用户名: 密码: 验证码:
阻塞性睡眠呼吸暂停低通气综合征脑白质微细结构损害与认知功能障碍弥散张量成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年,阻塞性睡眠呼吸暂停低通气综合征(OSAHS)因其与缺血性卒中的相关性受到神经科医生越来越多的关注。已有研究显示OSAHS患者存在认知功能障碍,但关于OSAHS白质病变的报道极少。本研究的出发点是通过弥散张量成像(DTI)方法显示OSAHS可能存在的脑白质微细结构损害及其与认知功能障碍的相关性,并对腔隙性脑梗死(LI)和多发性硬化(MS)脑白质形似正常区微细结构损害进行研究。
     本研究分为四部分:一、正常成人脑白质微细结构DTI研究;二、阻塞性睡眠呼吸暂停低通气综合征(OSAHS)脑白质微细结构损害与认知功能障碍DTI研究;三、腔隙性脑梗死(LI)脑白质形似正常区微细结构损害DTI研究;四、复发-缓解型多发性硬化(MS)脑白质形似正常区微细结构损害DTI研究。
     一、正常成人脑白质微细结构DTI研究
     1.1研究目的
     通过磁共振弥散张量成像(DTI)方法,研究和探讨正常人脑白质微细结构特点。
     1.2研究方法
     运用DTI测定脑部各感兴趣区(ROI)部分各向异性(FA)和表观弥散系数(ADC),并进行胼胝体纤维成像。统计分析由SPSS 13.0统计软件包完成,其中计量资料用(?)±SD表示,两组间比较采用配对样本t检验,以P<0.05为差异有统计学意义。
     1.3研究结果
     1.3.1双侧大脑半球相同解剖部位的FA值
     双侧大脑半球相同解剖部位的FA值逐一比较,均无显著差异(P>0.05):双侧大脑半球相同解剖部位的ADC值逐一比较,亦无显著差异(P>0.05)。
     1.3.2灰质和白质的FA值及ADC值
     大脑半球的灰质结构(如海马旁回、前部扣带回)以及以灰质团块为主要成分的结构(尾状核头、丘脑)的FA值显著低于白质结构。
     1.3.3大脑半球各解剖部位的FA值排序
     FA值由高到低排序依次为:胼胝体压部、胼胝体膝部、胼胝体干、右侧内囊后肢、左侧内囊后肢、左侧内囊膝部、右侧内囊膝部、右侧视放射、左侧半卵圆中心、左侧视放射、右侧半卵圆中心、右侧内囊前肢、左侧内囊前肢、左侧前部扣带、右侧前部扣带、右侧前角周围白质、右侧外囊、左侧前角周围白质、左侧外囊、左侧额叶白质、右侧额叶白质、右侧后角周围白质、左侧后角周围白质、右侧丘脑、左侧丘脑、右侧前部扣带回、右侧海马旁回、左侧尾状核头、左侧海马旁回、左侧前部扣带回、右侧尾状核头。从白质纤维的走行方向看,连合纤维的各向异性程度最高,其次为投射纤维,再次为联络纤维,灰质或以灰质团块为主要成分的结构FA值最低。
     1.4研究结论
     (1)尽管正常成人大脑的双侧半球间存在诸如语言等的功能上的不对称,但是大脑双侧半球相应部位的FA值差异无统计学意义,说明正常成人双侧大脑半球白质纤维排列的紧密程度基本一致。
     (2)正常成人脑内不同组织及解剖部位的弥散各向异性程度不同,脑白质的弥散各向异性远大于脑灰质。
     (3)正常成人脑白质的不同解剖部位,其各向异性也不相同,脑白质连合纤维的各向异性程度最高,其次为投射纤维,再次为联络纤维。
     二、阻塞性睡眠呼吸暂停低通气综合征(OSAHS)脑白质微细结构损害与认知功能障碍DTI研究
     2.1研究目的
     研究OSAHS可能存在的白质损害、认知障碍及睡眠结构,并分析三者之间的关系。
     2.2研究方法
     运用DTI技术,测定脑部各感兴趣区(ROI)FA值和ADC值,并进行胼胝体纤维成像;检测MMSE、修订韦氏记忆量表(WMS-RC)得分;应用多导睡眠图(PSG)进行睡眠监测。统计分析由SPSS13.0统计软件包完成,其中计量资料用(?)±SD表示,两组间比较采用独立样本t检验,相关性分析采用Partial偏相关分析,以P<0.05为差异具有统计学意义。
     2.3研究结果
     2.3.1 OSAHS脑部各解剖结构的FA值
     OSAHS组多个脑部解剖结构FA值降低,与对照组存在显著差异:右侧额叶白质(t=2.367,P=0.029)、胼胝体压部(t=2.118,P=0.048)、左侧前部扣带回(t=6.127,P=0.000)、右侧前部扣带回(t=5.673,P=0.000)、左侧前部扣带(t=7.067,P=0.000)、右侧前部扣带(t=9.934,P=0.000)、左侧半卵圆中心(t=4.320,P=0.000)、左侧前角周围白质(t=2.778,P=0.012)、右侧前角周围白质(t=2.316,P=0.033)、左侧后角周围白质(t=6.012,P=0.000)、右侧后角周围白质(t=7.256,P=0.000)、左侧海马旁回(t=4.055,P=0.001)、右侧海马旁回(t=4.134,P=0.001)、左侧外囊(t=2.619,P=0.017)、右侧外囊(t=2.548,P=0.020)。而左侧额叶白质、胼胝体膝部、胼胝体干、双侧内囊前肢、双侧内囊膝部、双侧内囊后肢、双侧视放射、右侧半卵圆中心、双侧尾状核头、双侧丘脑的FA值与对照组无显著差异(P>0.05)。
     2.3.2 OSAHS脑部各解剖结构的ADC值
     OSAHS脑部部分解剖结构ADC值升高,与对照组存在显著差异:右侧额叶白质(t=-2.793,P=0.012)、胼胝体干(t=-2.741,P=0.013)、胼胝体压部(t=-4.871,P=0.000)、左侧前部扣带回(t=-15.359,P=0.000)、右侧前部扣带回(t=-14.452,P=0.000)、右侧前部扣带(t=-2.863,P=0.010)、左侧半卵圆中心(t=-2.263,P=0.036)、左侧前角周围白质(t=-2.291,P=0.034)。左侧额叶白质、胼胝体膝部、左侧前部扣带、双侧内囊前肢、双侧内囊膝部、双侧内囊后肢、右侧半卵圆中心、双侧视放射、右侧前角周围白质、双侧后角周围白质、双侧丘脑、双侧尾状核头、双侧海马旁回、双侧外囊的ADC值则与对照组无显著差异(P>0.05)。
     2.3.3 OSAHS胼胝体纤维束成像
     运用纤维束成像方法(DTT)进行胼胝体成像,可见胼胝体嘴、膝、体部(干)、压部、额钳和枕钳纤维排列紧密,粗细均匀,走行一致,结构完整,未见变细、断裂现象。与健康对照组相比较,肉眼观察未见胼胝体纤维受损。
     2.3.4 OSAHS患者睡眠结构分析
     2.3.4.1 OSAHS患者基本资料及PSG参数
     对比OSAHS组与正常对照组的基本资料发现:OSAHS组体重指数(BMI)、收缩压(SBP)、舒张压(DBP)显著升高(t=-3.424,P=0.003;t=-2.441,P=0.025;t=-2.952,P =0.009)。
     分析两组PSG参数发现,其中Ⅰ期占总睡眠时间的比例显著升高,Ⅲ期+Ⅳ期占总睡眠时间的比例显著降低,AHI显著高于正常人,夜间平均动脉血氧饱和度(SaO_2)、最低SaO_2均显著低于正常人,差异具有统计学意义(t=-4.827,P=0.000;t=3.052,P=0.004;t=-5.185,P=0.000;t=4.028,P=0.001;t=6.243,P=0.000)。
     2.3.4.2 OSAHS睡眠结构与脑白质损害的关系
     将OSAHS组与正常对照组存在显著差异的PSG参数——Ⅰ期占总睡眠时间的比例、Ⅲ期+Ⅳ期总睡眠时间的比例、AHI、平均SaO_2、最低SaO_2,与OSAHS和正常人比较存在显著差异的脑白质的FA值进行偏相关性分析,结果显示:Ⅲ期+Ⅳ期总睡眠时间的比例与右侧前部扣带FA值显著正相关(r=0.711,P=0.002),与右侧后角周围白质FA值显著正相关(r=0.504,P=0.015)。AHI与右侧前部扣带FA值显著负相关(r=-0.637,P=0.029)。
     2.3.5 OSAHS认知功能分析
     2.3.5.1 OSAHS记忆功能及与脑白质损害的关系
     OSAHS组修订韦氏记忆量表(WMS-RC)记忆商(MQ)及分测验得分:OSAHS组MQ为97.10±10.89,显著低于正常对照组MQ105.20±2.15(t=2.318,P=0.026);图片回忆(t=2.376,P=0.023)、再认(t=2.195,P=0.034)、视觉再生(t=2.828,P=0.007)、背诵数目(t=3.077,P=0.004)等4个分测验得分也显著低于正常对照组。
     将OSAHS组WMS-RC得分中与正常对照组有显著差异的得分——图片回忆、再认、视觉再生、背诵数目、记忆商得分,与OSAHS和正常人比较存在显著差异的脑白质FA值进行偏相关性分析,结果显示:图片回忆得分与右侧后角周围白质FA值呈显著正相关(r=0.741,P=0.036),视觉再生得分与右侧额叶白质FA值正相关(r=0.562,P=0.017),记忆商与右侧额叶白质FA值正相关(r=0.450,P=0.030)。
     2.3.5.2 OSAHS认知功能
     OSAHS组MMSE平均得分29.47±0.94,显著低于正常对照组得分29.89±0.32(t=2.484,P=0.016);注意计算分测验平均得分4.80±0.41,低于正常对照组得分4.97±0.17,差异显著(t=2.241,P=0.029);时间定向、语言即刻记忆、短时记忆、图形描画平均得分与对照组无统计学差异(t=1.911,P=0.061;t=0.987,P=0.327;t=1.415,P=0.162;t=0.763,P=0.448);地点定向、物体命名、语言复述、阅读理解、语言理解、读写能力得分无变化。
     2.4研究结论
     (1)国内首次发OSAHS病人脑白质微细结构广泛受损,联络纤维、连合纤维和投射纤维同时受累。
     (2)国内首次发现OSAHS病人双侧前部扣带回和海马旁回等与认知功能有关的灰质区域微细结构也同时受累。
     (3)DTI作为唯一能在活体上无创显示神经纤维完整性和方向性的影像学方法,能够早期发现并定量显示脑白质的微细结构损害。
     (4)对于显示脑白质的微细结构损害,FA值较ADC值更敏感。
     (5)OSAHS患者睡眠结构紊乱,浅睡眠显著增多,深睡眠显著减少。
     (6)OSAHS患者睡眠结构紊乱程度与脑白质受损程度存在相关关系,Ⅲ期+Ⅳ期总睡眠时间的比例越小,与认知功能有关的脑白质受损越严重。
     (7)OSAHS患者总体认知水平降低,注意与计算力受损。
     (8)OSAHS患者记忆力降低,短时记忆显著受损。
     (9)OSAHS患者总体记忆水平及短时记忆受损程度,与右侧额叶白质、右侧后角周围脑白质受损程度呈正相关。
     三、腔隙性脑梗死(LI)脑白质形似正常区微细结构损害DTI研究
     3.1研究目的
     研究LI脑部“形似正常区”可能存在的白质损害及程度。
     3.2研究方法
     同实验一。
     3.3研究结果
     3.3.1 LI组与正常对照组脑部各解剖结构的FA值比较
     LI组多个解剖结构FA值降低,与对照组存在显著差异:左侧额叶白质(t=2.857,P=0.007)、右侧额叶白质(t=2.604,P=0.013)、胼胝体膝部(t=3.177,P=0.003)、左侧前部扣带(t=2.198,P=0.034)、右侧前部扣带(t=2.495,P=0.017)、左侧内囊前肢(t=5.483,P=0.000)、右侧内囊前肢(t=4.619,P=0.000)、左侧内囊膝部(t=3.601,P=0.001)、右侧内囊膝部(t=2.907,P=0.006)、左侧内囊后肢(t=3.243,P=0.002)、右侧内囊后肢(t=2.359,P=0.023)、左侧半卵圆中心(t=3.167,P=0.003)、右侧半卵圆中心(t=2.369,P=0.023)、左侧视放射(t=3.167,P=0.003)、右侧视放射(t=4.220,P=0.000)、左侧前角周围白质(t=3.012,P=0.004)、右侧前角周围白质(t=2.112,P=0.041)、左侧后角周围白质(t=2.193,P=0.034)、左侧海马旁回(t=2.347,P=0.024)、右侧海马旁回(t=2.103,P=0.042)、右侧外囊(t=3.006,P=0.005)。胼胝体干、胼胝体压部、双侧前部扣带回、右侧后角周围白质、双侧丘脑、双侧尾状核头、左侧外囊的FA值与对照组无显著差异(P>0.05)。
     3.3.2 LI组与正常对照组脑部各解剖结构的ADC值比较
     与对照组相比较,LI组脑部部分解剖结构ADC值显著升高,差异有统计学意义:胼胝体干(t=-3.272,P=0.002)、胼胝体压部(t=-2.413,P=0.021)、左侧内囊前肢(t=-3.059,P=0.004)、右侧内囊前肢(t=-3.831,P=0.000)、右侧内囊膝部(t=-2.530,P=0.015)、左侧内囊后肢(t=-3.047,P=0.004)、右侧内囊后肢(t=-2.634,P=0.012)、左侧半卵圆中心(t=-2.819,P=0.007)、左侧后角周围白质(t=-2.075,P=0.044)、左侧海马旁回(t=-2.496,P=0.017)。双侧额叶白质、胼胝体膝部、双侧前部扣带回、双侧前部扣带、右侧半卵圆中心、双侧视放射、双侧前角周围白质、右侧后角周围白质、双侧丘脑、双侧尾状核头、右侧海马旁回、双侧外囊的ADC值则与对照组无显著差异(P>0.05)。
     3.3.3 LI胼胝体纤维束成像
     胼胝体成像显示:与正常成人胼胝体成像相比,胼胝体额钳及膝部纤维排列稀疏,干、压部纤维变细,有断裂、扭曲现象。
     3.4研究结论
     (1)LI常规MRI显示的“形似正常区”DTI可检测到广泛异常,提示白质早期已存在广泛微细结构损害。
     (2) LI实际存在的白质微细结构损害区域远大于常规MRI所显示的病灶区域。
     (3) LI双侧海马旁回“形似正常区”显著受损,为LI患者出现的认知功能障碍尤其是记忆功能障碍提供了解剖学基础。
     (4) LI胼胝体纤维束成像显示胼胝体纤维排列稀疏,纤维变细、断裂、扭曲,说明LI胼胝体纤维受损显著。
     四、复发-缓解型多发性硬化(MS)脑白质形似正常区微细结构损害DTI研究
     4.1研究目的
     研究复发-缓解型MS脑部“形似正常区”可能存在的白质损害及程度。
     4.2研究方法
     同实验三。
     4.3研究结果
     4.3.1 MS组与正常对照组脑部各解剖结构的FA值比较
     MS组脑部部分解剖结构FA值降低,与正常对照组存在显著差异:左侧额叶白质(t=3.638,P=0.002)、右侧额叶白质(t=3.181,P=0.005)、左侧前部扣带(t=2.471,P=0.023)、右侧前部扣带(t=3.434,P=0.003)、左侧半卵圆中心(t=3.273,P=0.004)、右侧半卵圆中心(t=2.201,P=0.040)、左侧视放射(t=2.281,P=0.034)、右侧视放射(t=3.380,P=0.003)、左侧前角周围白质(t=4.905,P=0.000)、右侧前角周围白质(t=3.674,P=0.002)、左侧后角周围白质(t=2.636,P=0.016)、右侧后角周围白质(t=4.714,P=0.000)、左侧丘脑(t=2.325,P=0.031)、右侧丘脑(t=2.398,P=0.026)、右侧海马旁回(t=2.660,P=0.015)。而胼胝体膝部、胼胝体干、胼胝体压部、双侧前部扣带回、双侧内囊前肢、双侧内囊膝部、双侧内囊后肢、双侧尾状核头部、左侧海马旁回、双侧外囊的FA值与对照组无显著差异(P>0.05)。
     4.3.2 MS组与正常对照组脑部各解剖结构的ADC值比较
     MS组脑部部分解剖结构形似正常区ADC值升高,右侧额叶白质(t=-3.797,P=0.001)、胼胝体膝部(t=-2.688,P=-0.014)、胼胝体干(t=-4.547,P=0.000)、胼胝体压部(t=-3.211,P=0.004)、左侧半卵圆中心(t=-4.044,P=0.001)、右侧半卵圆中心(t=-4.461,P=0.000)、左侧后角周围白质(t=-4.487,P=0.000)、右侧后角周围白质(t=-2.652,P=0.015)、左侧海马旁回(t=-2.548,P=0.019)、右侧海马旁回(t=-2.269,P=0.034)与对照组存在显著差异。左侧额叶白质、双侧前部扣带回、双侧前部扣带、双侧内囊前肢、双侧内囊膝部、双侧内囊后肢、双侧视反射、双侧前角周围白质、双侧丘脑、双侧尾状核头、双侧外囊的ADC值则与对照组无显著差异(P>0.05)。
     4.3.3 MS胼胝体纤维束成像
     与正常对照组相比,MS胼胝体纤维排列稀疏,走行紊乱,纤维间隙扩大,体部纤维有中断现象。
     4.4研究结论
     (1)复发-缓解型MS脑部与认知功能有关的“形似正常白质区”存在常规MRI难以发现的广泛白质微细结构损害,受损区域包括双侧脑室前角周围白质、后角周围白质、额叶白质、半卵圆中心、胼胝体、双侧前部扣带,以双侧脑室前、后角周围白质尤为显著。
     (2)复发-缓解型MS脑部与记忆有关的“形似正常灰质区”存在常规MRI难以显示的微细结构损害,丘脑、海马旁回细胞的完整性均受到破坏,其中海马旁回损害尤为显著。
     (3)胼胝体纤维束成像显示MS胼胝体纤维排列稀疏,走行紊乱,纤维间隙扩大,体部纤维有中断现象,表明MS胼胝体纤维受损显著。
     总结
     1.正常成人双侧半球白质纤维排列的紧密程度基本一致。
     2.正常成人脑内不同解剖部位的各向异性程度不同。
     3.发现OSAHS脑白质微细结构广泛受损,联络纤维、连合纤维和投射纤维同时受累。
     4.发现OSAHS与认知功能有关的灰质区双侧同时受累。
     5.FA值较ADC值对于脑白质微细结构损害更敏感。
     6.OSAHS睡眠结构紊乱与脑白质受损相关,深睡眠越少或OSAHS程度越重,与认知功能有关的白质受损越重。
     7.OSAHS总体认知水平降低,注意力与计算力受损;OSAHS记忆力降低,短时记忆受损;OSAHS总体记忆水平及短时记忆受损程度,与右侧额叶白质、右侧后角周围白质受损程度正相关。
     8.LI形似正常白质区有常规MRI未见的广泛微细结构损害。
     9.LI双侧海马旁回形似正常区显著受损,是LI记忆功能障碍的解剖学基础。
     10.胼胝体纤维束成像显示LI胼胝体纤维显著受损。
     11.RRMS与认知相关的形似正常白质区有常规MRI未见的广泛微细结构损害。
     12.DTI可早期发现RRMS的视觉通路异常。
     13.RRMS胼胝体纤维轴突膜和髓鞘的破坏程度大于轴突丧失或破裂程度。
     14.RRMS脑部与记忆有关的形似正常灰质区存在常规MRI未见的损害。
     15.胼胝体纤维束成像显示RRMS胼胝体纤维广泛受损。
     创新点
     1.运用DTI方法研究OSAHS脑白质损害,并发现OSAHS脑白质微细结构广泛受损,与认知功能有关的灰质区域同时受累。
     2.发现LI形似正常白质区有常规MRI未见的广泛微细结构损害。
     3.发现DTI可早期识别RRMS的视觉通路异常。
In the recent years,the neurologist paid more attention to obstructive sleep apnea-hypopnea syndrome(OSAHS),which proved to be correlative with ischemic stroke.Some studies showed that the patients with OSAHS had cognitive deficit. However,there was few evidences for white matter microstructural lesions in OSAHS. In this study,we try to determine whether OSAHS has white matter microstructural lesions by MR diffusion tensor imaging(DTI),where they are,and whether they correlate with cognitive disfunction.Also,we will detect microstructural lesions in normal-appearing white matter(NAWM) both in patients with lacunar infarction(LI) and in patients with multiple sclerosis(MS).
     This thesis consists of four parts:the features of brain microstructure in healthy adults,the correlation between white matter microstructural lesions and cognitive disfunction in patients with OSAHS,microstructural lesions in NAWM in patients with LI,and microstructural lesions in NAWM in patients with relapsing-remitting MS.
     Chapter 1 The features of brain microstructure in healthy adults by DTI
     OBJECTIVES:To investigate the features of brain microstructure in healthy adults by DTI.
     METHODS:Fractional anisotropy(FA) and apparent diffusion coefficient(ADC) values was examined in regions of interest(ROI) respectively,and then diffusion tensor tractography(DTT) of corpus callosum was operated.The datas were dealed with SPSS 13.0,and numeric variables were represented by mean±standard deviation ((?)±SD).Paired-samples t test was applied when comparing paired samples.As usual,it was thought to have statistical significance when P<0.05.
     RESULTS:No significant differences were found in FA values in each ROI from bilateral brain(P>0.05).So was ADC values(P>0.05).Compared with gray matter including parahippocampal gyrus and anterior cingulate gyrus,white matter had higher FA values,such as white matter of left frontal lobe,corpus callosum,anterior cingulum and so on.According to FA values,ROI was sequenced one by one.The highest was splenium of corpus callosum,following genu of corpus callosum,trunk of corpus callosum,right posterior limb of internal capsule,left posterior limb of internal capsule,left genu of internal capsule,right genu of internal capsule,right optic radiation,left centrum semiovale,left optic radiation,right centrum semiovale,right anterior limb of internal capsule,left anterior limb of internal capsule,left anterior cingulum,right anterior cingulum,peripheric white matter of right anterior angle,right external capsule,peripheric white matter of left anterior angle,left external capsule, white matter of left frontal lobe,white matter of right frontal lobe,peripheric white matter of right posterior angle,peripheric white matter of left posterior angle,right thalamus,left thalamus,right anterior cingulate gyrus,right parahippocampal gyrus, left head of caudate nucleus,left parahippocampal gyrus,left anterior cingulate gyrus, and the lowest was right head of caudate nucleus.
     CONCLUSIONS:Firstly,no significant differences were found in FA values in bilateral brain,which indicated that the density of white matter fibers were also unanimous.Secondly,Anisotropy varied in each brain structure,generally white matter had remarkable higher anisotropy compared with gray matter.Finally,there was different anisotropy in three types nerve fibres:commissural fibers had the highest anisotropy,the following were projection fibers,and internuncial fibers were the lowest.
     Chapter 2 The relationship between white matter microstructural lesions by DTI and cognitive disfunction in patients with OSAHS
     OBJECTIVES:To investigate whether OSAHS has white matter microstructural lesions and unstuck sleep architecture,where are white matter microstructural lesions by DTI,and whether white matter microstructural lesions or unstuck sleep architecture correlate with cognitive disfunction.
     METHODS:FA and ADC values was examined in ROI respectively,and then DTT of corpus callosum was operated.Moreover,MMSE and WMS values were recorded respectively before polysomnogram(PSG) was detected.The datas were dealed with SPSS 13.0,and numeric variables were represented by mean±standard deviation((?)+SD.Independent-samples t test was applied when comparing OSAHS group with controls.Also,partial correlations was adopted.As usual,it was thought to have statistical significance when P<0.05.
     RESULTS:Compared with control group,significant lower FA values were found in multiple regions as below in patients in OSAHS:white matter of right frontal lobe(t=2.367,P=0.029),splenium of corpus callosum(t=2.118,P=0.048),left anterior cingulate gyrus(t=6.127,P=0.000),right anterior cingulate gyrus(t=5.673,P=0.000), left anterior cingulum(t=7.067,P=0.000),right anterior cingulum(t=9.934,P=0.000), left centrum semiovale(t=4.320,P=0.000),peripheric white matter of left anterior angle(t=2.778,P=0.012),peripheric white matter of right anterior angle(t=2.316,P=0.033),peripheric white matter of left posterior angle (t=6.012,P=0.000),peripheric white matter of right posterior angle (t=7.256,P=0.000),left parahippocampal gyrus(t=4.055,P=0.001),right parahippocampal gyrus(t=4.134,P=0.001),left external capsule(t=2.619,P=0.017), and right external capsule(t=2.548,P=0.020).
     Compared with control group,significant higher ADC values were found in multiple regions as below in patients in OSAHS:white matter of right frontal lobe (t=-2.793,P=0.012),trunk of corpus callosum(t=-2.741,P=0.013),splenium of corpus callosum(t=-4.871,P=0.000),left anterior cingulate gyrus (t=-15.359,P=0.000),right anterior cingulate gyrus(t=-14.452,P=0.000),right anterior cingulum(t=-2.863,P=0.010),left centrum semiovale(t=-2.263,P=0.036), and peripheric white matter of left anterior angle(t=-2.291,P=0.034).
     After analyzing correlation between sleep architecture and cognitive disfunction in patients with OSAHS,it was found thatⅢstage plusⅣstage/total sleep time (TST)not only had a significant positive correlation both with right anterior cingulum and with peripheric white matter of right posterior angle,but also had a significant negative correlation with fight anterior cingulum.
     We also found that the patients in OSAHS had lower memory quotient(MQ), pictures recollection values,recognition values,vision reproduction values,and numbers reciting values than healthy controls(t=2.318,P=0.026;t=2.376, P=0.023;t=2.195,P=0.034;t=2.828,P=0.007;t=3.077,P=0.004).
     After analyzing correlation between WMS values and cognitive disfunction in patients with OSAHS,it was found that pictures recollection values,had a significant positive correlation with peripheric white matter of right posterior angle(r=0.741, P=0.036),both vision reproduction values and MQ had a significant positive correlation with white matter of fight frontal lobe(r=0.450,P=0.030;r=0.450, P=0.030).
     At last,We found that the patients in OSAHS had lower MMSE values and calculation values than healthy controls(t=2.484,P=0.016;t=2.241,P=0.029)
     CONCLUSIONS:Firstly,It was found in China for the first time that the patients with OSAHS had extensive white matter microstructural lesions,involving in internuncial fibers,commissural fibers and projection fibers.Secondly,gray matter such as bilateral cingulate gyrus and parahippocampal gyrus,which were thought to relate with cognitive function,was also damaged.Thirdly,DTI can reveal white matter microstructural lesions in the early stage.Fourthly,FA values was more sensitive than ADC values for white matter microstructural lesions.Fifthly,the patients with OSAHS had unstuck sleep architecture,severity of which correlated with the degree of white matter microstructural lesions.Sixthly,The patients with OSAHS had worse memory function and short-term memory which correlated with white matter microstructural lesions.Finally,both cognitive function and calculation ability was damaged in patients with OSAHS.
     Chapter 3 Mierostructural lesions in normal-appearing white matter in patients with LI by DTI
     OBJECTIVES:To investigate microstructural lesions in normal-appearing white matter both in patients with lacunar infarction(LI).
     METHODS:FA and ADC values was examined in ROI respectively,and then DTT of corpus callosum was operated.The datas were dealed with SPSS 13.0,and numeric variables were represented by mean+standard deviation((?)±SD) Independent-samples t test was applied when comparing LI group with controls.As usual,it was thought to have statistical significance when P<0.05.
     RESULTS:Compared with control group,significant lower FA values were found in multiple regions from normal-appearing white matter or gray matter in patients with LI:white matter of left frontal lobe(t=2.857,P=0.007),white matter of right frontal lobe(t=2.604,P=0.013),splenium of corpus callosum(t=3.177,P=0.003 ),left anterior cingulum(t=2.198,P=0.034 ),right anterior cingulum(t=2.495, P=0.017),left anterior limb of internal capsule(t=5.483,P=0.000),right anterior limb of internal capsule(t=4.619,P=0.000),left genu of internal capsule(t=3.601,P=0.001), right genu of internal capsule(t=2.907,P=0.006 ),left posterior limb of internal capsule(t=3.243,P=0.002),right posterior limb of internal capsule(t=2.359,P=0.023), left centrum semiovale(t=3.167,P=0.003),right centrum semiovale(t=2.369,P=0.023),left optic radiation(t=3.167,P=0.003),right optic radiation(t=4.220,P=0.000),peripheric white matter of left anterior angle(t=3.012,P=0.004),peripheric white matter of right anterior angle(t=2.112,P=0.041),peripheric white matter of left posterior angle(t=2.193,P=0.034 ),left parahippocampal gyrus(t=2.347,P=0.024), right parahippocampal gyrus(t=2.103,P=0.042),right external capsule(t=3.006,P=0.005).
     Compared with control group,significant higher ADC values were found in multiple regions from NAWM or normal-appearing gray matter(NAGM) in patients with LI:trunk of corpus callosum(t=-3.272,P=0.002),splenium of corpus callosum (t=-2.413,P=0.021),left anterior limb of internal capsule(t=-3.059,P=0.004), right anterior limb of internal capsule(t=-3.831,P=0.000),right genu of of internal capsule(t=-2.530,P=0.015),left posterior limb of internal capsule(t=-3.047,P=0.004),right posterior limb of internal capsule(t=-2.634,P=0.012),left centrum semiovale(t=-2.819,P=0.007),peripheric white matter of left posterior angle (t=-2.075,P=0.044),left parahippocampal gyrus(t=-2.496,P=0.017).DTT for corpus callosum indicated that the fibers in frontal forceps and genu were found sparse,thin and discontinuous.
     CONCLUSIONS:Firstly,it was found that the patients with LI had extensive microstructural lesions in NAWM.Secondly,NAGM such as bilateral parahippocampal gyrus,which were thought to relate with cognitive function,was also damaged.Finally,DTT for corpus callosum indicated that the fibers in frontal forceps and genu were found sparse,thin and discontinuous.
     Chapter 4 Microstruetural lesions in normal-appearing white matter in patients with relapsing-remitting MS by DTI
     OBJECTIVES:To investigate microstructural lesions in NAWM in patients with relapsing-remitting MS.
     METHODS:FA and ADC values was examined in ROI respectively,and then DTT of corpus callosum was operated.The datas were dealed with SPSS 13.0,and numeric variables were represented by mean±standard deviation((?)±SD) Independent-samples t test was applied when comparing LI group with controls.As usual,it was thought to have statistical significance when P<0.05.
     RESULTS:Compared with control group,the patients with relapsing-remitting MS had significant lower FA values in multiple regions from NAWM or NAGM as below:white matter of left frontal lobe(t=3.638,P=0.002),white matter of right frontal lobe(t=3.181,P=0.005),left centrum semiovale(t=3.273,P=0.004),right centrum semiovale(t=2.201,P=0.040),left optic radiation(t=2.281,P=0.034),right optic radiation(t=3.380,P=0.003 ),peripheric white matter of left anterior angle (t=4.905,P=0.000),peripheric white matter of right anterior angle(t=3.674,P=0.002),peripheric white matter of left posterior angle(t=2.636,P=0.016),peripheric white matter of right posterior angle(t=4.714,P=0.000),left thalamus (t=2.325,P=0.031),right thalamus(t=2.398,P=0.026),right parahippocampal gyrus (t=2.660,P=0.015).
     Compared with control group,the patients with relapsing-remitting MS had significant higher ADC values in multiple regions from normal-appearing white matter or gray matter as below:white matter of right frontal lobe(t=-3.797,P=0.001),genu of corpus callosum(t=-2.688,P=0.014),trunk of corpus callosum(t=-4.547, P=0.000 ),splenium of corpus callosum(t=-3.211,P=0.004 ),left centrum semiovale (t=-4.044,P=0.001 ),right centrum semiovale(t=-4.461,P=0.000),peripheric white matter of left posterior angle(t=-4.487,P=0.000),peripheric white matter of right posterior angle(t=-2.652,P=0.015 ),left parahippocampal gyrus(t=-2.548,P=0.019), right parahippocampal gyrus(t=-2.269,P=0.034).DTT for corpus callosum indicated that corpus callosum fiber had sparse align,enlarged crevice,and discontinuance in the trunk.
     CONCLUSIONS:Firstly,it was found that the patients with relapsing-remitting MS had extensive microstructural lesions in NAWM from some regions which correlated with cognitive function,involving in bilateral white matter of frontal lobe, centrum semiovale,corpus callosum,anterior cingulum,and especially peripheric white matter of anterior angle and posterior angle.Secondly,NAGM such as bilateral parahippocampal gyrus in the patients with relapsing-remitting MS,which were thought to relate with cognitive function,was also damaged.Finally,DTT for corpus callosum indicated that corpus callosum fiber had sparse align,enlarged crevice,and discontinuance in the trunk.
     GENERAL CONCLUSIONS:
     1.It was indicated that the density of white matter fibers were unanimous in bilateral brain.
     2.Anisotropy varied in each brain structure,generally white matter had remarkable higher anisotropy compared with gray matter.
     3.There was different anisotropy in three types nerve fibres:commissural fibers had the highest anisotropy,the following were projection fibers,and internuncial fibers were the lowest.
     4.It was found in China for the first time that the patients with OSAHS had extensive white matter microstructural lesions,involving in internuncial fibers, commissural fibers and projection fibers.
     5.Gray matter such as bilateral cingulate gyrus and parahippocampal gyrus, which were thought to relate with cognitive function,was also damaged.
     6.DTI can reveal white matter microstructural lesions in the early stage.Fourthly, FA values was more sensitive than ADC values for white matter microstructural lesions.
     7.The patients with OSAHS had unstuck sleep architecture,severity of which correlated with the degree of white matter microstructural lesions.
     8.The patients with OSAHS had worse memory function and short-term memory which correlated with white matter microstructural lesions.
     9.Both cognitive function and calculation ability was damaged in patients with OSAHS.
     10.It was found that the patients with LI had extensive microstructural lesions in NAWM.
     11.NAGM such as bilateral parahippocampal gyrus,which were thought to relate with cognitive function,was also damaged.
     12.DTT was able to indicate directly that corpus callosum in LI had been damaged.
     13.It was found that the patients with relapsing-remitting MS had extensive microstructural lesions in NAWM from some regions which correlated with cognitive function,especially in peripheric white matter of anterior angle and posterior angle.
     14.NAGM such as bilateral parahippocampal gyrus in the patients with relapsing-remitting MS,which were thought to relate with cognitive function,was also damaged.
     15.DTT indicated that corpus callosum had remarkable damage in RRMS.
     INNOVATIVE FEATURES
     1.It was found by DTI that the patients with OSAHS had extensive white matter microstructural lesions,and some gray matter relating with cognitive function was also damaged.
     2.It was found that the patients with LI had extensive microstructural lesions in NAWM which was difficult to detect by conventional MRI.
     3.DTI is helpful to detect damage to the visual pathways in the early stage.
引文
[1]David NF,Fairbanks S F.Snoring and obstructive sleep apnea [M].2nd ed.New York: Raven Press Ltd, 1994.
    [2]Ilizarov GA.Basic principles of transosseouse compression and distraction osteosynthesis [J].Orthop Traumatol Protez,1971,32:7.
    [3]Riley RW, Powell NB,Guilleminault C ,et.al .Current surgical concepts for treating obstructive sleep apnea syndrome[J].J Oral Maxillofac Surg,1987,45:149-157.
    [4]Peter DC , Craig DF.Distraction osteogenesis [J].Otolaryngologic Clinic of NorthAmerica ,1991,24(6): 1433-1443.
    [5]Powell NB , Riley W, Guilleminault C.Radiofrequency tongue base reduction in sleep-disordered breathing : a pilot study [J].Otolaryngology Head and NeckSurgery, 1999,120(5):656-664.
    [6]Kasey KLi , Powell NB , Riley W,et al.Radiofrequency volumetric reduction of thepalate : an extended follow - up study[J].Otolaryngology Head and Neck Surgery,2000,l 12(3):410-414.
    [7]Mant A, Saunders NA, Eyland AE,et al.Sleep-related respiratory disturbance and dementia in elderly females.J Gerontol.1988 Sep;43(5):M140-4.
    [8]Montplaisir J,Bedard MA, Richer F,et al.Neurobehavioral manifestations in obstructive sleep apnea syndrome before and after treatment with continuous positive airway pressure.Sleep.1992 Dec; 15(6 Suppl):S17-9.
    [9]George CF.Sleep: Driving and automobile crashes in patients with obstructive sleep apnoea/hypopnoea syndrome.Thorax.2004 Sep;59(9):804-7.
    [10]D'Ambrosio C, Bowman T, Mohsenin V.Quality of life in patients with obstructive sleep apnea: effect of nasal continuous positive airway pressure—a prospective study.Chest.1999 Jan;115(1):123-9.
    [11]Aikens JE, Caruana-Montaldo B, Vanable PA, et al.MMPI correlates of sleep and respiratory disturbance in obstructive sleep apnea.Sleep.1999 May l;22(3):362-9.
    [12]Bedard MA, Montplaisir J, Richer F, et al.Obstructive sleep apnea syndrome: athogenesis of neuropsychological deficits.J Clin Exp Neuropsychol.1991 Nov; 13(6):950-64.
    [13]Bedard MA, Montplaisir J, Malo J,et al.Persistent neuropsychological deficits and vigilance impairment in sleep apnea syndrome after treatment with continuous positive airways pressure (CPAP).J Clin Exp Neuropsychol.1993 Mar;15(2):330-41.Links
    [14]Guilleminault C, Lopes MC, Hagen CC,et al.The cyclic alternating pattern demonstrates increased sleep instability and correlates with fatigue and sleepiness in adults with upper airway resistance syndrome.Sleep.2007 May l;30(5):641-7.
    [15]Svanborg E, Guilleminault CEEG frequency changes during sleep apneas.Sleep.1996 Apr;19(3):248-54.
    [16]Walsleben JA, O'Malley EB, Bonnet K,et al.The utility of topographic EEG mapping in obstructive sleep apnea syndrome.Sleep.1993 Dec; 16(8 Suppl):S76-8.
    [17]Connelly CS, O'Donovan CA, McCall WV,et al.Electrocerebral inactivity associated with obstructive sleep apnea.Neurology.1997 May;48(5): 1464-6.
    [18]Harper RM, Macey PM, Henderson LA,et al.fMRI responses to cold pressor challenges in control and obstructive sleep apnea subjects.J Appl Physiol.2003 Apr;94(4): 1583-95.Epub 2003 Jan 3.
    [19]Kamba M, Suto Y, Ohta Y,et al.Cerebral metabolism in sleep apnea.Evaluation by magnetic resonance spectroscopy.Am J Respir Crit Care Med.1997 Jul;156(1):296-8
    [20]Hayakawa T,Terashima M,Kayukawa Y,et al.Changes in cerebral oxygenation and hemodynamics during obstructive sleep apneas.Chest.1996Apr;109(4):916-21.
    [21]Hachinski VC,Potter P,Merskey H.Leuko-araiosis.Arch Neurol.1987 Jan;44(1)21-3.
    [22]徐雁,崔丽英.多发性硬化与脑梗死影像学表现的鉴别诊断.中国实用内科杂志,2005,25(5):399-401
    [23]Inzitari D.Leukoaraiosis:an independent risk factor for stroke? Stroke,2003,34(8):2067-2071
    [24]Tarvonen S,RoyttaM,Raiha I,et al.Clinical features of leukoaraiosis.J Neurol Neurosurg Psychiatry,1996,60:431-436.
    [25]Sakakibara R,Hattori T,Uchiyama T,et al.Urinary function in elderly peop le with and without leukoaraiosis:relation to cognitive and gait function.J NeurolNeurosurg Psychiatry,1999,67:658-660.
    [26]MorettiM,Carlucci G,Di Carlo A,et al.Corpus callosum atrophy is associated with gait disorders in patients with leukoaraiosis.Neurol Sci,2005,26:61-66.]
    [27]Wallin A,Sjogren M,Edman A,et al.Symp toms,vascular risk factors and blood-brain barrier function in relation to CT white matter changes in dementia.EurNeurol,2000,44:229-235.
    [28]Petty MA,Wettstein JG.White matter ischaemia.Brain Res Brain Res Rev,1999,31:58-64.
    [29]Markus HS,Lythgoe DJ,Ostegaard L,et al.Reduced cerebral blood flow in white matter in ischaemic leukoaraiosis demonstrated using quantitative exogenous contrast based perfusionMR I.J Neurol Neurosurg Psychiatry,2000,69:48-53.
    [30]Inzitari D.Age-related white matter changes and cognitive impairment.Ann Neurol,2000,47:141-143.
    [31]Pantoni L, Garcia JH.Pathogenesis of leukoaraiosis: a review.Stroke, 1997, 28: 652-659.
    [32]de Leeuw FE, De Groot JC, OudkerkM, et al.Aortic atherosclerosis atmiddle age predicts cerebral white matter lesions in the elderly.Stroke,2000,31:42 -429.
    [33]de Groot JC, de Leeuw FE, OudkerkM, et al.Cerebralwhite matter lesions and cognitive function: the Rotterdam Scan Study.AnnNeurol, 2000, 47: 145 - 151.
    [34]Hatazawa J, Shimosegawa E, Satoh T, et al.Subcortical hypoperfusion associated with asymp tomatic white matter lesions on magnetic resonance imaging.Stroke, 1997,28:1944-1947.
    [35]Pantoni L, Garcia JH.Pathogenesis of leukoaraiosis: a review.Stroke, 1997,28:652-659.
    [36]Kristensen B, Malm J, FagerlandM, et al.Regional cerebral blood flow, white matter abnormalities, and cerebrosp inal fluid hydrodynamics in patients with idiopathic adult hydrocephalus syndrome.J Neurol Neurosurg Psychiatry, 1996, 60: 282 - 288.
    [37]Cupini LM, DiomediM, Placidi F, et al.Cerebrovascular reactivity and subcortical infarctions.Arch Neurol, 2001, 58: 577 - 581.
    [38]Kuwabara Y, Ichiya Y, SasakiM, et al.Cerebral blood flow and vascular response to hypercapnia in hypertensive patientswith leukoaraiosis.Ann NuclMed, 1996,10:293-298.
    [39]Rosenberg GA, Sullivan N, EsiriMM.White matter damage is associated with matrix metallop roteinases in vascular dementia.Stroke, 2001, 32: 1162-1168.
    [40]Fujita S, Kawaguchi T, Uehara T, et al.Progress of leukoaraiosis is inhibited by correction of platelet hyperaggregability.Int Psychogeriatr,2005,17:689-698.
    [41]Altaf N, DanielsL, Morgan PS, et al.Cerebral white matter hyperintense lesions are associated with unstable carotid plaques.Eur J Vasc Endovasc Surg, 2006, 31: 8-13.
    [42]Wahlund L,Barkhof F, Fazekas F, et al.A new rating scale for age- related white matter changes app licable to MR I and CT.Stroke, 2001, 32: 1318-1322.
    [43]Aharon-Peretz J, Cummings JL, HillMA.Vascular dementia and dementia of the Alzheimer type.Cognition, ventricular size, and leukoaraiosis.Arch Neurol 1988,45:719-721.
    [44]Barkhof F, Scheltens P.Imaging of white matter lesions.Cerebrovasc Dis,2002, 13(suppl): 21-30.
    [45]BrownWR, MoodyDM, Challa VR, et al.Apoptosis in leukoaraiosis lesions.J Neurol Sci,2002,203: 16-171.
    [46]Vinters HV, EllisWG, Zarow C, et al.Neuropathologic substrates of ischemic vascular dementia.J Neuropathol Exp Neurol, 2000, 59: 931 - 945.
    [47]Caldemeyer KS,AzzarelliB.Adult white matter disease.In: Zimmer-man RA, GibbyWA, Carmody RF, eds.Neuroimaging: clinical and physical princip les.New York: Sp ringer-Verlag, 2000.731-764.
    [48]Susac JO,Murtagh FR, Egan RA, et al.MRI findings in Susac's syndrome.Neurology,2003,61 (December): 1783-1787.
    [49]Filley CM, Kleinschmidt-Demasters BK.Toxic leukoencephalopathy.N Engl J Med, 2001,345(6):425-432.
    [50]Zimmerman ME, Aloia MS.A review of neuroimaging in obstructive sleep apneaJ Clin Sleep Med.2006 Oct 15;2(4):461-71.
    [51]Harbison J, Gibson GJ, Birchall D, et al.White matter disease and sleep-disordered breathing after acute stroke.Neurology.2003 Oct 14;61(7):959-63
    [52]Ogawa S, Lee TM, Kay AR.Brain magnetic resonance imaging with contrast dependent on blood oxygenation.Pro Natl Acad Sci USA, 1990,87(24): 9868- 9872.
    [53]Ayalon L, Peterson S, Functional central nervous system imaging in the investigation of obstructive sleep apnea , Curr Opin Pulm Med.2007Nov;13(6):479-83.
    [54]Alchanatis M, Deligiorgis N, Zias N,et al.Frontal brain lobe impairment in obstructive sleep apnoea: a proton MR spectroscopy study.Eur Respir J.2004 Dec;24(6):980-6
    [55]Kamba M, Inoue Y, Higami S,et al.Cerebral metabolic impairment in patients with obstructive sleep apnoea: an independent association of obstructive sleep apnoea with white matter change.J Neurol Neurosurg Psychiatry.2001Sep;71(3):334-9.
    [56]Kamba M, Suto Y, Ohta Y,et al.Cerebral metabolism in sleep apnea.Evaluation by magnetic resonance spectroscopy.Am J Respir Crit Care Med.1997 Jul;156(1):296-8.
    [57]Macey PM, Henderson LA, Macey KE,et al.Brain morphology associated with obstructive sleep apnea.Am J Respir Crit Care Med.2002 Nov 15;166(10):1305-6.
    [58]Mazumdar A , Mukherjee P , Miller JH , et al.Diffusion-weighted imaging of acute corticospinal tract injury preceding wallerian degeneration in the maturing human brain[J].AJNR ,2003,24(6):1057-1066.
    [59]Laundre BJ , Jellison BJ , Badie B , et al.Diffusion tensor imaging of the corticospinal tract before and after mass resection as correlated with clinical motor findings : preliminary data[J].AJNR,2005, 26(4) :791-796.
    [60]Higano S, Zhong J,Shrier DA.Diffusion anisotropy of theinternal capsule and the corona radiata in association with stroke and tumors as measured by diffusion2weighted MR imaging[J].AJNR,2001, 22(3) :456-463.
    [61]Kumar R, Macey PM, Woo MA,et al.Elevated mean diffusivity in widespread brain regions in congenital central hypoventilation syndrome.J Magn Reson Imaging.2006 Dec;24(6): 1252-8.
    [62]Robbins J, Redline S, Ervin A,et al.Associations of sleep-disordered breathing and cerebral changes on MRI.J Clin Sleep Med.2005 Apr 15;l(2):159-65.]
    [63]Ding J, Nieto FJ, Beauchamp NJ Jr et al .Sleep-disordered breathing and white matter disease in the brainstem in older adults.Sleep.2004 May l;27(3):474-9.
    [64]O'Sullivan M, Morris RG, Huckstep B, Jones DK.Diffusion tensor MRI correlates with executive dysfunction in patients with ischaemic leukoaraiosis.J Neurol Neurosurg Psychiatry.2004 Mar;75(3):441-7.
    [65]Erkinjuntti T, Kurz A, Gauthier S, et al.Efficacy of galantamine in probable vascular dementia and Alzheimer's disease combined with cerebrovascular disease: a randomised trial.Lancet.2002;359:1283-90.
    [66]Hachinski VC, Potter P, Merskey H.Leuko-araiosis.Arch Neurol.1987;44:21-3.
    [67]Kalvach P ,Gregova D.Cerebral microangiopathy in the mOSAHSic of new discoveries.J Neurol Sci,2005,229-230:7-12.
    [68]O'Sullivan M ,Morris RG,Markus HS.Brief cognitive assessment for patients with cerebral small vessel disease.J Neurol Neurosurg Psychiatry ,2005,76:1140-1145.
    [69]Nitkunan A, McIntyre DJ, Barrick TR, et al.Correlations between MRS and DTI in cerebral small vessel disease .NMR Biomed.2006 Aug;19(5):610-6.
    [70]Nitkunan A, Charlton RA, McIntyre DJ, et al.Diffusion tensor imaging and MR spectroscopy in hypertension and presumed cerebral small vessel disease.Magn Reson Med.2008 Mar;59(3):528-3.
    [71]Pieters B, Staals J, Knottnerus I, et al.Periventricular White Matter Lucencies Relate to Low Vitamin B12 Levels in Patients With Small Vessel Stroke.Stroke. 2009 Mar 12.
    [72]Englund E.Neuropathology of white matter lesions in vascular cognitive impairment.Cerebrovasc Dis.2002;13 Suppl 2:11-5.
    [73]Bammer R, Augustin M, Strasser-Fuchs S, et al.Magnetic resonance diffusion tensor imaging for characterizing diffuse and focal white matter abnormalities in multiple sclerosis.Magn Reson Med, 2000,44: 583
    [74]Van WalderveenMA, KamphorstW, Scheltens P, et al.Histopatho logic correlate of hypo intense lesions on T1 -weighted spin-echo MRI in multip le sclerosis.Neurology, 1998,50:1282.
    [75]Filipp iM, CercignaniM, IngleseM, et al.Diffusion tensor magnetic resonance imaging in multiple sclerosis.Neurology, 2001,56:304.
    [76]Ciccarelli O, Werring DJ, Barker GJ, et al.A study of the mechanisms of normal-appearing white matter damage in multiple sclerosis using diffusion tensor imaging-evidence of Wallerian degeneration.J Neurol, 2003, 250:287.
    [77]Ge Y, LawM, Johnson G, et al.Preferential occult injury of corpus callosum in multiple sclerosis measured by diffusion tensor imaging.J Magn Reson Imaging, 2004,20:1.
    [78]Hasan KM, Gup ta RK, Santos RM, et al.Diffusion tensor fractional anisotropy of the normal-appearing seven segments of the corpus callosum in healthy adults and relapsing-remitting multiple sclerosis patients.J Magn Reson Imaging, 2005,21:735.
    [79]Haymaker W.The founder of neurology [M].Springfield Mass : Chales Thomas, 1953.
    [80]McHenry LC.Garrison's history of neurology [M].Springfield Mass : Chales Thomas, 1963.
    [81]Penfield W.The mystery of mind[M].Princeton NJ: Princeton University Press ,1975.
    [82]Geschwind N.Disconnexion Syndromes in animal and man [J].Brain, 1965, 88:237-294.
    [83]Filley CM.The behavioral neurology of cerebral white matter[J].Neurology, 1998,50:1535-1530.
    [84]de Groot JC, de Leeuw FE, OudkerkM, et al.Cerebralwhite matter lesions and cognitive function: the Rotterdam Scan Study.AnnNeurol, 2000, 47:145-151.
    [85]Meyer JS, Rauch GM, Rauch RA, et al.Cardiovascular and other risk factors for Alzheimer's disease and vascular dementia.Ann N YAcad Sci, 2000, 903:411-423.
    [86]Hirono N, Kitagaki H, Kazui H, et al.Impact of white matter changes on clinical manifestation of Alzheimer's disease: A quantitative study.Stroke, 2000, 31:218-228.
    [87]Englund E.Neuropathology of white matter lesions in vascular cognitive impairment [J].Cerebrovasc Dis, 2002 , 13( Sup ): 11-15.
    [88]Rao SM, Leo GT , Hanghton VM, et al.Correlation of MRI with neuropsychological testing in multiple sclerosis [J].Neurology, 1989, 39:161-166.
    [89]Boone KB ,Miller BC , Lesser IM , et al.Neuropsychological correlates of white matter lesions in healthy olderly subjects [J].Arch Neurol, 1992 ,49 :549-554
    [90]Filley CM ,Rosenberg NL ,Heaton RK.White matter dementia in chronic toluene abuse.Neurology, 1990, 40:532-534.
    [91]Filley CM,Thompson LL,Sze CI.et al.White matter dementia in CADASIL[J].J Neuol Sci, 1999,163:163-167.
    [92]Rao SM.White matter disease and dementia [J].Brain Cogn , 1996,31:250-268.
    [93]Desmond DW.Cognition and white matter lesions [J].Cerebrovasc Dis, 2002, 13(Sup):53-57.
    [94]Cleaver RL, Whitman RD.Right hemisphere, white matter disabilities associated with depression in an adolescent and youngadult psychiatric population [J].J NervMentDis, 1998, 186:561-563.
    [95]Filley CM.The behavioral neurology of white matter[M].New york rOxford University Press, 2001:201-204.
    [96]Rourke BP.Syndrome of nonverbal learning disabilities[M].Newyork : Guilford Press, 1995.
    [1]Chapman LJ,Chapman JR The measurement of handedness[J].Brain Cogn,1987,6(2):175-183.
    [2]Abe O,Aoki S,Hayashi N,et al.Normal aging in the central nervous system:quantitative MR diffusion tensor analysis[J].Neurobiol Aging,2002,23(3):433-41.
    [3]Merboldt KD,H(a|¨)nicke W,Frahm J.Diffusion imaging using stimulated echoes.Magn Reson Med.1991 Jun;19(2):233-9.
    [4]Le Bihan D,Breton E,Lallemand D,et al..MR imaging of intravoxel incoherent motions:application to diffusion and perfusion in neurologic disorders.Radiology.,1986 Nov;161(2):401-7.
    [5]Taylor DC,Bushell MC.The spatial mapping of translational diffusion coefficients by the NMR imaging technique,1985 Apr;30(4):345-9
    [6]Le Bihan D,Turner R,Douek P,et al.Diffusion MR imaging:clinical applications.AJR Am J Roentgenol.,1992 Sep;159(3):591-9.
    [7]Warach S,Chien D,Li W,et al.Fast magnetic resonance diffusion-weighted imaging of acute human stroke.Neurology,1992 Sep;42(9):1717-23.
    [8]Moseley ME, Cohen Y, Mintorovitch J, et al.Early detection of regional cerebral ischemia in cats: comparison of diffusion and T2-weighted MRI and spectroscopy.Magn Reson Med, 1990; 14:330-346.
    [9]Doran M, Hajnal JV, Van Bruggen N, King MD, Young IR, Bydder GM.Normal and abnormal white matter tracts shown by MR imaging using directional diffusion weighted sequences.J Comput Assist Tomogr.1990 Nov-Dec;14(6):865-73.
    [10]Le Bihan D , Mangin JF , Poupon C , et al .Diffusion tensor imaging : Concepts and applications.J Magn Reson Imaging , 2001,13 :534
    [11]Hajnal JV, Doran M, Hall AS.MR imaging of anisotropically restricted diffusion of water in the nervous system: technical, anatomic, and pathologic considerations.Comput Assist Tomogr 1991; 15:1-18.
    [12]Moseley ME, Cohen Y, Kuchanczyk J, et al.Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system.Radiology 1990; 176:439-445.
    [13]Cleveland GG, Chang DC, Hazlewood CF, et al.Nuclear magnetic resonance measurement of skeletal muscle: anisotropy of the diffusion coefficient of the intracellular water.Biophys J 1976; 16:1043-1053.
    [14]Reese TG, Weisskoff RM, Smith RN, et al.Imaging myocardial fiber architecture in vivo with magnetic resonance.Magn Reson Med.1995 Dec;34(6):786-91.
    [15]Pierpaoli C , Jezzard P , Basser PJ ,et al.Diffusion tensor MR imaging of the human brain.Radiology , 1996 Dec;201(3):637-48.
    [16]Basser P.Inferring microstructural features and the physiological state of fissures from diffusion-weighted images , 1995 Nov-Dec;8(7-8):333-44.
    [17]Shimony IS ,Mckinstryl Quantitative diffusion-tensor anisotropy brain MR imaging: normative human date and anatomic analysis.Radiology ,1999 ,212 :770
    [18]Mattiello J,Basser PJ,Le Bihan D.The b matrix in diffusion tensor echo-planar imaging,1997 Feb;37(2):292-300.
    [19]芮德源,陈立杰.临床神经解剖学.北京:人民卫生出版社,2007
    [20]Naidich TP,Daniels DL,Haughton VM,et al.The hippocampal formation:anatomic-MR correlation.Part Ⅰ.Surface features and coronal sections.[J].Radiology,1987 Mar;162(3):747-54.
    [21]Naidich TP,Daniels DL,Haughton VM,et al.The hippocampal formation:anatomic-MR correlation.Part Ⅱ.Sagittal sections[J].Radiology,1987,162:755-761.
    [22]Sedat J,Duvernoy H.Anatomical study of the temporal lobe:correlations with nuclear magnetic resonance[J].J Neuroradiol,1990,17(1):26-49.
    [23]Robert DT,Gary JF,Barbara C.Normal anatomy of the hippocampusand adjacent temporal lobe:High resolution fast spinecho MR Imagines in volunteers correlated with cadaveric histologic sections[J].AJR,1992,159:1309-1313.
    [24]Ricardo I,Kirsi J,Hikka S,et al.MR volumetric analysis of the human entorhinal,perirhinal,and temporopolar cortice[J].AJNR,1998,19:659-671.
    [25]Mark LP,Daniels DL,Naidich TP,et al.The hipoocampus[J].AJNR,1993,14:709-712.
    [26]Bronen Richard A.Hippocampla and limbic terminology[J].AJNR,1992,13:943-945.
    [27]Catherine O.Loss of digitations of the hippocampal head on high resolution ast spinecho MR:A sign of mesial temporal schlerosis[J].AJNR,1998,19:547-563.
    [28]Ward AAJR.The cingular gyrus:area 24.J N europhysio l,1948,11:13
    [29]Vogt BA,Ro sene DL,Pandya DN.Thalamic and cortical afferents differentiate anterior from posterior cingulate cortex in the monkey.Science,1979,204 (4389): 205.
    [30]Vogt BA , F inch DM , Olson CK.Functional heterogeneity in cingulate cortex:the anterio r executive and po sterio revaluative regions.Cerebral Cortex, 1992, 2 (6):435.
    [31]许绍芬,莫浣英,黄登凯.扣带回.神经生物学,上海:上海医科大学出版社,1990.268
    [32]Sikes RW , Vogt BA.Nocicep tive neurons in area 24 of rabbit cingulate cortex.J Neurophysiol, 1992,68: 17208
    [33]Yamamura H, Iwata K, T subo i Y, et al.Morphological and electrophysiological properties of ACCx nociceptive neurons in rats.Brain Res, 1996, 635: 83
    [34]Baleydier C, M auguiere F.The duality of the cingulate gyrus in monkey:neuroanatomical study and functional hypothesis.Brain, 1980, 103: 525
    [35]Jones EG, Powell TPS.Ananatomical study of converging sensory pathways with in the cerebral cortex of the monkey.Brain, 1970, 93: 793
    [36]Rosene DL , V an Hoesen GW.Happocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey.Science, 1977,198: 315
    [37]Reep RL , Goodw in GS, Co rw in JV.Topographic organization in the cortico-cortical connections of medial agranular cortex in rats.J Comp Neurol, 1990, 294:26
    [38]Yasui Y, Itoh K, Kam iya H, et al.Cingulate gyrus of the catreceives projection fibers from the thalamic border of the ventrobasal comples.J Comp N euro 1, 1988,274:91
    [39]Pandya DN , Deepak N , Domesick VB, et al.Projections of the cingulate gyrus and cingulum in the rhesus monkey.Anatomical Record, 1972, 172: 379
    [40]Stanton GB, CruceWLR, Goldberg M E, et al.Somipsilateral projections to areas pf and pg of the inferior parietal lobule in monkey.Neuro.Science L etters, 1977, 6:243
    [41]M esulam MM , V an Hoesen GW , Pandya DN , et al.Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: a study with a new method for horse radish peroxidase histochemistry.Brain Res, 1977, 136:393
    [42]Yang Y, Shimony JS, Xu S, et al.A sequence for measurement of anisotropic diffusion by projection reconstruction imaging and its application to skeletal and smooth muscle (abstr).In: Proceedings of the Society of Magnetic Resonance 1994.Berkeley, Calif: Society of Magnetic Resonance, 1994; 1036.
    [43]Muller MF, Prasad PV, Bimmler D, et al.Functional imaging of the kidney by means of measurement of the apparent diffusion coefficient.Radiology.1994; 193:711-715.
    [44]Wu JC, Wong EC, Arrindell EL,et al.In vivo determination of the anisotropic diffusion of water and the Ti and T2 times in the rabbit lens by high-resolution magnetic resonance imaging.Invest Ophthalmol Vis Sci 1993; 34: 2151-2158.
    [45]Sakuma H, Nomura Y, Takeda K, et al.Adult and neonatal human brain:diffusional anisotropy and myelination with diffusion-weighted MR imaging.Radiology.1991; 180:229-233.
    [46]Le Bihan D, Turner R, Douek P.Is water diffusion restricted in human brain white matter? An echo-planar NMR imaging study.Neuroreport 1993; 4:887-890.
    [47]Nomura Y, Sakuma H, Takeda K,et al.Diffusional anisotropy of the human brain assessed with diffusion-weighted MR: relation with normal brain development and aging.AJNR 1994; 15:231-238.
    [48]Brunberg JA, Chenevert TL, McKeever PE, et al.In vivo MR determination of water diffusion coefficients and diffusion anisotropy: correlation with structural alteration in gliomas of the cerebral hemispheres.AJNR 1995; 16:361-371.
    [49]Pierpaoli C, Basser PJ.Toward a quantitative assessment of diffusion anisotropy.Magn Reson Med ,1996; 36:893-906.
    [50]Basser PJ, Mattiello J, LeBihan D.Estimalion of the effective self-diffusion tensor from the NMR spin echo.J Magn Reson B 1994; 103:247-254.
    [51]Basser PJ, Mattiello J, LeBihan D.MR diffusion tensor spectroscopy and imaging Biophys J 1994; 66:259-267.
    [52]Le Bihan D.Diffusion and perfusion magnetic resonance imaging.New York, NY: Raven, 1995.
    [53]Conturo TE, McKinstry RC, Akbudak E, et al.Encoding of anisotropic diffusion with tetrahedral gradients: a general mathematical diffusion formalism and experimental results.Magn Reson Med1996; 35:399-412.
    [54]Hajnal JV, Doran M, Hall AS.MR imaging of anisotropically restricted diffusion of water in the nervous system: technical, anatomic , and pathologic consideration.JCAT,1991,15:1
    [55]Basser PJ, Mattiello J , Le Bihan D.MR diffusion tensor spectroscopy and imaging.Biophys J , 1994 , 66 :259
    [56]Basser PJ, Pierpaoli C.Microstructural and physiological features of tissues elucidated by quantitative diffusion-tensor MRI.J Magn Reson , 1996 ,111 :209
    [57]Neil JJ, Shiran SI , Mckinstry RC ,et al .Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measuredby using diffusion tensor MR imaging.Radiology , 1998 , 209 :54
    [58]Moseley ME , Cohen Y, Kucharczyk J , et al.Diffusion-weighted MR imaging of anisotropic water incenteral nervous system.Radiology , 1990 , 176 :439
    [59]Le Bihan D, Turoer R, Inugami A, et al.Diffusion MR imaging : clinical application.AJR , 1992 , 159 :5913
    [60]Higano S, Zhong J, Shrier DA, et al .Diffusion anisotropy of the internal and the coron radiata in association with stroke and tumors as measured by diffusion -weighted MR imaging.AJNR, 2001,22 :456
    [61]Le Bihan D, Mangin JF, Poupon C, et al .Diffusion tensor imaging : Concepts and applications.J Magn Reson Imaging , 2001, 13 :534
    [62]Shimony JS, Mckinstry RC, Akubudak E, et al.Quantitative diffusion tensor anisotropy brain MR imaging: a normative human data and anatomic analysis.Radiology, 1999,212:770
    [63]Chepuri NB, Yen YF, Burdette JH, et al.Diffusion anisotropy in the corpus callosum[J].AJNR Am J Neuroradiol, 2002, 23(5): 803-8.)
    [64]Jezzard P, Pierpaoli C.Diffusion mapping using interleaved spin echo and STEAM EPI with navigator echo correction (abstr).In: Proceedings of the Society of Magnetic Resonance 1995.Berkeley, Calif: Society of Magnetic Resonance, 1995; 903.
    [65]Asato R, Tsukamoto T, Okumura R, et al.A navigator echo technique effectively eliminates phase shift artifacts from the diffusion weighted head images obtained on the conventional NMR imager (abstr).In: Book of abstracts: Sociely of Magnetic Resonance in Medicine 1992.Berkeley, Calif: Society of Magnetic Resonance in Medicine, 1992; 1226.
    [66]Ordidge RJ, Helpemn J A, Qing ZX, et al.Correction of motional artifacts in diffusion-weighted MR images using navigator echoes.Magn Reson Imaging1994; 12:455-460.
    [67]Anderson AW, Gore JC.Analysis and correction of motion artifacts in diffusion weighted imaging.Magn Reson Med 1994; 32:379-387.
    [68]de Crespigny AJ, Marks MP, Enzmann DR, et al.Navigated diffusion imaging of normal and ischemic human brain.Magn Reson Med 1995; 33:720-728.
    [69]Marks MP, de Crespigny A, Lentz D, et al.Acute and chronic stroke: navigated spin-echo diffusion-weighted MR imaging.Radiology, 1996; 199:403-408.
    [70]Stejskal EO, Tanner JE.Spin diffusion measurements: spin echoes in the presence of time-dependent field gradient.J Chem Phys 1965; 42:288-292.
    [71]Mattiello J, Basser PJ, LeBihan D.Analytical expression for the b matrix in NMR diffusion imaging and spectroscopy.J Magn Reson 1994; 108:131-141.
    [72]Henkelman RM.Measurement of signal intensities in the presence of noise in MR images.Med Phys 1985; 12:232-233.
    [73]Bevington PR.Data reduction and error analysis for the physical sciences.New York, NY: Mc Graw-Hill, 1969.
    [74]Press WH.Eigensystems.In: Numerical recipes in C: the art of scientific computing.2nd ed.New York, NY: Cambridge University Press, 1992; 478-481.
    [75]Pierpaoli C, Mattiello J, Le Bihan D, et al.Diffusion tensor imaging of brain white matter anisotropy (abstr).In: Proceedings of the Society of Magnetic Resonance 1994.Berkeley, Calif: Society of Magnetic Resonance 1994; 1038.
    [76]Pierpaoli C, Basser PJ.New invariant "lattice" index achieves significant noise reduction in measuring diffusion anisotropy (abstr).In: Proceedings of the International Society of Magnetic Resonance in Medicine 1996.Berkeley, Calif:International Society of Magnetic Resonance in Medicine, 1996; 1326.
    [1]Kaneko Y,Hajek VE,Zivanovic V,et al.Relationship of sleep apnea to functional capacity and length of hospitalization following stroke..Sleep.2003 May 1;26(3):293-7.
    [2]Marik PE.Leptin,obesity,and obstructive sleep apnea.Chest.2000 Sep;118(3):569-71.
    [3]Ayalon L,Peterson S,Functional central nervous system imaging in the investigation of obstructive sleep apnea,Curr Opin Pulm Med.2007 Nov;13(6):479-83.
    [4]Alchanatis M,Deligiorgis N,Zias N,et al.Frontal brain lobe impairment in obstructive sleep apnoea:a proton MR spectroscopy study.Eur Respir J.2004Dec;24(6):980-6
    [5]Kamba M,Inoue Y,Higami S,et al.Cerebral metabolic impairment in patients with obstructive sleep apnoea:an independent association of obstructive sleep apnoea with white matter change.J Neurol Neurosurg Psychiatry.2001 Sep;71(3):334-9.
    [6]Kamba M,Suto Y,Ohta Y,et al.Cerebral metabolism in sleep apnea.Evaluation by magnetic resonance spectroscopy.Am J Respir Crit Care Med.1997Jul;156(1):296-8.
    [7]Macey PM,Henderson LA,Macey KE,et al.Brain morphology associated with obstructive sleep apnea.Am J Respir Crit Care Med.2002 Nov 15;166(10):1305-6.
    [8]Diagnostic Classification Steering Committee of the American Sleep Disorders Association.The international classification of sleep disorders:diagnostic and coding manual.Rochester,MN:American Sleep Disorders Association,1990.
    [9]Chapman LJ,Chapman JP.The measurement of handedness[J].Brain Cogn,1987,6(2):175-183.
    [10]汤慈美,王新德.神经病学.第7卷.北京:人民军医出版社,2001.342-343.
    [11]Burwell CS,Robin ED,Whaley RD,et al.Extreme obesity associated with alveolar hypoventilation[J].Am J Med,1956,21(6):811-818.
    [12]Gastaut H,Tassinari CA,Duron B.Polygraphic study of diurnal and nocturnal (hypnic and respiratory) episodal manifestations of pickwick syndrome[J].Rev Neutrol,1965,112(11):568-579.
    [13]Jung R,Kuhlo W.Neurophysiological studies of abnormal night sleep andthe pickwickian syndrome[J].Prong Brain Res,1965,18:140-159.]
    [14]Kuhlo W,Doll E,Frank MC.Successful management of pickwickian syndrome using long-term tracheostomy[J].Dtsch Med Wochenschr,1969,94:1286-1290.
    [15]Sullivan CE,Lssa FG,Berthon - Jones M,et al.Reversal of obstructive sleep apnea by continuous positive airway pressure applied through the nares[J].Lancet,1981,18:862-865.
    [16]American Thoracic Society.Indications and standards for cardiopulmonary sleep studies[J].Am Rev Respir Dis,1989,139:559-568.
    [17]American Thoracic Society.Indications and standards for use of nasal continuous airway positive pressure(CPAP) in sleep apnea syndromes[J].Am J Respir Crit Care Med,1994,150(6):1738-1745.
    [18]American Thoracic Society.American sleep disorders association statement on the health outcomes research in sleep apnea[J].Am J Respir Crit Care Med,1998,157:335-341.
    [19]黄席珍,吴全有,曾照实,等.对打鼾者睡眠呼吸暂停的初筛检查[J].中华结核和呼吸杂志,1990,13:3-5.
    [20]黄席珍,吴全有,徐永兴,等.经鼻持续正压通气治疗阻塞性睡眠呼吸暂停低通气综合征[J].中华结核和呼吸杂志,1991,14:225-227.
    [21]黄席珍,肖毅,邹丁,等.自动持续正压系统对睡眠呼吸障碍的诊治[J].中华结核和呼吸杂志,1998,21(8):468-470.
    [22]中华医学会呼吸病学分会睡眠呼吸疾病学组.阻塞性睡眠呼吸暂停低通气综合征诊治指南(草案)[J].中华结核和呼吸杂志,2002,25(4):195-198.
    [23]Yaggi H,Mohsenin V.Obstructive sleep apnoea and stroke[J].Lancet Neurol,2004,3(6):333-342.
    [24]Aikens JE,Caruana-Montaldo B,Vanable PA,et al.MMPI correlates of sleep and respiratory disturbance in obstructive sleep apnea[J].Sleep,1999,22:362-369.
    [25]Punjabi NM,Shahar E,Redline S,et al.Sleep disordered breathing,glucose intolerance,and insulin resistance:the sleep heart health study[J].Am J Epidemiol,2004,160:521-530]
    [26]Hoddes E,Zarcone V,Smythe H,et al.Quantification of sleepiness:a newapproach[J].Psychophysiology,1973,10:431-436.
    [27]Jonms MW.A newmethod for measuring daytime sleepiness:the epworth sleepiness scale[J].Sleep,1991,14:540-545.
    [28]上海市医学会呼吸病学分会睡眠呼吸疾病学组.上海市30岁以上人群阻塞性睡眠呼吸暂停低通气综合征流行病学调查[J].中华结核和呼吸杂 志,2000,26(5):268- 272.
    [29]Young T, Palta M,Dempsey J, et al .The occurrence of sleep-disordered breathing among middle-aged adult s.N Engl J Med , 1993 ,328 :1230-1235.
    [30]Young T, Peppard PE ,Gottlieb D.Epidemiology of obstructive sleep apnea:a population health perspective.Am J Respir CritCare Med ,2002 ,165:1217-1239.
    [31]Harbison J, Gibson GJ, Birchall D,et al.White matter disease and sleep-disordered breathing after acute stroke.Neurology.2003 Oct 14;61(7):959-63.
    [32]Shawn D,Gale,Ramona O.et al.Effects of hypoxia on the brain:Neuroimaging and neuropsychological findings following carbon monoxide poisonign and obstructive sleep apnea.J Int Neuropsychological Soc,2004,10(1):60-71.
    [33]Caine D,Wat son J.Neuropsychological and neuropathological sequelae of cerebral anoxia:A critical review.J Int Neuropsychological Soc,2000,6(1):86-99.
    [34]Lim LL, Tham KW, Fook-Chong SM.Obstructive sleep apnoea in Singapore:polysomnography data from a tertiary sleep disorders unit.Ann Acad MedSingapore.2008 Aug;37(8):629-36.
    [35]Sajkov D ,Marshall R ,Walker P ,et al.Sleep apnea related hypoxia is associated with cognitive distubarces in patients with tetraplegia.Spinal Cord.1998 Apr;36(4):231-9.
    [36]Bedard MA,Montplasiir J,Richer F,et al.Obstructive sleep apnea syndrome:pathogenesis of neuropsychological deficits.J Clin Exp Neuropsychol,1991,13(6):950-964.
    [37]Nagele B , Thovard V, Pepin JL, et al.Deficits of cognitive executive functions in patients with sleep apnea syndrome.Sleep,1995,18(1):43-52.
    [38]Greenberg GD ,Wat son RK, Deptul D.Neuropsychological dysfunction in sleep apnea.Sleep, 1987,10(3):254-262.
    [39]Naegele B, Launois SH, Mazza S.Which memory processes are affected in patients with obstructive sleep apnea? An evaluation of 3 types of memory.Sleep.2006 Apr l;29(4):533-44.
    [40]Braver TS, Cohen JD, Nystrom LE,et al.A parametric study of prefrontal cortex involvement in human working memory.Neuroimaging.1997 Jan;5(1):49-62.
    [41]Smith EE, Jonides J.Storage and executive processes in the frontal lobes.Science,1999 Mar 12;283(5408): 1657-61.
    [42]Lanf ranchi P,Somers V K.Obstructive sleep apnea and vascular diseaes.Respiratory Research,2001,2(6):309-315.
    [43]Aloia MS,Arnedt.MRI White matter hyperintensities in older adults with obstructive sleep apnea.Sleep,2001,24(12): 367-369.
    [44]Sutherland GR, McNaughton B.Memory trace reactivation inhippocampal and neocortical neuronal ensembles.Curr Opin Neurobiol.2000 Apr; 10(2): 180-6.
    [45]Salin Pascual RJ ,Diaz Munoz M, Rivera Valerdi L,et al.Decrease in muscarinic M_2 receptors from synaptosomes in the pons and hippocampus after REM sleep deprivation in rats.Sleep Res Online.1998; 1(1): 19-23.
    [46]TureU, Yasargil MG, Krisht AF.The arteries of the corpus callosum: a microsurgical anatomic study.Neurosurg, 1996, 39:1075-1085.
    [47]Chrysikopoulos H, Andreou J,Roussakis A, et al.Infarction of the corpus callosumxomputed tomography and magnetic resonance imaging.Eur J Radiol, 1997,25:2-8.
    [1]O'Sullivan M,Morris RG,Huckstep B,Jones DK.Diffusion tensor MRI correlates with executive dysfunction in patients with ischaemic leukoaraiosis.J Neurol Neurosurg Psychiatry.2004 Mar;75(3):441-7.
    [2]Erkinjuntti T,Kurz A,Gauthier S,et al.Efficacy of galantamine in probable vascular dementia and Alzheimer's disease combined with cerebrovascular disease:a randomised trial.Lancet 2002;359:1283-90.
    [3]Hachinski VC,Potter P,Merskey H.Leuko-araiosis.Arch Neurol 1987;44:21-3.
    [4]Erkinjuntti T,Inzitari D,Pantoni L,et al.Limitations of clinical criteria for the diagnosis of vascular dementia in clinical trials.Is a focus on subcortical vascular dementia a solution? Ann NY Acad Sci 2000;903:262-72.
    [5]Aharon-Peretz J,Cummings VL,Hill MA,et al.Vascular dementia and dementia of the Alzheimer type[J].Arch Neurol,1988,45:719-721.
    [6]Wardlaw JM.What causes lacunar stroke?.J Neurol neurosurg psychiatry,2005,76:617-619.
    [7]Chui H.Neuropat hology lessons in vascular dementia.Alzheimer Dis Assoc Disord,2005,19:45-52.
    [8]Patankar TF,Mit ra D,Varma A,et al.Dilatation of the VirChow-Robin space is a sensitive indicator of cerebral microvascular disease:study in elderly patients with dementia.AmJ Neuroradiol,2005,26:1512-1520.
    [9]Yamamoto Y,Akiguchi I,Oiwa K,et al.Twenty-four hour blood pressure and MRI as predictive factors for different outcomes in patients with lacunar infarct[J].Stroke, 2002,33:297-305.
    [10]Eguchi K, Kario K, Shimada K.Greater impact of coexistence of hypertension and diabetes on silent cerebral infarcts.Stroke, 2003, 34:2471-2474.
    [11]Arboix A, Marti-Vilalta JL.New concepts in lacunar stroke etiology: the constellation of small-vessel arterial disease.Cerebrovasc Dis.2004,17:58-62.
    [12]Iwashita M, Matsushita Y, Sasaki J, et al.Relation of serum total cholesterol and other factors to risk of cerebral infarction in Japanese men with hypercholesterolemia.Circ J.2005, 69:1-6.
    [13]Kalvach P ,Gregova D.Cerebral microangiopathy in the OSAHS of new discoveries.J Neurol Sci, 2005,229-230:7-12.
    [14]O'Sullivan M , Morris RG,Markus HS.Brief cognitive assessment for patients with cerebral small vessel disease.J Neurol Neurosurg Psychiatry,2005,76:l 140-1145.
    [15]Norrving B.Lacunar infarcts.Ther Umsch.2003 Sep;60(9):535-40.
    [16]Nitkunan A, McIntyre DJ, Barrick TR, et al.Correlations between MRS and DTI in cerebral small vessel disease .NMR Biomed.2006 Aug; 19(5):610-6.
    [17]Nitkunan A, Charlton RA, McIntyre DJ, et al.Diffusion tensor imaging and MR spectroscopy in hypertension and presumed cerebral small vessel disease.Magn Reson Med.2008 Mar;59(3):528-3.
    [18]Hunt Al, Orrison W,Yeo RA, et al.Clinical significance of MRI white matter lesions in the elderly.Neurology, 1989, 39:1470-1474.
    [19]Breteler MM ,Van-A MN ,Van-S JC ,et al.Cognitive correlates of ventricular enlargement and cerebral white matter lesions on magnetic resonance imaging :the Rotterdam Study .Stroke, 1994,25(6): 1109-1115.
    [20]Pieters B, Staals J, Knottnerus I, et al.Periventricular White Matter Lucencies Relate to Low Vitamin B_(12) Levels in Patients With Small Vessel Stroke, 2009 Mar 12.
    [21]Englund E.Neuropathology of white matter lesions in vascular cognitive impairment.Cerebrovasc Dis.2002;13 Suppl 2:11-5.
    [22]Ture U ,Yasargil MG, Krisht AF.The arteries of the corpus callosum: a microsurgical anatomic study.Neurosurg, 1996, 39:1075-1085.
    [23]Geschwind N.Disconnexion Syndromes in animal and man .Brain,1965,88:237-294.
    [24]Dufouil C , de Kersaint, Gilly A ,et al.Longitudinal study of blood pressure and white matter hyperintensities : the EVA MRI Cohort.Neurology,2001,56:921 -926.
    [25]Basile AM ,Pantoni L, Pracucci G, et al.Age, hypertension, and lacunar stroke are the major determinants of the severity of age-related white matter changes.The LADIS (Leukoaraiosis and Disability in the Elderly) Study.Cerebrovasc Dis, 200,21:315-322.
    [26]Mohsenin V.Sleep-related breathing disorders and risk of stroke.Stroke, 2001, 32:1271.
    [27]Dominique A ,Cadilhac MPubHlth , Rachel D , et al.Sleep disordered breathing in chronic stroke survivors: A studyof the long term follow-up of the SCOPES cohort using home based polysomnography.J Clin Neurosci,2005,12(6):632.
    [28]Neau J P, Paquereau J, Meurice JC, et al.Stroke and sleep apnoea: cause or consequence.Sleep Med Rev, 2002, 6(6):429.
    [29]Markus HS, Lythgoe DJ, Ostegaard L, et al.Reduced cerebral blood flow in whit matter in ischaemic leukoaraiosis demonstrated using quantitative exogenous contrast based perfusionMR I.J Neurol Neurosurg Psychiatry, 2000, 69:48-53.
    [30]van der Flier WM,van Straaten EC,B general cognitive function in nondisabled elderly.the LADIS study.Stroke,2005,36:2116-2120.
    [31]Appelros P,Samuelsson M,Lindell D.Lacunar infarcts:functional and cognitive outcomes at five years in relation to MRI findings.Cerebrovasc Dis,2005,20:34-40.
    [1]Lublin FD,Reingold SC.Defining the clinical course of multiple sclerosis:results of an international survey.National Multiple Sclerosis Society(USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis.Neurology.1996 Apr;46(4):907-11.
    [2]Evangelou N,EsiriMM,Smith S,et al.Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis.Ann Neurol.2000 Mar;47(3):391-5.
    [3]Kidd D,Barkhof F,McConnel R,et al.Cortical lesions in multiple Sclerosis.Brain.1999 Jan;122(Pt 1):17-26.
    [4]Peterson JW,Bo L,Mork S,et al.Transected neurites,apoptotic neurons,and reduced inflammation in cortical multiple sclerosis lesions.Ann Neurol.2001Sep;50(3):389-400.
    [5]初曙光,沈天真,陈星荣.磁化传递成像对脑部多发性硬化患者正常表现脑白质内微观病变的诊断价值.中华医学杂志,2004,84(14):1181-1185.
    [6]于春水,李坤成,秦文,等.多发性硬化弥散加权成像.中国医学影像技术,2005,21(5):687-689.
    [7]Vrenken H,Barkhof F,Uitdehaag BM,et al.MR spectroscopic evidence for glial increase but not for neuro-axonal damage in MS normal-appearing white matter.Magn Reson Med.2005 Feb;53(2):256-66..
    [8]Tortorella C,Viti B,Bozzali M,et al.A magnetization transfer histogram study of normal-appearing brain tissue in MS.Neurology.2000 Jan 11;54(1):186-93.
    [9]Rashid W,Hadjip rocop is A,Griffin CM,et al.Diffusion tensor imaging of early relapsing-remitting multiple sclerosis with histogram analysis using automated segmentation and brain volume correction.Mult Scler,2004,10:9-15.
    [10]RovarisM,Bozzali M,Iannucci G,et al.Assessment of normal-appearing white and gray matter in patients with primary progressive multiple sclerosis:a diffusion-tensor magnetic resonance imaging study.Arch Neurol,2002,59:1406-1412.
    [11]McDonald WI,Compston A,Edan G,et al.Recommended diagnostic criteria for multiple sclerosis:guidelines from the International Panel on the diagnosis of multiple sclerosis.Ann Neurol,2001,50(1):121-127.
    [12]韩鸿宾,谢敬霞,刘溢,等.多发性硬化的MR扩散加权成像研究.中华放射杂 志,2002,36(4):334-338.
    [13]Cercignani M, Iannucci G, Rocca MA,et al.Pathologic damage in MS assessed by diffusion-weighted and magnetization transfer MRI.Neurology.2000 Mar 14;54(5): 1139-44.
    [14]Traboulsee A, Dehmeshki J, Peters KR, et al.Disability in multiple sclerosis is related to normal appearing brain tissue MTR histogram abnormalities.Mult Scler.2003 Dec;9(6):566-73.
    [15]Schmierer K, Scaravilli F, Altmann DR, et al.Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain.Ann Neurol, 2004, 56:407-415.
    [16]Evangelou N, EsiriMM, Smith S, et al.Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis.Ann Neurol, 2000,47: 391-395.
    [17]Zhao Z, Saida T, Ozawa K, et al.Characteristic of the T2-weighted magnetic resonance imaging lesion in multiple sclerosis and cerebrovascular disorders.Neuroimmunology, 1995, 3(1):30
    [18]ReidelMA, Stipp ich C, Heiland S, et al.Differentiation of multiple sclerosis plaques, subacute cerebral ischaemic infarcts, focal vasogenic edema and lesions of subcortical arteriosclerotic encephalopathy using magnetization transfer measurements.Neuroradiology, 2003,45(2): 289-294.
    [19]Tievsky AL, Ptak T, Farkas J.Investigation of apparent diffusion coefficient nd diffusion tensor anisotrophy in acute and chronic multiple sclerosis lesions.AJNR, 1999, 20( 8): 1491- 1499.
    [20]Bammer R, Augustin M, Strasser-Fuchs S, et al.Magnetic resonance diffusion tensor imaging for characterizing diffuse and focal white matter abnormalities in multiple sclerosis.Magn Reson Med, 2000, 44: 583.
    [21]Roychowdhury S, Maldjian J A, Grossman RI.Multiple sclerosis: comparison of trace apparent diffusion coefficients with MR enhancement pattern of lesions.AJNR, 2000,21(5):869-874.
    [22]van Walderveen MA, Kamphorst W, Scheltens P, et al.Histopathologic correlate of hypointense lesions on T_1 - weighted spin - echo MRI in multiple sclerosis.Neurology, 1998, 50 (5): 1282-1288.
    [23]van Waesberghe JH, van Walderveen MA, Castelijns JA, et al.Patterns of lesion development in multiple sclerosis: longitudinal observations with T_1- weighted spin- echo and magnetization transfer MR.AJNR, 1998, 19(4) :675-683.
    [24]Brex PA, Parker GJ, Leary SM, et al.Lesion heterogeneity in multiple sclerosis: a study of the relations between appearances on T_1weighted images, T_1 relaxation times, and metabolite concentrations.J Neurol Neurosurg Psychiatry,2000, 68(5):627- 632.
    [25]Otaduy MC, Callegaro D, Bacheschi LA, et al.Correlation of magnetization transfer and diffusion magnetic resonance imaging in multiple sclerosis.Mult Scler, 2006,12(6):754-759.
    [26]Datta S, Sajja BR, He R, et al.Segmentation and quantification of black holes in multiple sclerosis .Neuroimage,2006,29(2): 467-474.
    [27]Br(u|¨)ck W, Kuhlmann T, Stadelmann C.Remyelination in multiple sclerosis.J Neurol Sci,2003,206(2): 181-185.
    [28]Barkhof F, Bruck W, De Groot CJ, et al.Remyelinated lesions in multiple sclerosis magnetic resonance image appearance.Arch Neurol,2003,60(8): 1073-1081.
    [29]Rosso C, Remy P, Creange A, et al.Diffusion-weighted MR imaging characteristics of an acute strokelike form of multiple sclerosis.AJNR, 2006,27(5):1006-1008.
    [30]Kealey SM, Kim Y,Whiting WL, et al.Determination of multiple sclerosis plaque size with diffusion-tensor MR imaging: comparison study with healthy volunteers.Radiology, 2005,236(2):615-620.
    [31]Werring DJ, Clark CA, Barker GJ, et al.Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis.Neurology, 1999,52:1626.
    [32]Van WalderveenMA, Kamphorst W, Scheltens P, et al.Histopatho logic correlate of hypointense lesions on T_1 -weighted spin-echo MRI in multiple sclerosis.Neurology, 1998,50:1282.
    [33]Filipp iM, CercignaniM, IngleseM, et al.Diffusion tensor magnetic resonance imaging in multiple sclerosis.Neurology, 2001,56:304.
    [34]Ciccarelli O, Werring DJ, Barker GJ, et al.A study of the mechanisms of normal-appearing white matter damage in multiple sclerosis using diffusion tensor imaging-evidence of Wallerian degeneration.J Neurol, 2003, 250:287.
    [35]Ge Y, LawM, Johnson G, et al.Preferential occult injury of corpus callosum in multiple sclerosis measured by diffusion tensor imaging.J Magn Reson Imaging, 2004,20:1.
    [36]Hasan KM, Gup ta RK, Santos RM, et al.Diffusion tensor fractional anisotropy of the normal-appearing seven segments of the corpus callosum in healthy adults and relapsing-remitting multiple sclerosis patients.J Magn Reson Imaging, 2005, 21:735.
    [37]Peterson JW, Bo L, Mork S, et al.Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions.Ann Neurol, 2001,50:389.
    [38]BozzaliM, CercignaniM, SormaniMP, et al.Quantification of brain gray matter damage in different MS phenotypes by use of diffusion tensor MR imaging.AJNR, 2002,23:985.
    [39]RovarisM,Gallo A,Valsasina P,et al.Short-term accrual of gray matter pathology in patients with progressive multiple sclerosis:An in vivo study using diffusion tensor MRI.Neuroimage,2005,24:1139.
    [40]Valsasina P,BenedettiB,RovarisM,et al.Evidence for progressive gray matter loss in patients with relapsing-remitting MS.Neurology,2005,65:1126.
    [41]Ge Y,Law M,Grossman RI.Applications of diffusion tensor MR imaging in multiple sclerosis.Ann N Y Acad Sci.2005 Dec;1064:202-19.
    [42]Pagani E,Filipp iM,RoccaMA,et al.A method for obtaining tract-specific diffusion tensor MRI measurements in the presence of disease:Application to patients with clinically isolated syndromes suggestive of multiple sclerosis.Neuroimage.2005 May 15;26(1):258-65.
    [43]Ture U,Yasargil MG,Krisht AF.The arteries of the corpus callosum:a microsurgical anatomic study.Neurosurgery.1996 Dec;39(6):1075-84;discussion 1084-5.
    [44]徐雁,崔丽英.多发性硬化与脑梗死影像学表现的鉴别诊断.中国实用内科杂志,2005,25(5):402-403.
    [45]Burks JS,Johnson KP.Multiple sclerosis:diagnosis,medical management and rehabilitation.Demos,2000,9:110-127.
    [46]Uchino A,Takase Y,Nomiyama K,et al.Acquired lesions of the corpus calllosum:MR imaging.Eur Radiol,2006,16(4):905-914.
    [47]Gean-Marton AD,Vezina LG,Marton KI,et al.Abnormal corpus callosum:a sensitive and specific indicator of multiple sclerosis.Radiology,1991,180(1):215-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700