用户名: 密码: 验证码:
不同导风系统的云迹风资料及其在台风预报中同化应用的对比分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西太平洋是全球热带气旋发生频率最高的海域,特别是东亚地区的中国和韩国都是受台风影响较为严重的国家。过去由于在海洋上的观测资料不足,对台风登陆前的研究十分有限。而近几年,云迹风等一系列高时空分辨率的气象卫星的非常规资料弥补了海洋上观测资料不足,特别是利用同化方法把非常规资料应用到模式中,可以有效地改善对台风路径的数值预报。
     本文首先通过不同导风系统的云迹风资料的对比、云迹风资料和探空风资料的对比,得到CWIS(cloud motion wind inferring system developed by NUIST)云迹风资料的误差特征。然后利用WRF模式的三维变分同化系统将CWIS云迹风资料引入模式,进行台风数值模拟试验和诊断分析,研究了云迹风资料在模式模拟中对台风预报的影响,并对比分析不同导风系统得到的云迹风资料的数值模拟差异。本研究可为提高台风的预报效果提供线索。主要得到以下结果:
     1.通过对比CWIS、NSMC(中国气象局国家卫星中心)和JMSC(日本气象卫星中心)云迹风资料,并将这三种云迹风资料与探空风进行比较,评价了CWIS云迹风资料。CWIS的风速与JMSC、RAOB之间有较好的一致性,而CWIS的风向相对于NSMC、JMSC和RAOB差异较大。虽然CWIS存在一些误差,但CWIS云迹风资料可以较好地描述天气形势。
     2.同化CWIS单通道的云迹风资料以及同时同化两个通道的云迹风资料对2005年第9号台风“麦莎”的路径预报有明显的改善作用,其中同时同化两个通道(时间间隔为3小时)的路径预报模拟结果更好。
     3.CWIS、NSMC和JMSC云迹风资料对2005年第15号台风“卡努”路径预报都有不同程度的改善,减小的平均误差分别为49%、19%和39%。并且3小时间隔的云迹风资料模拟出的台风路径非常接近实况。GTS(探空,地面)资料模拟对台风路径预报出现负面现象,但是合并云迹风资料后,能改进其对台风路径的预报,尤其是合并JMSC云迹风资料后的同化结果比单独同化JMSC云迹风资料和GTS资料的模拟更好。同时同化各云迹风资料和GTS资料减小的平均误差分别为26%、15%和50%。
     4.通过对台风2005年第14号“彩蝶”引发的特大暴雨的分析,发现此次暴雨在台风的倒槽内有中尺度对流云团产生。模式的降水预报中,从综合降水范围、中心位置和中心强度来看,云迹风资料对台风降水中心和强度都有较好的模拟能力。
     5.积云对流参数化方案在模式模拟台风“彩蝶”路径的影响较大。与Betts-Miller-Janjic(BMJ)方案相比,Kain-Fritcz(KF)方案能够更好地模拟出台风路径。使用KF方案时,选择微物理方案对于台风路径有更好的模拟结果。其中,Ferrier、WSM6和Lin方案非常接近于实况。JMSC云迹风资料在不同模式参数化方案中对台风预报的影响也有明显的差异,在KF方案中,只有选用Kessler方案时,同化云迹风资料才有比控制试验更好的结果。而在BMJ方案中,选用任何微物理方案,同化云迹风资料都比控制试验的结果好。
The western Pacific Ocean is the most frequent sea area where tropical cyclones take place. The East Asia, especially China and Korea are all under the influence of typhoon. In the past, due to a lack of information from observation above the sea, the research of situation before a typhoon landing was rather limited. In recent years, the application of a series of unconventional high resolution spatiotemporal data, for example, satellite cloud motion wind (CMW), complements the defect of observational data above the sea. The assimilation of the unconventional data in models can effectively improve the typhoon track forecast.
     This study includes comparing of cloud motion wind datasets from different deriving systems and also comparing CMW data with radiosonde data. These CMW data are from CWIS (cloud motion wind inferring system developed by NUIST), NSMC (China Satellite Meteorological Center) and JMSC (Japan Meteorological Satellite Center). In addition, numerical experiments and diagnostic analyses are conducted for the effect of CWIS CMW data on typhoon forecasting in WRF 3DVAR and analyzed the difference of numerical experiments of three kind of CMW data. This study could be giving a clue of improving the typhoon forecasting. The results are as follows:
     Firstly, it was evaluated by comparing three different kinds of CMW data each other and comparing CMW data with radiosonde data for evaluating the CWIS data. The wind speeds measured by CWIS data, are similar to NSMC data and JMSC data, but the wind directions of CWIS data relatively greater than other data. Although there are some errors in CWIS data, it insures good reliability of the weather situation.
     Secondly, Both assimilation of one channel and two channels of CWIS data have remarkable improvement in forecasting the track of typhoon Masha (200509). The typhoon track forecasted by assimilation of two channels (the time interval is 3 hours) is much better.
     Thirdly, CWIS, NSMC and JMSC data have different grade of improvement in forecasting the track of typhoon Khanun (200515), Three systems yield 49%, 19% and 39% respective reduction in forecast mean error. GTS (radiosonde, surface) data simulation has some negative effect on forecasting typhoon track, but when it is combined with CMW data, the track forecasting is greatly improved. Especially when combined with JMSC data, the result is better than the assimilation of JMSC data and GTS data respectively. The assimilations of three kinds of CMW data and GTS data have 26 %, 15% and 50% in forecast mean error, respectively.
     Fourthly, it was analyzed typhoon Nabi (200514) caused heavy rainfalls, which mainly happen in the coastal area of Korea. These heavy rainfalls take placed due to inverted trough, CMW data has good simulation of the typhoon main precipitation area and core.
     Fifthly, Convective schemes have great influence on the track of typhoon Nabi. Compared with Betts-Miller-Janjic (BMJ) scheme, Kain-Fritcz (KF) scheme can better simulate typhoon track. When using KF scheme, choosing micro-physical scheme is better than no choosing scheme. The results got by Ferrier, WSM6 and Lin scheme are really close to the observation. JMSC CMW data using different parameterization schemes has different effect on typhoon forecasts. In KF scheme, typhoon track only by Kessler scheme is a better improvement than controlled experiment. In BMJ scheme, every micro-physical method can provide better results than controlled experiment.
引文
[1]陈联寿,丁一汇.西太平洋台风概论.北京:科学出版社.1979.
    [2]Oda M,Itano T,Naito G,et al.Destabilization of the symmetric vortex and formation of the elliptical eye of typhoon herb.Journal of the Atmospheric Sciences,2005,62(8):2965-2976.
    [3]Murata A,Saito K,Ueno M.The effects of precipitation schemes and horizontal resolution on the major rainband in typhoon Flo(1990)predicted by MRI mesoscale nonhydrostatic model.Meteorology and Atmospheric Physics,2003,82(1-4):55-73.
    [4]仲荣根.台风加(减)速运动的诊断预报方法及路径预报.海洋学报,1995,17(4):56-63.
    [5]袁金南,肖伟生.海温变化对台风路径的影响.广东气象,2002,(3):1-2.
    [6]贺海晏.台风移动规律的研究.热带气象学报,1995,11(1):2-9.
    [7]包澄澜,马卫民,陈信雄,等.北上台风生成和路径的卫星云图特征研究.自然灾害学报,2001,10(2):12-18.
    [8]陈渭民,陈鹏.利用卫星云图预报台风路径的一种新方法.台风会议文集.1985.北京:气象出版社,1987:127-136.
    [9]李晓莉,沈桐立,孙麟平.中尺度模式的四维伴随同化系统及其同化试验.南京气象学院学报,2002,25(1):36-44.
    [10]黄荣辉,吴津生.卫星资料在数值天气预报中的应用与四维分析方法的若干进展.国家卫星气象中心,卫星气象文集.北京:气象出版社,1987:23-36.
    [11]Purdum J W,Vonder T H.Diagnosing the severe thunderstorm environment by mesoscale cloud tracking:A new approach and new information.Amer Meteor Soc,Boston,Proc.Of the conf.on satellite remote sensing and application,1984:100-105.
    [12]Petersen W A,Carey L D,Rutledge S A,et al.Mesoscale and radar observations of the Fort Collins flash flood of 28 July 1997.Bull Amer Meteor,1999,80(2):190-216.
    [13]刘正光,喻远飞,吴冰.利用云导风矢量图进行台风中心自动定位.气象学报,2003,61(5):636-640.
    [14]白洁,王洪庆,陶祖钮.GMS卫星红外云图云迹风的反演.北京大学学报(自然科学版),1997,33(33):85-92.
    [15]许建民,张其松,王大昌等.云迹风计算中的两个几何问题.应用气象学报,1997,8(1):11-18.
    [16]许建民,张其松,方翔.用红外和水汽两个通道的卫星测值指定云迹风的高度.气象学报,1997,55(4):408-417.
    [17]陈华,许建民,张其松等.用高度调整法进行云迹风高度的质量控制.气象科学,1999,19(1):20-25.
    [18]王振会,曾维琳.卫星云迹风微机客观导出系统.南京气象学院学报,1997,20(3):382-386.
    [19]王振会,陈金娥,曾维琳.卫星云迹风导出系统的结果分析,南京气象学院学报,1997,20(3):382-386
    [20]Le M J F,Leslie L M,Spinoso C.The generation and assimilation of cloud-drift winds in numerical weather prediction.Journal of Meteorological Society of Japan,1997,75:383-393.
    [21]Bhatia R C,Khanna P N,Prasad K,te al.Use of Meteosat-5 derived winds for analysis of two tropical cyclones affecting Gujarat coast on 20 May,1999 and Orissa coast on 29 October.1999.1-8.
    [22]Brian J.Soden,Christopher S.Velden,and Robert E.Tuleya.The impact of Satellite Winds on Experimental GFDL Hurricane Model Forecasts.2001,Mon.Wea.Rev.,129,835-852.
    [23]Qingnong Xiao,X.Zou,and M.Pondeca et al.Impact of GMS-5 and GOES-9Satellite-Derived Winds on the Prediction of a Norpex Extratropical Cyclone.2002.Mon.Wea.Rev.,130,507-528.
    [24]Christopher S.Velden,Christopher M.Hayden and W.Paul Menzel et al.The impact of Satellite-derived Winds on Numerical Hurricane Track Forecasting.weather and forecasting,1992,7,107-118.
    [25]Christopher S.Velden,Timothy L.Olander,and Steve Wanzong.The Impact of Multispectral GOES-8 Wind Information on Atlantic Tropical Cyclone Track Forecasts in 1995.Part Ⅰ:Dataset Methodology,Description,and Case Analysis,1998,Mon.Wea.Rev.,126,1202-1218.
    [26]James S.Goerss,Christopher S.Velden and Jeffrey D.Hawkins.The Impact of Multispectral GOES-8 Wind Information on Atlantic Tropical Cyclone Track Forecasts in 1995.Part Ⅱ:NOGAPS Forecasts,1998,Mon.Wea.Rev.,126,1219-1227.
    [27]Schmetz J,Borde R,Konig M,et al.,Upper Tropospheric Fields in a Tropical Convective System Observed with METEOSAT-8.Proceedings of the 6~(th)International Winds Workshop,Madison,USA,7-10 May 2002,EUMETSAT Publication,EUM P35:359-365.
    [28]张守峰,王诗文.应用卫星云导风进行台风路径预报试验.热带气象学报,1999,15:347-355.
    [29]王栋梁,梁旭东,端义宏.云迹风在热带气旋路径数值预报中的应用研究.气象学报,2005,6:351-358.
    [30]庄照荣,薛纪善.云迹风资料的三维变分同化及对台风预报的影响试验.热带 气象学报,2004,3:225-236.
    [31]黄彦斌,雷恒池,郭学良等.卫星云导风资料对REM中尺度数值模拟的改进研究.高原气象,2003,22(6):74-82.
    [32]周兵,徐海明,吴国雄等.云迹风资料同化对暴雨预报影响的数值模拟.气象学报,2002,60(3):309-317.
    [33]Stauff D R,Seaman N L.Use of four-dimensional data assimilation in a limited area mesoscale model.Part 1:Experiments with synoptic-scale data.Mon Wea Rev,1990,118(6):1250-1277.
    [34]Stauff D R,Seaman N L.Use of four-dimensional data assimilation in a limited area mesoscale model.Part 2:Effects of data assimilation within the planetary layer.Mon.Wea.Rev.,1991,119(3):734-754.
    [35]Gandin L S.Objective Analysis of Meteorological Fields.Jerusalem:Israel program for scientific Translation,1963:242.
    [36]沈桐立,田永祥,葛孝贞,等.数值天气预报.北京:气象出版社,2003:221-243.
    [37]《大气科学词典》 编委会.大气科学词典.北京:气象出版社,1994:809.
    [38]李晓莉,沈桐立.四维伴随模式变分同化简介.气象教育与科技,2002,22(1):1-5.
    [39]Kalman R E.A new approach to linear filtering and prediction problems.Translation of the ASME.Journal of Basic Engineering,1960,82D(2):34-45.
    [40]Kalman R E,Bucy R.New results in linear filtering and prediction.Translation of the ASME.Journal of Basic Engineering,1961,83D(2):95-108.
    [41]Jones R H.Optimal estimation of initial conditions for numerical prediction.J Atmos Sci,1965,22(6):658-663.
    [42]Epstein E S.Stochastic dynamic prediction.Tellus,1969,21(6):739-759.
    [43]Petersen D P.On the concepts and implementation of sequential analysis for linear random Fields.Tellus,1968,20(4):673-686.
    [44]Ghil M,Malanotte-Rizzoli P.Data assimilation in meteorology and oceanography.Adv Geophys,1991,33(2):141-266.
    [45]Cohn S E,Parrish D F.The behavior of forecast error covariances for a Kalman filter in two dimensions.Mon Wea Rev,1991,119(8):1757-1785.
    [46]Dee D P.Simplification of the Kalman filter for meteorological data assimilation.Q J R Meteorol Soc,1991,117(498):365-384.
    [47]Lorence A C.Analysis methods for numerical weather prediction.Q J R Meteorol Soc,1986,112(474):1177-1194.
    [48] Ehrendorfer M. Four-dimensional data assimilation: comparison of variational and sequential algorithms. Q J R Meteorol Soc, 1992,118(506): 673-713.
    [49] Evesen G. Sequential data assimilation with a nonlinear Quasi-geostrophic model Using Montre Carlo methods to forecast error statics. J Geophys.Res. 1994, 99(C5): 10143-10142.
    [50] Evesen G, Van Leeuwen P J. Assimilation of Geosat altimeter data for the Agulhas Current using the Ensemble Kalman Filter with a quasigeos teophic model. Mon.Wea.Rev., 1996,124: 85-96.
    [51] Houtekamer P L, Mitchell H L. A sequential ensemble Kalman filter for atmospheric data assimilation. Mon.Wea.Rev., 2001,129:123-137.
    [52] Keppenne C L, Rienecker M. Assimilation of temperature into an isopycnal ocean general circulation model using a parallel Ensemble Kalman Filter. J. Mar.Syst., 2003,40: 363-380.
    [53] Sasaki Y. An objective analysis based on the variational method. J Meteor Soc Japan, 1958,36(1): 77-88.
    [54] Sasaki Y. Some basic formalism in numerical variational Analysis. Mon Wea Rev, 1970, 98(12): 875-883.
    [55] LeDimet F X, Talagrand O. Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects[J]. Tellus, 1986, 38A(2): 97-110.
    [56] Courtier P, Talagrand O. Variational assimilation of meteorological observations with the direct and adjoint shallow-water equations[J]. Tellus, 1990, 42A(5): 531-549.
    [57] Thepaut J N, Courtier P. Four-dimensional variational assimilation using the adjoint of a multilevel equation mode. Q J R Meteorol Soc, 1991,119(5): 1225-1254.
    [58] Zou X, Navon I M, Sela J G. Control of gravitational oscillations in variational data assimilation. Mon Wea Rev, 1993,121(1): 272-289.
    [59] Zupanski D. The effect of discontinuities in the Betts-Miller Cumulus convection scheme on four dimensional data assimilation. Tellus, 1993,45A(5): 511-524.
    [1]白洁,王洪庆,陶祖珏.GMS卫星红外云图云迹风的反演,北京大学学报(自然科学版),1997,33(1):85-92.
    [2]王振会,曾维琳.卫星云迹风微机客观导出系统,南京气象学院学报,1996,19(1):69-75.
    [3]陈华,许健民,张其松,方翔.用高度调整法进行云迹风高度的质量控制,1999,19(1):20-25.
    [4]魏清宇.FY-2C气象卫星半小时间隔云图导风业务系统的设计与开发.2006,南京信息工程大学学位论文.
    [5]WHITNEY L F.Satellite-derived products,winds,NESDIS[C].WMO Meeting on Calibration,Validation and Intercomparison of SatelliteProducts,Geneva,Switzerland,1984,14pp.
    [6]王振会,陈金娥,曾维琳.卫星云迹风导出系统的结果分析[J].南京气象学院学报,1997,20(3):382-386.
    [7]Nieman J,W P Menzel,C M Hayden,et al.Fully automated cloud-drift winds in NESDIS operations[J].Bull Amer Meteor Soc,1997,78,1121-1133.
    [1]http://www.mmm.ucar.edt/wrf/users Skamarock W.C.,Klemp J.B.,Dudhia J,Gill D.O.,A Description of the Advanced Research WRF Version 2.Available on WRF website.
    [2]Kessler W.,On the distribution and continuity of water substance in atmospheric circulation,Meteor.Monogr.,1969(32),Amer.Meterl.Soc.,84.
    [3]Wicker,L.J.,and R.B.Wilhelmson,Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm,J.Atmos.Sci.,1995(52),2675-2703.
    [4]Chen,S.-h.,and W.-Y.Sun,A one-dimensional time dependent cloud model,J.Meteor.Soc.,Japan,2003(80),99-118.
    [5]Lin,Y.L.,R.Farley,and H.D.Orville,1983:Bulk parameterization of the snow field in a cloud model.J.Climate Appl.Meteor.,22,1065-1092.
    [6]Rutledge,S.A.,and P.V.Hobbs,1983:The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the "seeder-feeder"process in warm-frontal rainbands.Atmos.Sci., 40,1185-1206.
    [7] Rutledge, S.A., and P.V.Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones.XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J.Atmos.Sci., 41,2949-2972.
    [8] Tao, W.-K., J.Simpson, and M.McCumber, An ice-water saturation adjustment, Mon.Wea.Rev., 1989(117), 231-235.
    [9] Chen, S.-h., and W.-Y. Sun, A one-dimensional time dependent cloud model, J.Meteor.Soc, Japan, 2003(80), 99-118.
    [10] Hong S.-Y, Jimy Dudhia, and Shu-hua Chen, 2004: Approach to Ice Microphysical Process for the Bulk Parameterization of Cloud and Precipitation. J.Atmos.Sci., 132,103-130.
    [11] Hong S.-Y, H.-M.H.H.Juang, and Q.Zhao, 1998: Implementation of prognostic clod scheme for a regional spectral model. Mon.Wea.Rev., 126,2621-2639.
    [12] Q. Zhao, and F. H. Carr.1997: A Prognostic Cloud Scheme for Operational NWP Models. Mon. Wea. Rev., 125,1931-1953.
    [13] Gregory Thompson, Roy M.Rasmussen, and Kevin Manning.2004: Explicit Forecasts of Winter Precipitation Using an Improvd Bulk Microphysics Scheme. Part I: Description and Sensitivity Analysis. Monthly Weather Review, 132, 519-542.
    [14] Reisner, J., R.M.Rasmussen, and R.T.Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model.Quart. J.Roy.Meteor.Soc, 124,1071-1107.
    [15] Cooper, W.A.,Ice initiation in natural clouds. Precipitation Enhancement-A Scientific Challenge, Meteor.Monogr., 1986, No.43, Amer.Met.Soc., 29-32.
    [16] Fletcher, N.H., The physics of Rain Clouds. Cambridge University Press, 1962, 386.
    [17] Walko, R.L., W.R.Cotton, M.P.Meyers, and J.Y.Harrington, New RAMS cloud microphysics parameterization. Part I: The single-moment scheme, Atmos.Res., 1995(38),29-62.
    [18] Janjic,Z.I., The step-mountain eta coordinate model: further developments of the convection, Viscous sublayer and turbulence closure schemes, Mon.Wea.Rev., 1994(122),927-945.
    [19]Janjic,Z.I.,Comments on "Development and Evaluation of convection Scheme for Use in Climate Models",J.Atmos.Sci.,2000(57):3686.
    [20]Betts,A.K.and Miller.A new convective adjustment scheme.PartⅠ:Observational land theoretical basis,1986(112),667-691.
    [21]Betts,A.K.and Miller.A new convective adjustment scheme.PartⅡ:Single column tests using GATE wave,BOMEX,and arctic air-mass data sets,Q.J.Roy.Meteor.Soc.,1986(112),693-709.
    [22]Kain,J.S.and J.M.Fritsch.A one-dimensional entraining/detraining plume model and its application in convective paramet-erization,J.Atmos.Sci.,1990(47),1784-2802.
    [23]Kain,J.S.and J.M.Fritsch.Convective parameterization for mesoscale models:The Kain-Fritcsh scheme,The representation of cumulus convection in numerical models,Amer.Meteor.Soc.,1993,246.
    [24]Grell,G.A.and D.Devenyi.A generalized approach to parameterize-ing convection combining ensemble and data assimilation techniques,Geophys.Res.Lett.,2002(14),1693.
    [25]Barker D,Huang Wei,Guo Yong-Run.A Three-Dimensional Variational(3DVAR)Data Assimilation System For Use With MM5.NCAR Tech Notes.NCAR/TN-453+STR,2003.
    [26]Lorenc A.C.Analysis Methods for Numerical Weather Prediction.Quart.J.R.Met.Soc.1986,112:1177-1194.
    [27]薛纪善,庄世宇,朱国富.GRAPES 3D-VAR统的科学设计方案,中国气象科学研究院气象数值预报研究中心技术文档,2001,pp2.
    [28]Coutier,P.J-N.Thepaut,and A.Houllingsworth,1994:A strategy for operational implementation of 4D-VAR,using an incremental approach.Quart,J.Roy.Meteor.Soc,120,1367-1387.
    [29]Barker,D.M,W.Huang,Y.-R.Guo,and A.Bourgeois,2003;A Three-Dime-nsional Variational(3DVAR)Data Assimilation System For Use With MM5.NCAR Tech Note,NCAR/TN-453+STR,68pp.
    [30]Barker,D.M,W.Huang,Y,-R.Guo,A Bourgeois,and X.N.Xiao,2004:A Three-Dimensional Variational Data Assimilation System for MM5:Implementation and Initial Results.Mon.Wea.Rev.,132,897-914.
    [31]Wu,W.-S.,R.J.Pruser,and D.F.Parish,2002:Three dimensional variational analysis with spatially inhomogeneous covariance.Mon.Wea.Rev.,130,2905-2916.
    [32]http://www.mmm.ucar.edu/wrf/WG4/wrfvar/wrfvar.htm.Barker,D.M.,W.Huang,Y.R.Guo,and Q.N.Xiao.,2004:A Three-Dimensional(3DVAR)Data Assimilation System For Use With MM5:Implementation and Initial Results.Mon.Wea.Rev.,132,897-914.
    [33]Parrish,D.F.,and J.C.Derber.The National Meteorological Center's Spectral Statistical-interpolation Analysis System.Mon.Wea.Rev.1992:120,1747-1763.
    [34]Purser,R.J.,W.-S.Wu,D.F.Parish,and N.M.Roberts,Numerical aspects of the applications of recursive filters to variational statistical analysis.PartⅠ:spatilly homogeneous and isotropic Gaussian covariances.Mon.Wea.Rev.,2003a:131.
    [35]Purser,R.J.,W.-S.Wu,D.F.Parish,and N.M.Roberts,Numerical aspects of the applications of recursive filters to variational statistical analysis.PartⅡ:spatially homogeneous and aniso-tropic general covariances.Mon.Wea.Rev.,2003b:131.
    [1]刘志明,张其松,晏明.静止气象卫星云导风结果的分析吉林气象.吉林气象,2002,3:5-19.
    [2]李宁.云迹风资料的三维变分同化及在台风预报试验中的应用.南京信息工程大学硕士论文.2007
    [3]朱乾根,林锦瑞,等.天气学原理与方法.北京:气象出版社,1992.
    [4]赵思雄,陶祖钰,孙建华,等.长江流域梅雨机理的分析研究.北京:气象出版社,2004.
    [1]郭达烽,郑婿,许爱华.台风“碧利斯”的结构与江西暴雨诊断分析气象与减灾研究.气象与减灾研究,2006,29(3):52-59.
    [2]陈联寿,丁一汇等.西太平洋台风概论.北京:科学出版社,1979,156.
    [3]庄照荣,薛纪善.云迹风资料的三维变分同化及对台风预报的影响试验.热带气象学报,20(3):225-236.
    [4]刘志明,张其松,晏明.静止气象卫星云导风结果的分析吉林气象.吉林气象,2002.3:5-19.
    [1]朱乾根,林锦瑞,等.天气学原理与方法.北京:气象出版社,2000.
    [2]Chen Lianshou,Luo Zhexian.Interraction of typhoon an mesoscale vortex[J].Advances in Atmospheric Science,2004,21(4):515-528.
    [3]江敦春,党人庆,陈联寿.卫星资料在台风暴雨数值模拟中的应用.热带气象学报,1994,10(4):318-324.
    [4]朱洪岩,陈联寿,徐祥德.中低纬环流系统的相互作用及其暴雨特征的研究.大气科学,2000,24(5):669-675.
    [5]何立富,梁生俊,毛卫星,等.0513号台风泰利异常强暴雨过程的综合分析.气象,2006,32(4):84-90.
    [6]陈久康,丁治英.高低空急流与台风环流耦合下的中尺度暴雨系统.应用气象学报,2000,11(3):271-281.
    [7]丁治英,张兴强,何金海,等.非纬向高空急流与远距离台风中尺度暴雨的研究.热带气象学报,2001,1(2):144-152.
    [8]郑庆林,吴军.地形对9216号台风暴雨增幅影响的数值研究.南京气象学院学报,1996,19(1):8-17.
    [9]Chen Lianshou.Decay after landfall[C].WMO/TD 1998,875:1.6.1-1.6.5.
    [10]励申申,寿绍文.登陆台风维持和暴雨增幅实力的能量学分析[J].南京气象学院学报,1995,18(3):383-88.
    [11]陈联寿,丁一汇等.西太平洋台风概论.北京:科学出版社,1979,156.
    [12]ELSBERY R L.热带气旋全球观[M].陈联寿,等译.北京:气象出反社,1994.58-129
    [13]Ellrod,G.P.(1989):A decision tree approach to clear air turbulence analysis using satellite and upper air imagery,NOAA Tech.memo.NESDIS23.
    [14]赵思雄,陶祖钰,孙建华,等.长江流域梅雨机理的分析研究[M].北京:气象出版社,2004.
    [15]徐玉貌,刘红年,徐桂玉.大气科学概论[M].南京大学出版社,2000:11-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700