle 23: ACEobservations, 1998–1999, J. Geophys. Res., 106, 20957-20977, 2001.
    Burton, R.K., McPherron, R.L. and Russell, C.T., An empirical relationshipbetween interplanetary conditions and Dst, J. Geophys. Res., 80, 4204-4214,1975.
    Cane, H.V., Richardson, I.G. and Wibberenz, G., Helios 1 and 2 observations ofparticle decreases, ejecta, and magnetic clouds, J. Geophys. Res., 102, 7075-7086, 1997.
    Cane, H.V., Richardson, I.G. and Cyr O.C.St., Coronal mass ejections, inter-planetary ejecta, and geomagnetic storms, Geophys. Res. Lett., 27, 3591-3594,2000.
    Cane, H.V. and Richardson, I.G., Interplanetary coronal mass ejections in thenear-Earth solar wind during 1996–2002, J. Geophys. Res. 108(A4), 1156-1168, doi: 10.1029/2002JA009817, 2003.
    Cary, O., Prediction Performance of Space Weather Forecast Centers Followingthe Extreme Events of October and November 2003, Space Weather. 2, S08001,2004.
    Chao J.K., Moldwin, M.B. and Akasofu, S.-I., Simulation of January 1-7, 1978,events, J. Geophys. Res., 92, 11183-11888, 1987.
    Chapman, S. and Bartels J., Geomagnetism, vol. 2, Oxford University Press,London, 639-668, 1940.
    Chen, J., E?ects of toroidal forces in current loops embedded in a backgroundplasma, Astrophys. J., 338, 453-470, 1989.
    Chen, J. and Garren, D.A., Interplanetary magnetic clouds: Topology anddriving mechanism, Geophys. Res. Lett., 20, 2319-2322, 1993.
    Chen, J., Santoro R.A., Krall, J., Howard, R.A., Duf fin, R., Moses, J.D., Brueck-ner, G.E., Darnell, J.A. and Burkepile, J.T., Magnetic Geometry and Dynamicsof the Fast Coronal Mass Ejection of 1997 September 9, Astrophys. J., 533,481-500, 2000.
    Cho, K.S., Moon, Y.J., Dryer, M., Fry, C.D., Park, Y.-D. and Kim, K.-S., Astatistical comparison of interplanetary shock and CME propagation models,J. Geophys. Res., 108(A12), 1445-1452, doi:10.1029/2003JA010029, 2003.
    Clauer, C.R. and Kamide, Y., DP 1 and DP 2 current systems for the March 22,1979 substorms, J. Geophys. Res., 90, 1343-1354, 1985.
    Crooker, N.U. and Cliver, E.W, Postmodern view of M-regions, J. Geophys. Res.,99, 23383-23390, 1994.
    Dessler, A.J. and Parker, E.N., Hydromagnetic theory of geomagnetic storms, J.Geophys. Res., 64, 2239-2252, 1959.
    Doyle, M.A. and Burke, W.J., S3-2 measurements of the polar cap potential, J.Geophys. Res., 88, 9125-9133, 1983.
    Dryer, M. and Smart D.F., dynamical models of coronal transients and inter-planetary disturbances, Adv. Space Res., 4, 291-301, 1984.
    Dryer, M., Interplanetary studies: Propagation of disturbances between the sunand the magnetosphere, Space Sci. Rev., 67, 363-419, 1994.
    Dryer M., Fry C.D., Sun, W., Deehr, C., Smith, Z., Akasofu, S.-I. and Andrews,M.D., Prediction in real time of the 2000 July 14 heliospheric shock wave andits companions during the ’Bastille’ epoch, Solar Physics, 204, 265-284, 2001.
    Dryer, M., Smith, Z., Fry, C.D., Sun, W., Deehr, C.S. and Akasofu, S.-I., Real-Time Shock Arrival Predictions During the ”Halloween 2003 Epoch”, SpaceWeather, 2, S09001, 2004.
    Dungey, J.W., Interplanetary magnetic field and auroral zones, Phys. Rev. Lett.,6, 47-48, 1961.
    Echer, E. and Gonzalez, W.D., Geoe?ectiveness of interplanetary shocks, mag-netic clouds, sector boundary crossings and their combined occurrence, Geo-phys. Res. Lett. 31(9), L09808, 2004.
    Fairfield, D.H., and Cahill, L.J., Transition region magnetic field and polar mag-netic disturbances, J. Geophys. Res., 71, 155-169, 1966.
    Farrugia, C.J., Burlaga, L.F., Osherovich, V.A., Richardson, I.G., Freeman, M.P.,Lepping, R.P. and Lazarus, A.J., A study of an expanding interplanetary mag-netic cloud and its interaction with the earth’s magnetosphere-the interplane-tary aspect, J. Geophys. Res., 98(A5), 7621-7632, 1993a.
    Farrugia, C.J., Richardson, I.G., Burlaga, L.F., Lepping, R.P. and OsherovichV.A., Simultaneous observations of solar mev particles in a magnetic cloudand in the earth’s northern tail lobe: Implications for the global field linestopology of magnetic clouds and entry of solar particles into the tail lobe duringcloud passage, J. Geophys. Res., 98, 15497, 1993b.
    Farrugia, C.J., Osherovich, V.A. and Burlaga, L.F., Magnetic ?ux rope versusthe spheromak as models for interplanetary magnetic clouds, J. Geophys. Res.,100, 12293, 1995.
    Farrugia, C.J., Burlaga, L.F. and Lepping R.P., Magnetic clouds and the quiet-storm e?ect at earth, in Magnetic storms, edited by Tsurutani, B.T., Gonzalez,W.D. and Kamide, Y., Geophys. Monogr. Ser. 98, 91, AGU, 1997.
    Fenrich, F.R., Luhmann, J.G., Geomagnetic response to magnetic clouds of dif-ferent polarity, Geophys. Res. Lett., 25, 2999-3002, 1998.
    Feynman, J., Implications of solar cycles 19 and 20 geomagnetic activity formagnetospheric processes, Geophys. Res. Lett., 7, 971-973, 1980.
    Fong, B., Low B.C. and Fan Y.H., Quiescent Solar Prominences and Magnetic-Energy Storage, Astrophys. J., 571(2), 987-998, 2002.
    Forbes, T.G., Numerical simulation of a catastrophe model for coronal massejections, J. Geophys. Res., 95, 11919-11931, 1990.
    Forbes, T.G. and Isenberg P.A., A catastrophe mechanism for coronal mass ejec-tions, Astrophys. J., 373, 294-307, 1991.
    Fry, C.D. and Akasofu, S.-I., Latitudinal dependence of solar wind speed, Planet.Space Sci., 35, 913-920, 1987.
    Fry, C.D., Sun, W., Deehr, C.S., Dryer, M., Smith, Z., Akasofu, S.-I., Tokumaru,M. and Kojima, M., Improvements to the HAF Solar Wind Model for SpaceWeather Predictions, J. Geophys. Res. 106(A10), 20985-21001, 2001.
    Fry, C.D., Dryer, M., Deehr, C.S., Sun, W., Akasofu, S.-I., and Smith, Z., Fore-casting solar wind structures and shock arrival times using an ensemble ofmodels, J. Geophys. Res., 108, 1070-1089 , 2003a.
    Fry, C.D., Wu, C., Detman, T.R., Smith, Z., Dryer, M., Sun, W., Deehr, C.S.and Akasofu, S., An observation-based, hybrid 3D-MHD solar wind modelingsystem, H3DM, AGU Fall Meeting Abstracts, #SH51A-04, 2003b.
    Gapper, G.R., Hewish, A., Purvis, A., Du?ett-Smith, P.J., Observing interplan-etary disturbances from the ground, Nature, 296, 633-636, 1982.
    Gibson, S.E., Low, B.C., A time-dependent three-dimensional magnetohydrody-namic model of the coronal mass ejection, Astrophys. J., 493, 460, 1998.
    Gibson, S.E., Low B.C., Three-dimensional and twisted: An MHD interpretationof on-disk observational characteristics of coronal mass ejections, J. Geophys.Res., 105(A8), 18187-18202, 2000.
    Giovanelli, R.G., A theory of chromospheric ?ares, Nature, 158, 81-82, 1946.
    Gloeckler, G., Fisk, L.A., Hefti, S., Schwadron, N.A., Zurbuchen, T.H., Ipavich,F.M., Geiss, J., Bochsler, P. and Wimmer-Schweingruber, R.F., Unusual com-position of the solar wind in the 2–3 May 1998 CME observed with SWICSon ACE, Geophys. Res. Lett., 26, 157-160, 1999.
    Gold, T., Magnetic storms, Space Sci. Rev., 1, 100-104, 1962.
    Goldstein, H., On the field configuration in magnetic clouds, in Solar Wind 5,NASA Conference Publication CP-2280, p731, 1983.
    Gonzalez, W.D. and Mozer F.S., A quantitative model for the potential resultingfrom reconnection with an arbitrary interplanetary magnetic field, J. Geophys.Res., 79, 4186-4194, 1974.
    Gonzalez, W.D. and Tsurutani, B.T., Criteria of interplanetary parameters caus-ing intense magnetic storms (Dst < -100 nT), Planet. Space Sci., 35, 1101-1109,1987.
    Gonzalez, W.D., Tsurutani, B.T., Gonzalez, A.L.C., Smith, E.J., Tang, F. andAkasofu, S.I., Solar wind-magnetosphere coupling during intense magneticstorms (1978–1979), J. Geophys. Res., 94, 8835-8851, 1989.
    Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsuru-tani, B.T. and Vasyliunas, V.M., What is a geomagnetic storm?, J. Geophys.Res., 99, 5771-5782, 1994.
    Gonzalez, W.D., Tsurutani, B.T. and Clu′a de Gonzalez A.L., Interplanetaryorigin of geomagnetic storms, Space Sci. Rev. 88, 529-562, 1988.
    Gonzalez, W.D., Lago, A. Dal, Clu′a de Gonzalez, A.L., Vieira, L.E.A. and Thu-rutani, B.T., Prediction of peak-Dst from halo CME/magnetic cloud speedobservations, J. Atm., Sol. Terr. Phys., 66, 161-165, 2004.
    Gopalswamy, N., Lara, A., Lepping, R.P., Kaiser, M.L., Berdichevsky, D. andCyr, O. C. St, Interplanetary acceleration of coronal mass ejections, Geophys.Res. Lett., 27, 145-148, 2000.
    Gopalswamy N., Lara, A., Yashiro, S., Kaiser, M.L. and Howard, R.A., Predict-ing the 1-AU arrival times of coronal mass ejections. J. Geophys. Res., 106(A12), 29207-29217, 2001a.
    Gopalswamy, N., Lara, A., Kaiser, M.L. and Bougeret, J.-L., Near-Sun and near-Earth manifestation of solar eruptions, J. Geophys. Res., 106, 25261-25277,2001b.
    Gopalswamy, N., Lara, A., Manoharan, P.K. and Howard, R.A., An empiricalmodel to predict the 1-AU arrival of interplanetary shocks, Adv. Space Res.,36(12), 2289-2294, 2005a.
    Gopalswamy, N., Barbieri, L., Lu, G., Plunkett, S.P. and Skoug, R.M., Introduc-tion to Violent Sun-Earth Connection Events of October-November 2003, J.Geophys. Res., 110(A9), A09S00, 2005b.
    Gosling, J.T. and McComas, D.J., Field line draping about fast coronal massejecta: a source of strong out-of-the-ecliptic interplanetary magnetic fields,Geophys. Res. Lett., 14, 355-358, 1987.
    Gosling, J.T., Baker, D.N., Bame, S.J., Feldman, W.C., Zwickl, R.D. and Smith,E.J., Bidirectional solar wind electron heat ?ux events, J. Geophys. Res., 92,8519-8535, 1987.
    Gosling, J.T., Coronal mass ejections and magnetic ?ux ropes in interplanetaryspace, in Physics of magnetic ?ux ropes, edited by Russell, C.T., Priest, E.Rand Lee, L.C., Geophys. Monogr. Ser., 58, p343, AGU, 1990.
    Gosling JT., Mccomas D. J, Phillips S.L and Bame S.L., Geomagnetic activityassociated with earth passage of interplanetary shock disturbances and coronalmass ejections, J. Geophys. Res., 96, 7831-7839, 1991.
    Gosling, J.T., McComas, S.J., Phillips, J.L. and Bame, S.J., Counterstreamingsolar wind halo electron events: Solar-cycle variations, J. Geophys. Res., 97,6531-6535, 1992.
    Gosling, J.T., The solar ?are myth, J. Geophys. Res., 98(A11), 18937-18949,1993.
    Gosling, J.T., On the determination of electron polytrope indices within coronalmass ejections in the solar wind, J. Geophys. Res., 104, 19851-19858, 1999.
    Groth, C.P.T., De Zeeuw, D.L., Gambosi, T.I. and Powell, K.G., Global 3-DMHD dimension of a space weather event: CME formation, interplanetarypropagation, and interaction with the magnetosphere, J. Geophys. Res., 25,25053-25078, 2000.
    Hakamada, K. and Akasofu S.-I., Simulation of three-dimensional solar winddisturbances and resulting geomagnetic storms, Space Sci. Rev. 31(3), 3-70,1982.
    Henke, T., Woch, J., Mall, U., Livi, S., Wilken, B., Schwenn, R., Gloeckler, G.,Steiger, R. von, Forsyth, R.J. and Balogh, A., Di?erences in the O7+/O6+ ratioof magnetic cloud and non-cloud coronal mass ejections, Geophys. Res. Lett.,25, 3465-3468, 1988.
    Henning H.M., Scherrer P.H., Hoeksema J.T., The in?uence of the heliosphericcurrent sheet and angular separation on ?are-accelerated solar wind, J. Geo-phys. Res., 90(A11), 11055-11061, 1985.
    Hewish, A., Scott, P.F. and Willis, D., Interplanetary scintillation of small diam-eter radio sources, Nature, 203, 1214-1217, 1964.
    Hirshberg, J., Bame, S.J. and Robbins, E.E., Solar ?ares and helium enrichments:July 1965–July 1967, Sol. Phys., 23, 467-486, 1972.
    Holzer, R.E. and Slavin, J.A., An evaluation of three predictors of geomagneticactivity, J. Geophys. Res., 87, 2558-2562, 1982.
    Hundhausen, A.J., Coronal Expansion and Solar Wind, Springer, New York,1972.
    Ivanov, K.G. and Harshiladze, A.F., Interplanetary hydromagnetic clouds as?are-generated spheromaks, Sol. Phys., 98, 379-386, 1985.
    Ivanov, K.G., Harshiladze, A.F., Eroshenko, E.G. and Styazhkin, V.A., Config-uration, structure, and dynamics of magnetic clouds from solar ?ares in lightof measurements on board vega 1 and vega 2 in January–February 1986, Sol.Phys., 120, 407, 1989.
    Kamide, Y., Yokoyama, N., Gonzalez, W.D., Tsurutani, B.T., Daglis, I.A.,Brekke, A. and Masuda, S., Two-step development of geomagnetic storms,J. Geophys. Res., 103, 6917-6921, 1998.
    Klein, L.W. and Burlaga, L.F., Interplanetary magnetic clouds at 1 AU, J. Geo-phys. Res., 87, 613-624, 1982.
    Klimas, A.J., Vassiliadis, D., Baker, D.N. and Roberts D.A., The organizednonlinear dynamics of the magnetosphere, J. Geophys. Res., 101, 13089-13113,1996.
    Kojima, M. and Kakinuma, T.J., Solar cycle evolution of solar wind speed struc-ture between 1973 and 1985 observed with the interplanetary scintillationmethod, J. Geophys. Res., 92(A7), 7269-7279, 1987.
    Kozyra, J.U., Jordanova, V.K., Horne, R.B. and Thorne, R.M., Modeling ofthe contribution of electromagnetic ion cyclotron (EMIC) waves to stormtimering-current erosion, in Magnetic Storms, edited by Tsurutani, B.T., Gonzalez,W.D., Kamide, Y. and Arballo, J.K., Geophys. Monogr. ser. 98, p.187, AGU,1997.
    Kumar, A. and Rust, D.M., Interplanetary magnetic clouds, helicity conserva-tion, and current-core ?ux-ropes, J. Geophys. Res., 101, 15667-15684, 1996.
    Kuwabara, T., Munakata, K., Yasue, S., Kato, C., Akahane, S., Koyama, M.,Bieber, J.W., Evenson, P., Pyle, R., Fujii, Z., Tokumaru, M., Kojima, M.,Marubashi, K., Duldig, M.L., Humble, J.E., Silva, M.R., Trivedi, N.B., Gon-zalez, W.D. and Schuch, N.J., Geometry of an Interplanetary CME on October29, 2003 Deduced from Cosmic Rays, Geophys. Res. Lett., 31, L19803, 2004.
    Lario, D., Decker, R.B., Livi, S., Krimigis, S.M., Roelof, E.C., Russell, C.T.and Fry, C.D., Heliospheric Energic Particle Observations during the October-November 2003 Events, J. Geophys. Res., 110, A09S11, 2005.
    Lepping, R.P., Jones, J.A. and Burlaga, L.F., Magnetic field structure of inter-planetary magnetic clouds at 1 AU, J. Geophys. Res., 95, 11957, 1990.
    Liemohn, M.W., Kozyra, J.U., Hairston, M.R., Weimer, D.R., Lu, G., Ridley,A.J., Zurbuchen, T.H., Skoug, R.M., Consequences of a saturated convectionelectric field on the ring current, Geophys. Res. Lett., 29(9), 1-62, 2002.
    Lin, J. and Forbes T.G., E?ects of reconnection on the coronal mass ejectionprocess, J. Geophys. Res., 105(A2), 2375-2392, 2000.
    Lin, J., Forbes T.G. and Isenberg P.A., Prominence eruptions and coronal massejections triggered by newly emerging ?ux, J. Geophys. Res., 106(A11),25053-25074, 2001.
    Lopez, R.E. and Freeman, J.W., Solar wind proton temperature-velocity rela-tionship, J. Geophys. Res., 91, 1701-1705, 1986.
    Lopez, R.E., Baker, D.N. and Allen, J.E., Sun Unleashes Halloween Storm, 2004,Eos Trans. AGU. 85, 105-108, 2004.
    Low, B.C., Magnetohydrodynamic processes in the solar corona: Flares, coronalmass ejections, and magnetic helicity, Phys. Plasma, 1(5), 1684-1690, 1994.
    Low, B.C. and Hundhausen, J.R., Magnetostatic structures of the solar corona. 2:The magnetic topology of quiescent prominences, Astrophys. J., 443, 818-836,1995.
    Low, B.C., Coronal mass ejections, magnetic ?ux ropes, and solar magnetism, J.Geophys. Res., 106(A11), 25141-25164, 2001.
    Low, B.C., Fong B., and Fan Y.H., The Mass of a Solar Quiescent Prominence,Astrophys. J., 594(2), 1060-1067, 2003.
    Luhmann, J.G., Walker, R.J., Russell, C.T., Crooker, N.U., Spreiter, J.R. andStahara, S.S., Patterns of potential magnetic field merging sites on the daysidemagnetopause, J. Geophys. Res., 89, 1739-1742, 1984.
    Lundquist, S., Magnetohydrostatic fields, Ark. Fys., 2, 361-365, 1950.
    Lundstedt, H., Gleisner, H. and Wintoft, P., Operational forecasts of the geo-magnetic dst index, Geophys. Res. Lett., 29(24), 1-34, 2002.
    Malandraki, O.E., Lario, D., Lanzerotti, L.J., Sarris, E.T., Geranios, A. andTsiropoula G., October/November 2003 ICMEs: ACE/EPAM Solar EnergeticParticle Observations, J. Geophys. Res. 110, A09S06, 2005.
    Manoharan, P.K., Gopalswamy, N., Yashiro, S., Lara, A., Michalek, G. andHoward, R.A., In?uence of coronal mass ejection interaction on propagationof interplanetary shocks, J. Geophys. Res. 109, A06109, 2004.
    McAllister, A.H. and Crooker, N.U., Coronal mass ejections, corotating inter-action regions, and geomagnetic storms, in Coronal Mass Ejections, editedby Crooker, N., Joselyn, J.A. and Feynman, J., Geophys. Monogr. Ser. 99,279–289, AGU, 1997.
    McKenna-Lawlor, S.M.P., Dryer, M., Smith, Z., Kecskemety, K., Fry, C.D., Sun,W., Deehr, C.S., Berdichevsky, D., Kudela, K. and Zastenker, G., ArrivalTimes of Flare/HALO CME Associated Shocks at the Earth: Comparison ofthe Predictions of Three Numerical Models with These Observations, AnnalesGeophys., 20, 917-935, 2002.
    McKenna-Lawlor, S.M.P., Dryer, M., Fry, C.D., Sun, W., Lario, D., Deehr, C.S.,Sanahuja, B., Afonin, V.A., Verigin, M.I. and Kotova, G.A., Predictions ofenergetic particle radiation in the close Martian environment, J. Geophys. Res.,110, A03102, doi:10.1029/2004JA010587, 2005.
    Mendoza, B. and P′erez Enr′?quez, R., Association of coronal mass ejections withthe heliomagnetic current sheet, J. Geophys. Res., 98(A6), 9365-9370, 1993.
    Mendoza, B. and P′erez Enr′?quez, R., Geoe?ectiveness of the heliospheric currentsheet, J. Geophys. Res., 100(A5), 7877-7880, 1995.
    Moon, Y.-J., Dryer, M., Smith, Z., Park, Y.D. and Cho K.-S., A revised shocktime of arrival (STOA) model for interplanetary shock propagation: STOA-2,Geophys. Res. Lett., 29, 1-28, 2002.
    Murayama, T. and Hakamada, K., E?ects of solar wind parameters on the de-velopment of magnetospheric substorms, Planet. Space Sci., 23, 75-91, 1975.
    Murayama, T., Coupling function between the solar wind and the Dst index, inSolar Wind-Magnetosphere Coupling, edited by Kamide Y. and Slavin, J.A.,p.119, Terra Scientific Publishing Co., Tokyo, 1986.
    Ness, N.F. and Wilcox, J.M., Solar Origin of the Interplanetary Magnetic Field,Phys. Rev. Lett., 13, 461-464, 1964.
    Neugebauer, M., Observations of solar wind helium, Fundamentals of CosmicPhys., 7, 131-199, 1981.
    Neugebauer, M. and Goldstein, R., Particle and field signatures of coronal massejections in the solar wind, in Coronal Mass Ejections, edited by Crooker, N.,Joselyn, J.A. and Feynman, J., Geophys. Monogr. ser. 99, pp.245–251, AGU,Washington D.C., 1997.
    O Brien T.P. and McPherron, R.L., An Empirical phase space analysis of ringcurrent dynamics: solar wind control of injection and decay, J. Geophys. Res.,105, 7707-7720, 2000a.
    O Brien, T.P. and McPherron, R.L., Forecasting the ring current index dst inreal time, J. Atmospheric Sol. Terrest. Phys., 62, 1295-1299, 2000b.
    Ogilvie, K.W. and Hirshberg, J., Solar-cycle variation of solar-wind helium abun-dance, J. Geophys. Res., 79, 4595-4602, 1974.
    Osherovich, V.A., Farrugia, C.J., Burlaga, L.F., Lepping, R.P., Fainberg, J.and Stone, R.G., Polytropic relationship in interplanetary magnetic clouds,J. Geophys. Res., 98, 15331-15342, 1993a.
    Osherovich, V.A., Farrugia, C.J. and Burlaga, L.F., Nonlinear evolution of mag-netic ?ux ropes, 1. low-beta limit, J. Geophys. Res., 98, 13225-13231, 1993b.
    Osherovich, V.A., Farrugia, C.J. and Burlaga, L.F., Dynamics of aging magneticclouds, Adv. Space Res., 13, 57-62, 1993c.
    Osherovich, V.A., Farrugia, C.J. and Burlaga, L.F., Nonlinear evolution of mag-netic ?ux ropes, 2. finite beta plasma, J. Geophys. Res., 100, 12307-12318,1995.
    Osherovich, V.A. and Burlaga, L.F., Magnetic clouds, in Coronal mass ejections,edited by Crooker, N., Joselyn, J.A. and Feynman, J., Geophys. Monogr. Ser.99, pp.157-168, AGU, 1997.
    Osherovich, V.A., Farrugia, C.J., Stone, R.G., Fitzenreiter, R. and Vinas, A.F.,Measurements of polytropic index in the January 10–11, 1997 magnetic cloudobserved by WIND, Geophys. Res. Lett., 25, 3003-3006, 1998.
    Owens, M.J. and Cargill, P.J., Correlation of magnetic field intensities and solarwind speeds of events observed by ACE, J. Geophys. Res., 107(A5), 1050,doi: 10.1029/2001JA000238, 2002.
    Parker, E.N., Sweet’s mechanism for merging magnetic fields in conducting ?uids,J. Geophys. Res., 62, 509-520, 1957.
    Perreault, P. and Akasofu, S.-I., A study of geomagnetic storms, Geophys. J. R.Astron. Soc., 54, 547-573, 1978.
    Petchek, H.E., Magnetic field annihilation, in Physics of Solar ?ares, editor W.N.Hess, NASA SP-50, Washington DC, 425, 1964.
    Pinter, S., Experimental study of ?are-generated collisionless interplanetaryshock wave propagation, Space Sci. Rev., 32, 145-168, 1982.
    Prigancova, A. and Feldstein, Y.I., Magnetospheric storm dynamics in terms ofenergy output rate, Planet. Space Sci., 40, 581-588, 1992.
    Pudovkin, M.I., Zaitseva, S.A. and Sizova, L.Z., Growth rate and decay of mag-netospheric ring current, Planet. Space Sci., 33, 1097-1102, 1985.
    Richardson, I.G. and Cane, H.V., Regions of abnormally low proton temperaturein the solar wind (1965–1991) and their association with ejecta, J. Geophys.Res., 100(A12), 23397-23412, 1995.
    Richardson, I.G., Farrugia, C.J. and Cane, H.V., A statistical study of the be-havior of the electron temperature in ejecta, J. Geophys. Res., 102, 4691-4699,1997.
    Richardson, I.G., Cliver, E.W. and Cane, H.V., Sources of geomagnetic activityover the solar cycle: Relative importance of coronal mass ejections, high-speedstreams, and slow solar wind, J. Geophys. Res., 105, 18203-18213, 2000.
    Richardson, I.G., Cane, H.V. and Cliver, E.W., Sources of geomagnetic activityduring nearly three solar cycles (1972–2000), J. Geophys. Res., 107(A8),SSH8-1, 2002.
    Russell, C.T., McPherron, R.L. and Burton, R.K., On the cause of geomagneticstorms, J. Geophys. Res., 79, 1105-1109, 1974.
    Schwenn, R., Dal Lago, A., Huttunen, E. and Gonzalez, W.D., The associationof coronal mass ejections with their e?ects near the Earth, Annales Geophys.23, 1033-1059, 2005.
    Sheeley, N.R., Jr., Harvey, J.W. and Feldman, W.C., Coronal holes, solar windstreams, and recurrent geomagnetic disturbances - 1973–1976, Sol. Phys., 49,271-278, 1976.
    Skoug, R.M., Bame, S.J., Feldman, W.C., Gosling, J.T., McComas, D.J., Stein-berg, J.T., Tokar, R.L., Riley, P., Burlaga, L.F., Ness, N.F. and Smith, C.W.,A prolonged He+ enhancement within a coronal mass ejection in the solarwind, Geophys. Res. Lett., 26, 161-164, 1999.
    Skoug, R.M., Gosling, J.T., Steinberg, J.T., McComas, D.J., Smith, C.W., Ness,N.F., Hu, Q. and Burlaga, L.F., Extremely High Speed Solar Wind: 29-30October 2003, J. Geophys. Res. 109, A09102, 2004.
    Smart, D.F. and Shea, M.A., A simplified model for timing the arrival of solar?are-initiated shocks, J. Geophys. Res., 90, 183-190, 1985.
    Smith, E.J. and Wolf, J.W., Observations of interaction regions and corotatingshocks between one and five AU: Pioneers 10 and 11, Geophys. Res. Lett., 3,137-140, 1976.
    Smith, E.J., Slavin, J.A., Zwickl, R.D. and Bame, S.J., Shocks and storm suddencommencements, in Solar Wind-Magnetoshpere Coupling, edited by KamideY. and Slavin, J.A., pp. 345-365, Terra. Scientific, Tokyo, 1986.
    Smith E.J., The heliospheric current sheet, J. Geophys. Res., 106(A08), 15819-15831, 2001.
    Smith, Z., Dryer, D., The interplanetary shock propagation model: a model forpredicting solar-?are-caused geomagnetic storms, based on the 2 1/2D, MHDnumerical simulation results from the interplanetary global model. NOAA tech-nical memorandum ERL/SEL-89, July 1995.
    Smith, Z., Odstrcil, D. and Dryer, M., A 2.5-dimensional MHD parametric studyof interplanetary shock interaction with the heliospheric current sheet/he-liospheric plasma sheet, J. Geophys. Res., 103(A9), 20581-20590, 1998.
    Smith, Z., Dryer, M., Ort, E. and Murtagh, W., Performance of InterplanetaryShock Propagation Models: STOA and ISPM, J. Atmos. Sol. Terr. Phys. 62,1265-1274, 2000.
    Snyder, C.W., Neugebauer, M. and Rao, U.R., The solar wind velocity and itscorrelation with cosmic ray variations and with solar and geomagnetic activity,J. Geophys. Res., 68, 6361-6370, 1963.
    Sonnerup, B.U.O. and Cahill, L.J., Magnetopause structure and altitude fromExplorer 12 observations, J. Geophys. Res., 72, 171-183, 1967.
    Srivastava, N. and Venkatakrishnan, P., Solar and interplanetary sources of majorgeomagnetic storms during 1996-2002, J. Geophys. Res., 109, A10103, 2004.
    Stone, R.G., MacDowall, R.J., Fainberg, J., et al., Ulysses radio and plasma waveobservations at high southern heliographic latitudes, Science, 268, 1026-1029,1995.
    Sun, W. and Akasofu, S.-I., Calibration of the kinematic method of studyingsolar wind disturbances on the basis of a one-dimension MHD solution and asimulation study of the heliosphere disturbances between 22 November and 6December 1977, Plant. Space Sci., 33(8), 933-943, 1985.
    Sweet, P.A., The neutral point theory of solar ?ares, in Electromagnetic Phenom-ena in Cosmical Phyiscs IAU Symp. 6, ed. Lehnert, B., Cambridge UniversityPress, p123, 1958.
    Temerin, M. and Li, X., A new model for the prediction of dst on the basis ofthe solar wind, J. Geophys. Res., 107(A12), 1472, doi:10.1029/2001JA007532,2002.
    Thomsen, M.F., Borovsky, J.E., McComas, D.J., Collier, M.R., Variability of thering current source population, Geophys. Res. Lett., 25, 3481-3484, 1999.
    Tsurutani, B.T., Gonzalez, W.D., Tang, F., Akasofu, S.I. and Smith, E.J., Originof interplanetary southward magnetic fields responsible for major magneticstorms near solar maximum (1978–1979), J. Geophys. Res., 93, 8519-8531,1988.
    Tsurutani, B.T., Gonzalez, W.D., Tang, F. and Lee, Y.T., Great magneticstorms, Geophys. Res. Lett., 19, 73-76, 1992.
    Tsurutani, B.T. and Gonzalez, W.D., The future of geomagnetic storm pre-dictions: Implications from recent solar and interplanetary observations, J.Atmospheric Terrest. Phys., 57, 1369-1384, 1995.
    Tsurutani, B.T. and Gonzalez, W.D., The interplanetary causes of magneticstorms: A review, in Magnetic Storms, edited by Tsurutani, B.T., Gonzalez,W.D., Kamide, Y. and Arballo, J.K., Geophys. Monogr. Ser. 98, p. 77, AGU,1997.
    Vandas, M., Fischer, S., Pelant, P. and Geranios, A., Spheroidal models of mag-netic clouds and their comparison with spacecraft measurements, J. Geophys.Res., 98, 11467-11475, 1993.
    Vassiliadis, D., Klimas, A.J., Valdivia, J.A. and Baker, D.N., The Dst geomag-netic response as a function of storm phase and amplitude and the solar windelectric field, J. Geophys. Res., 104, 24957-24976, 1999.
    Vasyliunas, V.M., Kan, J.R., Akasofu, S.-I. and Siscoe, G.L., Scaling relationsgoverning magnetospheric energy transfer, Planet. Space Sci., 30, 359-365,1982.
    Vennerstroem, S., Interplanetary sources of magnetic storms: A statistical study,J. Geophys. Res., 106, 29175-29184 , 2001.
    Wang, Y.M. and Sheeley, N.R., Global evolution of interplanetary sector struc-ture, coronal holes, and solar wind streams during 1976-1993: Stack plot dis-plays based on solar magnetic observations, J. Geophys. Res., 99, 6597-6608,1994.
    Wang, Y.M., Ye, P.Z., Wang, S., Zhou, G.P. and Wang, J.X., A statistical studyon the geoe?ectiveness of Earth-directed coronal mass ejections from March1997 to December 2000, J. Geophys. Res., 107(A11), 1340-1348, 2002.
    Wang, Y.M., Ye, P.Z. and Wang, S., Multiple magnetic clouds: Several examplesduring March–April, 2001, J. Geophys. Res., 108(A10), 1370-1380 , 2003a.
    Wang, Y.M., Ye, P.Z., Wang, S. and Xue, X.H., An interplanetary cause of largegeomagnetic storms: Fast forward shock overtaking preceding magnetic cloud,Geophys. Res. Lett., 30(13), 1700-1703, 2003b.
    Wang, Y.M., Ye, P.Z. and Wang, S., A probable origin of great geomagneticstorm: Multiple magnetic clouds, Chinese J. Geophys., 47, 417-423, 2004.
    Watanabe, T. and Schwenn, R., Large-scale propagation properties of interplan-etary disturbances revealed from IPS and spacecraft observations, Space Sci.Rev., 51, 147-173, 1989.
    Webb, D.F., Solar and geomagnetic disturbances during the declining phase ofrecent solar cycles, Adv. Space res., 16(9), 957-969, 1995.
    Webb, D.F., Crooker, N.U., Plunkett, S.P. and Cyr, O.C.St., The solar sourcesof geoe?ective structures, in Space Weather, edited by Paul, S., Howard, J.S.and George, L.S., Geophys. Monogr. Ser. 125, pp.123-142, AGU, 2001.
    Webb, D. and Allen, J., Spacecraft and Ground Anomalies Related to theOctober-November 2003 Solar Activity, Space Weather, 2, S03008, 2004.
    Wei Fengsi, Yang Guang and Zhang Gongliang, Three-dimensional propagationof ?are-associated interplanetary shock waves from interplanetary scintillationobservations, Proc. of Kunming Workshop on Solar Physics and InterplanetaryTravelling Phenomena, Vol.11, 1043-1051, 1983.
    Wei, F.S. and Dryer, M., Propagation of ?are-associated interplanetary shockwaves in the heliospheric meridional plane, Solar Phys., 132, 373-394, 1991.
    Wei F.S. and Liu S.Q., Prediction of geomagnetic disturbance profile from in-terplanetary shock wave energy transfer index, Fs, in interplanetary space,Journal of Geomagnetism and Geoelectricity, 48(3), 291-297, 1996.
    Wei, F.S., Liu, R., Fan, Q. and Feng, X., Characteristics of the boundary layerof magnetic clouds and a new definition of the cloud boundary, Sci. in China(E), 46(1), 19-32, 2003a.
    Wei, F.S., Cai, H.C., Feng, X.S. and Shi, J.K., A Prediction Method of Geomag-netic Disturbances Based on IPS Observations-Dynamics-Fuzzy Mathematics,Adv. Space Res. 31(4), 1069-1073, 2003b.
    Wei, F.S., Feng, X.S., Xu, Y. and Fan, Q.L., Prediction tests by using ”ISF”method for the geomagnetic disturbances, Adv. Space Res., 36, 2363-2367,2005.
    Wei, F.S., Feng, X.S., Yang, F. and Zhong D.K., A new non-pressure-balancedstructure in interplanetary space: Boundary layers of magnetic clouds, J. Geo-phys. Res., 111, A03102, doi:10.1029/2005JA011272, 2006.
    Wilcox, J.M. and Ness, N.F., Quasi-Stationary Corotating Structure in the In-terplanetary Medium, J. Geophys. Res., 70(23), 5793-5805, 1965.
    Wilson, R.M. and Hildner, E., Are interplanetary magnetic clouds manifestationsof coronal transients at 1 AU?, Sol. Phys., 91, 168-180, 1984.
    Wilson, R. M., On the behavior of the Dst geomagnetic index in the vicinity ofmagnetic cloud passages at earth, J. Geophys. Res., 95, 215-219, 1990.
    Woods, T.N., Eparvier, F.G., Fontenla, J., Harder, J., Kopp, G., McClintock,W.E., Rottman, G., Smiley, B. and Snow, M., Solar irradiance variabilityduring the October 2003 solar storm period, Geophys. Res. Lett., 31, L10802,2004.
    Wu, C.-C. and Lepping, R.P., E?ects of magnetic clouds on the occurrence ofgeomagnetic storms: The first 4 years of Wind, J. Geophys. Res., 107(A10),1314-1321, 2002.
    Wu, C., Fry, C., Thompson, B.J., Wu, S., Dryer, M. and Liou, K., Three-dimensional global simulation of CME/ICME/Shock propagation from Sunto the heliosphere, AGU Fall Meeting Abstracts, #SH14A-03, 2005.
    Xie H., Ofman, L. and Lawrence, G., Cone model for halo CMEs: Applicationto space weather forecasting, J. Geophys. Res., 109(A3), A03109, 2003.
    Yago K. and Kamide, Y., Use of lognormal distributions in Dst variations forspace weather forecast, Space Weather, 1, 1004, 2003.
    Yermolaev, Y.I., Yermolaev, M.Y., Zastenker, G.N., Zelenyi, L.M., Petrukovich,A.A. and Sauvaud J.-A., Statistical studies of geomagnetic storm dependencieson solar and interplanetary events: a review, Planetary Space Sci., 53, 189-196,2005.
    Yurchyshyn V., Wang, H. and Abramenko, V., How directions and helicity oferupted solar magnetic fields define geoe?ectiveness of coronal mass ejections,Adv. Space Res., 32, 1965-1970, 2003.
    Yurchyshyn, V., Wang, H., Abramenko, V., Correlation between speeds of CMEsand the intensity of geomagnetic storms, Space Weather, 2, S02001, 2004.
    Vasyl Yurchyshyn, Qiang Hu, Valentyna Abramenko, Structure of magnetic fieldsin NOAA active regions 0486 and 0501 and in the associated interplanetaryejecta, Space Weather, 3, S08C02, 2005.
    Zhang, J., Dere, K.P., Howard, R.A. and Bothmer, V., Identification of solarsources of major geomagnetic storms between 1996 and 2000, Astrophys. J.,582, 520-533, 2003.
    Zhao Xuepu and Hundhausen, A.J., Organization of solar wind plasma proper-tities in a titled reliomagnetic coordinate system, J. Geophys. Res., 86, 5423-5430, 1981.
    Zhao Xuepu, Hoeksema J. Todd, E?ect of cronal mass ejections on the structureof the heliospheric curren sheet, J. Geophys. Res., 101(A3), 4825-4834, 1996.
    Zurbuchen, T.H., Gloeckler, G., Ipavich, F., Raines, J., Smith, C.W. and Fisk,L.A., On the fast coronal mass ejections in October/November 2003: ACE-SWICS results, Geophys. Res. Lett. 31, L11805, 2004.
    Zwickl, R.D., Asbridge, J.R., Bame, S.J., Feldman, W.C., Gosling, J.T. andSmith, E.J., Plasma properties of driver gas following interplanetary shocksobserved by ISEE-3, in Sol. Wind Five, edited by M. Neugebauer, p. 711,NASA Conf. Publ. 2280, Washington D. C., 1983.
    高玉芬, 王家龙, 肖佐, 1997年1月6–11日日地连接事件: 磁暴–环电流–对流电场的讨论, 空间科学学报, 18(3), 222-227, 1998.
    高原, 行星际激波传播时间的预测研究, 中国科学院空间中心硕士论文, 2004.
    刘四清, 魏奉思, 行星际磁场对激波能量传输指数的初步修正, 武汉大学学报,DEC., 1993.
    刘四清, 魏奉思, 赵寄昆, 陈合宏, 孙炜和Akasofu, S.I., 用三维运动学模式研究暗条消失与行星际扰动, 地球物理学报, 41(6), 735-743, 1998.
    焦维新, 濮祖荫, 地球空间环境及预报, 地球物理学报, 39(6), 853-859, 1996.
    焦维新, 空间天气学, 气象出版社, 2000.
    林元章, 太阳物理导论, 科学出版社, 2000.
    柳文冠, 日冕抛射物质对扇形边界的影响, 中央大学太空科学研究所硕士论文,中坜, 2004.
    马振国, 张喜镇, 韩文焌, 行星际闪烁(IPS)研究新进展, 天文学进展, 18(3),209-215, 2000.
    马冠一, 王家龙, 太阳风的电波传播观测研究, 天文学进展, 12(1), 30-41, 1994.
    索玉成, 张添益, 2003年一次日–地大骚扰, 军事气象, 3, 34-36, 2004.
    王传兵, 赵寄昆, 陈合宏, 李毅, 王水, 孙炜和Akasofu, S.I., 运用三维模型对行星际磁场南北分量的预测, 地球物理学报, 45(6), 749-758, 2002.
    汪毓明, 行星际磁云及其相关事件的综合研究, 中国科学技术大学博士论文, 合肥, 2003.
    魏奉思, 冲击波在变密度、运动介质中的传播, 空间科学学报, 2(1), 63-72, 1982.
    魏奉思. 关于利用行星际闪烁(IPS)观测进行地球磁暴急始预报的初步探讨, 地球物理学报, 27(5), 417-423, 1984.
    魏奉思, 关于耀斑-激波非对称传播的统计研究, 中国科学A辑, 2, 186-193, 1987.
    魏奉思, 蔡红昌. 从属函数在地磁扰动预报研究中的初步应用. 空间科学学报,10(1), 35-41, 1990a.
    魏奉思, 张剑虹, 黄岁平, 在耀斑-日球电流片坐标系中—研究耀斑-激波的传播特性(I), 地球物理学报, 33, 125-134, 1990b.
    魏奉思, 刘四清, 张剑虹, 在耀斑-日球电流片坐标系中—研究耀斑-激波相应地磁扰动的分布特征(II), 地球物理学报, 34, 133-138, 1991.
    魏奉思, 朱志文, 空间天气. 科学, 5, 30-33, 1999.
    魏奉思, 空间天气学的基本问题, 中国基础科学, 7, 9-13, 2000.
    魏奉思, 徐亚, 冯学尚, 利用”ISF”方法于地磁扰动事件的预报试验. 中国科学E辑, 33(5), 447-451, 2003c.
    叶品中, 汪毓明, 地磁暴与CME的相关分析, 第三次全国空间天气学研讨会部分报告摘要, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700