用户名: 密码: 验证码:
视蛋白基因的克隆及其与抗药性/耐药性关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,大范围和不加选择地使用杀虫剂导致了媒介抗药性的发生和发展。发现和研究新的抗药性相关基因将有助于阐明抗药性的分子基础和寻找新的治理抗药性的靶标。
     本研究根据本实验室已经获得的淡色库蚊NYD-OP1~7基因的序列,设计引物,从淡色库蚊抗性品系成蚊cDNA文库中扩增出NYD-OP7基因的全长序列,T/A克隆入pGEM-T Easy载体,经测序、对位拼接获取全长序列。获得的淡色库蚊NYD-OP7基因长1437bp,开放阅读框为1116bp,编码371个氨基酸(GenBank登录号:AY749413)。
     用BlastX软件将该基因推导编码的氨基酸序列与蛋白质公共数据库Swissprot分析,用ClustalW软件作序列比对和聚类分析。推导的氨基酸序列与埃及伊蚊(Aedes aegypti)和冈比亚按蚊(Anopheles gambiae)的视蛋白具有80%以上的同源性。
     定量PCR的方法研究其在敏感品系和抗性品系淡色库蚊各发育阶段中的表达差异。结果显示,NYD-OP7在淡色库蚊溴氰菊酯敏感和抗性品系卵及1、2、3、4龄幼虫中有微弱表达,在蛹及成蚊中有较高表达,而且该基因在抗性品系蛹和成蚊中的表达较敏感品系显著升高。
     将该基因克隆入昆虫细胞表达载体pIE1-3,转染蚊C6/36细胞,G418筛选两周后获得稳定表达的细胞系,[~3H]-TdR检测结果显示:各种浓度的溴氰菊酯处理48小时后,在15μM、20μM和25μM浓度组,转染组细胞的存活率较对照组分别升高了11.08%、13.07%和11.10%(P<0.05)。
     综上,所有结果表明,NYD-OP7基因与淡色库蚊溴氰菊酯抗性相关,为一个新的昆虫抗药性相关基因。
     肿瘤细胞对化疗药物产生耐药常常导致化疗失败,研究肿瘤耐药性相关基因将有助于阐明肿瘤耐药性产生的分子机制,也有助于发现新的检测及逆转肿瘤耐药性的方法。
     Opsin 3(OPN3)基因,也被称作encephalopsin或panopsin基因,是一个发现时间不长的视网膜外光感受器基因,目前该基因的功能尚不清楚。
     本研究采用RT-PCR的方法检测了OPN3基因在人体多种组织以及多种肿瘤细胞系中的表达,结果显示OPN3基因在胸腺、睾丸、肝脏、胰腺和胎盘组织中的表达比较强,在前列腺和肾脏组织中的表达比较弱;同时,OPN3基因在人肺癌紫杉醇耐药株A549_(PTX)细胞中的表达是A549细胞的3.46倍;在人肝癌5-FU耐药株Bel7402_(5-FU)中的表达是Bel7402细胞的0.37倍(P<0.05)。
     随后,本研究构建了OPN3基因的真核细胞表达载体和RNA干涉表达载体,选取A549细胞和A549_(PTX)细胞为研究对象,建立了稳定转染的细胞系,通过[~3H]-TdR的方法研究了分别过表达和低表达OPN3基因后,A549细胞和A549_(PTX)细胞对于紫杉醇敏感性的变化,结果显示:在各种浓度的紫杉醇处理72小时后,与对照组细胞相比,过表达OPN3基因后的A549细胞的存活率均有不同程度的下降,尤其在2,5,25,100,500 nM组,其存活率分别下降了14.26%,24.76%,18.19%,26.79%和27.51%(P<0.05);同时,低表达OPN3基因后的A549_(PTX)细胞的存活率均有不同程度的上升,尤其在5nM组,其存活率升高了34.32%(P<0.05)。
     将OPN3基因克隆入pEGFPN2质粒,将重组质粒转染A549细胞、HFLF细胞和293细胞,激光共聚焦显微镜下观察融合蛋白的表达定位,结果显示:OPN3和GFP的融合蛋白在各组细胞的胞膜,胞浆及胞核均有散在表达,对照空载体的GFP蛋白在整个细胞内广泛表达,没有特异性。
     综上,本研究首次发现OPN3基因与A549细胞对紫杉醇的耐药性相关,而且OPN3蛋白还具有很特别的细胞定位特征,值得进一步深入研究。
One mosquito opsin gene, NYD-OP7, has been cloned from Culexpipiens pallens. Within the sequence, an open reading frame (ORF) of1116 bp was found to encode a putative 371 amino acids protein whichexhibits high identity with opsins from Aedes and Anopheles mosquitoes.
     Transcript expression of NYD-OP7 was determined by real-timePCR in all life stages of deltamethrin-susceptible and -resistant strains ofthe Culex mosquito. The results demonstrated that this gene is expressedat all developmental stages, and it is expressed predominantly at thepupae and adult stages. Meanwhile, in pupae and adults, NYD-OP7 isoverexpressed in deltamethrin-resistant strain than in -susceptible strain.Importantly, stable expression of NYD-OP7 in the mosquito C6/36 cellscan confer moderate deltamethrin resistance.
     Our study provides the first direct evidence that increased expressionof an opsin gene may play some role in the development of deltamethrinresistance in Cx. pipiens pallens.
     Opsin 3 (OPN3), also called encephalopsin or panopsin, is a recentlydiscovered extraretinal photoreceptor, and its function is largely unknownuntil now.
     In this study, based on the RT-PCR results, we showed that OPN3was moderately expressed in the thymus, testis, liver, pancreas andplacenta and weakly in the prostate gland and kidney. Meanwhile, theexpression of OPN3 was significantly higher in the paclitaxel -resistantline than in the drug naive parental A549 cell line. Then we confirmed theoverexpression by real-time PCR analysis.
     Using cDNA transfection and RNA interference, we successfullyestablished stable transfectants with upregulation and downregulation ofOPN3 expression, respectively. In vitro drug sensitivity assaydemonstrated that overexpression of OPN3 sensitized A549 cells topaclitaxel whereas downregulation of OPN3 conferred A549_(PTX) cellresistance to paclitaxel.
     We also investigated cell localization of OPN3 by fusing it to anenhanced green fluorescent protein (EGFP). Green fluorescence signalwas found clearly in the nuclei, body and membrane of cells transfected with OPN3-EGFR In contrast, EGFP (vector control) was distributedmore or less evenly throughout the whole cell.
     Our data for the first time suggests that OPN3 gene may play somerole in the development of paclitaxel resistance in human lung cancercells.
引文
[1] World Health Organization: Expert Committee on Insecticides. WHO Tech. Rpt. Ser. 7th Rpt (1957) 1251.
    [2] GP Georghiou, and R. Mellon., Pesticide resistance in time and space. In : Georghiou GP, Saito T eds. Pest Resistance to Pesticides. Plenum Press, New York. (1983) 1-46.
    [3] I. Denholm, G.J. Devine, and M.S. Williamson, Evolutionary genetics. Insecticide resistance on the move. Science 297 (2002) 2222-3.
    [4] G. Georghiou, The magnitude of the resistance problem. In :National Academy of Sciences ed. Pest Resistance Strategies and Tactics for Management. National Academy Press, Washington, D. C. (1986).
    [5] J. Scott, Cross-resistance to the biological insecticide abamectin in yrethroid resistant house flies. Pestic. Biochem. Physiol. 34 (1989) 27-31.
    [6] B.E. Tabashnik, K.W. Johnson, J.T. Engleman, and J.A. Baum, Cross-resistance to Bacillus thuringiensis toxin CrylJa in a strain of diamondback moth adapted to artificial diet. J Invertebr Pathol 76 (2000) 81-3.
    [7] N. Liu, and X. Yue, Insecticide resistance and cross-resistance in the house fly (Diptera: Muscidae). J Econ Entomol 93(2000) 1269-75.
    [8] Y. Wei, A.G. Appel, W.J. Moar, and N. Liu, Pyrethroid resistance and cross-resistance in the German cockroach, Blattella germanica (L). Pest Manag Sci 57(2001) 1055-9.
    [9] Moulton JK, Pepper DA, Dennehy TJ , and Beet armyworm (Spodoptera exigua) resistance to spinosad. Pest Manag. Sci. 56 (2000) 842-848.
    [10] Georghiou GP, and Lagunes-Tejeda A The Occurrence of Resistance to Pesticides in Arthropods. Food and Agriculture Organization of the United Nations, Rome. (1991).
    [11] Georghiou GP, Implications of the development of resistance to pesticide: basic principles and consideration of countermeasures. In :Gooding EGBed.. Proceedings of Pest and Pesticide Management. Caribbean. (1980) 116-132.
    [12] 冷欣夫,杀虫剂分子毒理学及昆虫抗药性.北京:中国农业出版社(1996)1-171.
    [13] J. Hemingway, and H. Ranson, Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45 (2000) 371-91.
    [14] Scott JG, Insecticide resistance in insects. In : Pimental D ed. Handbook of Pest Management. CRC Press, Boca Raton. (1991) 663-677.
    [15] William C. Marquardt, Biology of Disease Vectors, 2nd ed. Elsevier Academic Press, Burlington, Massachusetts (2004) 627-637.
    [16] 邱星辉,何凤琴,李梅,细胞色素P450介导的昆虫抗药性.生命的化学23(2003).
    [17] 刘喃喃,朱芳,徐强,Julia W.Pridgeon,高希武,Behavioral Change,Physiological Modification,and Metabolic Detoxification:Mechanisms of Insecticide Resistance.昆虫学报49(2006)671-679.
    [18] 唐振华,吴士雄,昆虫抗药性的遗传与进化.上海科学技术文献出版社(2000).
    [19] 胡小邦,朱昌亮,昆虫抗药性机制研究进展.国外医学寄生虫病分册31(2004)18-23.
    [20] C. Chevillon, M. Raymond, T. Guillemaud, T. Lenormand, and N. Pasteur, Population genetics of insecticide resistance in the mosquito Culex pipiens. Biol J Linn Soc Lond, 68 (1999) 147-157.
    [21] 苏寿汦,叶炳辉,现代医学昆虫学.第一版.北京:高等教育出版社(1996)170-175.
    [22] G. Georghiou, Implication of agricultural pesticide used in relation to the development of resistance in desease bectors. Geneva, WHO, (unpublished document). (1990).
    [23] J.E. Casida, D.W. Gammon, A.H. Glickman, and L.J. Lawrence, Mechanisms of selective action of pyrethroid insecticides. Annu Rev Pharmacol Toxicol 23 (1983) 413-38.
    [24] K. Dong, Insect sodium channels and insecticide resistance. Invert Neurosci (2007).
    [25] D.M. Soderlund, and D.C. Knipple, The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem Mol Biol 33 (2003) 563-77.
    [26] R.M. Johnson, Z. Wen, M.A. Schuler, and M.R. Berenbaum, Mediation of pyrethroid insecticide toxicity to honey bees (Hymenoptera: Apidae) by cytochrome P450 monooxygenases. J Econ Entomol 99 (2006) 1046-50.
    [27] R. Hernandez, F.D. Guerrero, J.E. George, and G.G. Wagner, Allele frequency and gene expression of a putative carboxylesterase-encoding gene in a pyrethroid resistant strain of the tick Boophilus microplus. Insect Biochem Mol Biol 32 (2002) 1009-16.
    [28] J.G. Vontas, G.J. Small, and J. Hemingway, Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J 357 (2001) 65-72.
    [29] J. Hemingway, N.J. Hawkes, L. McCarroll, and H. Ranson, The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34 (2004) 653-65.
    [30] Nannan Liu, Huqi Liu, Fang Zhu, and L. Zhang, Differential expression of genes in pyrethroid resistant and susceptible mosquitoes, Culex quinquefasciatus (S.). Gene. In press (2007).
    [31] H.W. Wu, H.S. Tian, G.L. Wu, G. Langdon, J. Kurtis, B. Shen, L. Ma, X.L. Li, Y. Gu, X.B. Hu, and C.L. Zhu, Culex pipiens pallens: identification of genes differentially expressed in deltamethrin-resistant and -susceptible strains. Pestic Biochem Physiol. 79 (2004) 75-83.
    [32] X.L. Li, L. Ma, L.X. Sun, and C.L. Zhu, Biotic characteristics in the deltamethrin- susceptible and resistant strains of Culex pipiens pallens (Diptera:Culicidae) in China. Appl. Entomol. Zool. 37 (2002) 305-308.
    [33] 田海生,用SSH结合cDNA芯片分离、鉴定淡色库蚊溴氰菊酯抗性相关基因.南京医科大学博士学位论文(2001)73-83.
    [34] B.J. Blitvich, C.D. Blair, B.J. Kempf, M.T. Hughes, W.C. Black, R.S. Mackie, C.T. Meredith, B.J. Beaty, and A. Rayms-Keller, Developmental- and tissue-specific expression of an inhibitor of apoptosis protein 1 homologue from Aedes triseriatus mosquitoes. Insect Mol Biol 11 (2002) 431-42.
    [35] 孙艳,蚊抗药性相关新基因—视蛋白基因(NYD-OP7)克隆、序列分析及表达载体构建.南京医科大学硕士学位论文(2005)21-22.
    [36] 杨明夏,抗药性相关NYD-Ch和NYD-Tr基因表达和初步鉴定.南京医科大学硕士学位论文 (2003)50-61.
    [37] K.J. Livak, and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 (2001) 402-8.
    [38] 顾燕,蚊抗药性相关新基因NYD-Ch和NYD-Tr的初步功能研究.南京医科大学硕士学位论文(2005)17.
    [39] R.R. Franke, B. Konig, T.P. Sakmar, H.G. Khorana, and K.P. Hofmann, Rhodopsin mutants that bind but fail to activate transducin. Science 250 (1990) 123-5.
    [40] R.R. Franke, T.P. Sakmar, R.M. Graham, and H.G. Khorana, Structure and function in rhodopsin. Studies of the interaction between the rhodopsin cytoplasmic domain and transducin. J Biol Chem 267 (1992) 14767-74.
    [41] S.M. Townson, B.S. Chang, E. Salcedo, L.V. Chadwell, N.E. Pierce, and S.G. Britt, Honeybee blue- and ultraviolet-sensitive opsins: cloning, heterologous expression in Drosophila, and physiological characterization. J Neurosci 18 (1998) 2412-22.
    [42] 冯琛莉, 戴锦晖, 褚仁远, 视蛋白的研究进展. 国际眼科纵览 30(2006)217-220.
    [43] A. Terakita, The opsins. Genome Biol 6 (2005) 213.
    [44] J.V. Broeck, Insect G protein-coupled receptors and signal transduction. Arch Insect Biochem Physiol 48 (2001) 1-12.
    [45] C.A. Hill, A.N. Fox, R.J. Pitts, L.B. Kent, P.L. Tan, M.A. Chrystal, A. Cravchik, F.H. Collins, H.M. Robertson, and L.J. Zwiebel, G protein-coupled receptors in Anopheles gambiae. Science 298 (2002) 176-8.
    [46] R. Graf, A. Godknechi, M. Nakano, X. Li, U. Ackermann, and P. Helbling, Cloning and expression analysis of Aedes aegypti opsin: adaptation of an in situ hybridization protocol for mosquitoes. Insect Mol Biol 5 (1996) 173-80.
    [47] M.R. Chase, R.R. Bennett, and R.H. White, Three opsin-encoding cDNAS from the compound eye of Manduca sexta. J Exp Biol 200 (1997) 2469-78.
    [48] N. Gao, R.G. Foster, and J. Hardie, Two opsin genes from the vetch aphid, Megoura viciae. Insect Mol Biol 9 (2000) 197-202.
    [49] P. Daborn, S. Boundy, J. Yen, B. Pittendrigh, and R. ffrench-Constant, DDT resistance in Drosophila correlates with Cyp6gl over-expression and confers cross-resistance to the neonicotinoid imidacloprid. Mol Genet Genomics 266 (2001) 556-63.
    [50] P.J. Daborn, J.L. Yen, M.R. Bogwitz, G. Le Goff, E. Feil, S. Jeffers, N. Tijet, T. Perry, D. Heckel, P. Batterham, R. Feyereisen, T.G. Wilson, and R.H. ffrench-Constant, A single p450 allele associated with insecticide resistance in Drosophila. Science 297 (2002) 2253-6.
    [51] J.P. David, C. Strode, J. Vontas, D. Nikou, A. Vaughan, P.M. Pignatelli, C. Louis, J. Hemingway, and H. Ranson, The Anopheles gambiae detoxification chip: a highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. Proc Natl Acad Sci U S A 102 (2005) 4080-4.
    [52] J. Vontas, C. Blass, A.C. Koutsos, J.P. David, F.C. Kafatos, C. Louis, J. Hemingway, G.K. Christophides, and H. Ranson, Gene expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure. Insect Mol Biol 14 (2005)509-21.
    [53] J.H. Pedra, L.M. McIntyre, M.E. Scharf, and B.R. Pittendrigh, Genome-wide transcription profile of field- and laboratory-selected dichlorodiphenyltrichloroethane (DDT)-resistant Drosophila. Proc Natl Acad Sci U S A 101 (2004) 7034-9.
    [54] N. Liu, H. Liu, F. Zhu, and L. Zhang, 22 mosquito Culex quinquefasciatus (S.) ESTs: Functional analysis of genes involved in insecticide resistance of mosquitoes. Unpublished http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val= 106102897 (2006).
    [55] M. Gong, B. Shen, Y. Gu, H. Tian, L. Ma, X. Li, M. Yang, Y. Hu, Y. Sun, X. Hu, J. Li, and C. Zhu, Serine proteinase over-expression in relation to deltamethrin resistance in Culex pipiens pallens. Arch Biochem Biophys 438 (2005) 53-62.
    [56] D.B. Longley, and P.G. Johnston, Molecular mechanisms of drug resistance. J Pathol 205 (2005) 275-92.
    [57] Y.A. Luqmani, Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract 14 Suppl 1 (2005) 35-48.
    [58] R.Z. Yusuf, Z. Duan, D.E. Lamendola, R.T. Penson, and M.V. Seiden, Paclitaxel resistance: molecular mechanisms and pharmacologic manipulation. Curr Cancer Drug Targets 3 (2003) 1-19.
    [59] G.S. Watts, B.W. Futscher, R. Isett, M. Gleason-Guzman, M.W. Kunkel, and S.E. Salmon, cDNA microarray analysis of multidrug resistance: doxorubicin selection produces multiple defects in apoptosis signaling pathways. J Pharmacol Exp Ther 299 (2001) 434-41.
    [60] D.E. Lamendola, Z. Duan, R.Z. Yusuf, and M.V. Seiden, Molecular description of evolving paclitaxel resistance in the SKOV-3 human ovarian carcinoma cell line. Cancer Res 63 (2003) 2200-5.
    [61] Z. Duan, D.E. Lamendola, Y. Duan, R.Z. Yusuf, and M.V. Seiden, Description of paclitaxel resistance-associated genes in ovarian and breast cancer cell lines. Cancer Chemother Pharmacol 55 (2005) 277-85.
    [62] Y. Liu, H. Liu, B. Han, and J.T. Zhang, Identification of 14-3-3sigma as a contributor to drug resistance in human breast cancer cells using functional proteomic analysis. Cancer Res 66 (2006) 3248-55.
    [63] Y.X. Yang, Z.Q. Xiao, Z.C. Chen, G.Y. Zhang, H. Yi, P.F. Zhang, J.L. Li, and G. Zhu, Proteome analysis of multidrug resistance in vincristine-resistant human gastric cancer cell line SGC7901/VCR. Proteomics 6 (2006) 2009-21.
    [64] J.J. Stewart, J.T. White, X. Yan, S. Collins, C.W. Drescher, N.D. Urban, L. Hood, and B. Lin, Proteins associated with Cisplatin resistance in ovarian cancer cells identified by quantitative proteomic technology and integrated with mRNA expression levels. Mol Cell Proteomics 5 (2006) 433-43.
    [65] H.K. Kim, I.J. Choi, H.S. Kim, J.H. Kim, E. Kim, I.S. Park, J.H. Chun, I.H. Kim, I.J. Kim, H.C. Kang, J.H. Park, J.M. Bae, J.S. Lee, and J.G. Park, DNA microarray analysis of the correlation between gene expression patterns and acquired resistance to 5-FU/cisplatin in gastric cancer. Biochem Biophys Res Commun 316 (2004) 781-9.
    [66] S. Blackshaw, and S.H. Snyder, Encephalopsin: a novel mammalian extraretinal opsin discretely localized in the brain. J Neurosci 19 (1999) 3681-90.
    [67] S. Halford, M.S. Freedman, J. Bellingham, S.L. Inglis, S. Poopalasundaram, B.G. Soni, R.G. Foster, and D.M. Hunt, Characterization of a novel human opsin gene with wide tissue expression and identification of embedded and flanking genes on chromosome 1q43. Genomics 72 (2001) 203-8.
    [68] G. Kasper, S. Taudien, E. Staub, D. Mennerich, M. Rieder, B. Hinzmann, E. Dahl, U. Schwidetzky, A. Rosenthal, and A. Rump, Different structural organization of the encephalopsin gene in man and mouse. Gene 295 (2002) 27-32.
    [69] Y. Shichida, and H. Imai, Visual pigment: G-protein-coupled receptor for light signals. Cell Mol Life Sci 54 (1998) 1299-315.
    [70] A.D. Albert, and P.L. Yeagle, Structural studies on rhodopsin. Biochim Biophys Acta 1565 (2002) 183-95.
    [71] T.P. Sakmar, S.T. Menon, E.P. Marin, and E.S. Awad, Rhodopsin: insights from recent structural studies. Annu Rev Biophys Biomol Struct 31 (2002) 443-84.
    [72] E. Pebay-Peyroula, A. Royant, E.M. Landau, and J. Navarro, Structural basis for sensory rhodopsin function. Biochim Biophys Acta 1565 (2002) 196-205.
    [73] S. Halford, J. Bellingham, L. Ocaka, M. Fox, S. Johnson, R.G. Foster, and D.M. Hunt, Assignment of panopsin (OPN3) to human chromosome band Iq43 by in situ hybridization and somatic cell hybrids. Cytogenet Cell Genet 95 (2001) 234-5.
    [74] P.B. Schiff, J. Fant, and S.B. Horwitz, Promotion of microtubule assembly in vitro by taxol. Nature 277 (1979) 665-7.
    [75] H. Wu, W.N. Hait, and J.M. Yang, Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res 63 (2003) 1515-9.
    [76] N. Yabuki, K. Sakata, T. Yamasaki, H. Terashima, T. Mio, Y. Miyazaki, T. Fujii, and K. Kitada, Gene amplification and expression in lung cancer cells with acquired paclitaxel resistance. Cancer Genet Cytogenet 173 (2007) 1-9.
    [77] A.W. Whitehurst, B.O. Bodemann, J. Cardenas, D. Ferguson, L. Girard, M. Peyton, J.D. Minna, C. Michnoff, W. Hao, M.G Roth, X.J. Xie, and M.A. White, Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 446 (2007) 815-9.
    [78] J.A. Engelman, K. Zejnullahu, T. Mitsudomi, Y. Song, C. Hyland, J.O. Park, N. Lindeman, CM. Gale, X. Zhao, J. Christensen, T. Kosaka, A.J. Holmes, A.M. Rogers, F. Cappuzzo, T. Mok, C. Lee, B.E. Johnson, L.C. Cantley, and P.A. Janne, MET Amplification Leads to Gefitinib Resistance in Lung Cancer by Activating ERBB3 Signaling. Science (2007).
    [79] Z. Hao, X. Li, T. Qiao, R. Du, L. Hong, and D. Fan, CIAPIN1 confers multidrug resistance by upregulating the expression of MDR-1 and MRP-1 in gastric cancer cells. Cancer Biol Ther 5 (2006) 261-6.
    [80] M.S. Duxbury, H. Ito, E. Benoit, T. Waseem, S.W. Ashley, and E.E. Whang, RNA interference demonstrates a novel role for integrin-linked kinase as a determinant of pancreatic adenocarcinoma cell gemcitabine chemoresistance. Clin Cancer Res 11 (2005) 3433-8.
    [81] P.J. Reeves, J.M. Kim, and H.G. Khorana, Structure and function in rhodopsin: a tetracycline-inducible system in stable mammalian cell lines for high-level expression of opsin mutants. Proc Natl Acad Sci U S A 99 (2002) 13413-8.
    [82] E. Tan, Q. Wang, A.B. Quiambao, X. Xu, N.M. Qtaishat, N.S. Peachey, J. Lem, S J. Fliesler, D.R. Pepperberg, M.I. Naash, and M.R. Al-Ubaidi, The relationship between opsin overexpression and photoreceptor degeneration. Invest Ophthalmol Vis Sci 42 (2001) 589-600.
    [83] Y. Huang, A.M. Ibrado, J.C. Reed, G. Bullock, S. Ray, C. Tang, and K. Bhalla, Co-expression of several molecular mechanisms of multidrug resistance and their significance for paclitaxel cytotoxicity in human AML HL-60 cells. Leukemia 11 (1997) 253-7.
    [84] A.M. Ibrado, L. Liu, and K. Bhalla, Bcl-xL overexpression inhibits progression of molecular events leading to paclitaxel-induced apoptosis of human acute myeloid leukemia HL-60 cells. Cancer Res 57 (1997) 1109-15.
    [85] N. Sharma, S. Ramachandran, M. Bowers, M. Yegappan, R. Brown, S. Aziz, R. Chapman, and B.W. Yu, Multiple factors other than p53 influence colon cancer sensitivity to paclitaxel. Cancer Chemother Pharmacol 46 (2000) 329-37.
    [86] R. Kim, Unknotting the roles of Bcl-2 and Bcl-xL in cell death. Biochem Biophys Res Commun 333 (2005) 336-43.
    
    [87] 刘珊珊,李蒙,李钰, Bcl-2家族蛋白相互作用因子的研究进展. 国外医学遗传学分册 28(2005) 336-346.
    
    [88] X. Qiu, T. Kumbalasiri, S.M. Carlson, K.Y. Wong, V. Krishna, I. Provencio, and D.M. Berson, Induction of photosensitivity by heterologous expression of melanopsin. Nature 433 (2005) 745-9.
    [89] O.L. Moritz, B.M. Tarn, D.S. Papermaster, and T. Nakayama, A functional rhodopsin-green fluorescent protein fusion protein localizes correctly in transgenic Xenopus laevis retinal rods and is expressed in a time-dependent pattern. J Biol Chem 276 (2001) 28242-51.
    [1] T.D. Pollard, and J.A. Cooper, Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem 55 (1986) 987-1035.
    [2] W. Kabsch, and J. Vandekerckhove, Structure and function of actin. Annu Rev Biophys Biomol Struct 21 (1992) 49-76.
    [3] B.P. Chadwick, J. Mull, L.A. Helbling, S. Gill, M. Leyne, C.M. Robbins, H.W. PinkeR, I. Makalowska, C. Maayan, A. Blumenfeld, F.B. Axelrod, M. Brownstein, J.F. Gusella, and S.A. Slaugenhaupt, Cloning, mapping, and expression of two novel actin genes, actin-like-TA (ACTL7A) and actin-like-TB (ACTLTB), from the familial dysautonomia candidate region on 9q31. Genomics 58 (1999) 302-9.
    [4] A.F. Cowman, and B.S. Crabb, Invasion of red blood ceils by malaria parasites. Cell 124 (2006) 755-66.
    [5] G. Bricheux, and G. Brugerolle, Molecular cloning of actin genes in Trichomonas vaginalis and phylogeny inferred from actin sequences. FEMS Microbiol Lett 153 (1997) 205-13.
    [6] J.S. Lee, The interally Self-fertilizing Hermaphroditic Teleost Rivulus marmoratus (Cyprinodontiformes, Rivulidae) beta-Actin Gene: Amplification and Sequence Analysis with Conserved Primers. Mar Biotechnol (NY) 2 (2000) 161-166.
    [7] A. Igarashi, Isolation of a Singh's Aedes albopictus cell clone sensitive to Dengue and Chikungunya viruses. J Gen Virol 40 (1978) 531-44.
    [8] S. Crochu, S. Cook, H. Attoui, R.N. Charrel, R. De Chesse, M. Belhouchet, J.J,. Lemasson, P. de Micco, and X. de Lamballerie, Sequences of flavivirus-related RNA viruses persist in DNA form integrated in the genome ofAedes spp. mosquitoes. J Gen Virol 85 (2004) 1971-80.
    [9] S.L. Hanna, T.C. Pierson, M.D. Sanchez, A.A. Ahmed, M.M. Murtadha, and R.W. Doms, N-linked glycosylation of west nile virus envelope proteins influences particle assembly and infectivity. J Virol 79 (2005) 13262-74.
    [10] A.M. Helt, and E. Harris, S-phase-dependent enhancement of dengue virus 2 replication in mosquito cells, but not in human cells. J Virol 79 (2005) 13218-30.
    [11] B.K. Thaisomboonsuk, E.T. Clayson, S. Pantuwatana, D.W. Vaughn, and T.P. Endy, Characterization of dengue-2 virus binding to surfaces of mammalian and insect cells. Am J Trop Med Hyg 72 (2005) 375-83.
    [12] Y. Ishikawa, and E. Konishi, Mosquito cells infected with Japanese encephalitis virus release slowly-sedimenting hemagglutinin particles in association with intracellular formation of smooth membrane structures. Microbiol Immunol 50 (2006) 211-23.
    [13] J. Richardson, A. Molina-Cruz, M.I. Salazar, and W.t. Black, Quantitative analysis of dengue-2 virus RNA during the extrinsic incubation period in individual Aedes aegypti. Am J Trop Med Hyg 74 (2006) 132-41.
    [14] 胡莺,沈波,杨明夏,马磊,李秀兰,田海生,朱昌亮,淡色库蚊β-肌动蛋白基因克隆与序列分析.中国寄生虫病防治杂志 16(2003)65-68.
    [15] E. A. Fyrberg, B.J. Bond, N.D. Hershey, K.S. Mixter, and N. Davidson, The actin genes of Drosophila: protein coding regions are highly conserved but intron positions are not. Cell 24 (1981) 107-16.
    [16] S.G Vascotto, S. Beug, R.A. Liversage, and C. Tsilfidis, Nvbeta-actin and NvGAPDH as normalization factors for gene expression analysis in limb regenerates and cultured blastema cells of the adult newt, Notophthalmus viridescens. Int J Dev Biol 49 (2005) 833-42.
    [17] J. Vandesompele, K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De Paepe, and F. Speleman, Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3 (2002) RESEARCH0034.
    [18] X.B. Hu, Y. Sun, W.J. Wang, M.X. Yang, L.X. Sun, W.B. Tan, J. Sun, J. Qian, L. Ma, D.H. Zhang, GY. Yan, and C.L. Zhu, Cloning and characterization of NYD-OP7, a novel deltamethrin resistance associated gene from Culex pipiens pallens. Pestic Biochem Physiol. 88 (2007) 82-91.
    [19] W. Tan, L. Sun, D. Zhang, J. Sun, J. Qian, X. Hu, W. Wang, Y. Sun, L. Ma, and C. Zhu, Cloning and overexpression of ribosomal protein L39 gene from deltamethrin-resistant Culex pipiens pallens. Exp Parasitol 115 (2007) 369-78.
    [20] C.C. Lin, CM. Chou, Y.L. Hsu, J.C. Lien, Y.M. Wang, S.T. Chen, S.C. Tsai, P.W. Hsiao, and C.J. Huang, Characterization of two mosquito STATs, AaSTAT and CtSTAT. Differential regulation of tyrosine phosphorylation and DNA binding activity by lipopolysaccharide treatment and by Japanese encephalitis virus infection. J Biol Chem 279 (2004) 3308-17.
    [1] I. Denholm, G.J. Devine, and M.S. Williamson, Evolutionary genetics. Insecticide resistance on the move. Science 297 (2002) 2222-3.
    [2] F. Cui, M. Raymond, and C.L. Qiao, Insecticide resistance in vector mosquitoes in China. Pest Manag Sci 62 (2006) 1013-22.
    [3] J. Hemingway, N.J. Hawkes, L. McCarroll, and H. Ranson, The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34 (2004) 653-65.
    [4] R.H. Ffrench-Constant, P.J. Daborn, and G. Le Goff, The genetics and genomics of insecticide resistance. Trends Genet 20 (2004) 163-70.
    [5] T.G. Wilson, Resistance of Drosophila to toxins. Annu Rev Entomol 46 (2001) 545-71.
    [6] P.Daborn, S. Boundy, J. Yen, B. Pittendrigh, and R. ffrench-Constant, DDT resistance in Drosophila correlates with Cyp6g1 over-expression and confers cross-resistance to the neonicotinoid imidacloprid. Mol Genet Genomics 266 (2001) 556-63.
    [7] R.M. Johnson, Z. Wen, M.A. Schuler, and M.R. Berenbaum, Mediation of pyrethroid insecticide toxicity to honey bees (Hymenoptera: Apidae) by cytochrome P450 monooxygenases. J Econ Entomol 99 (2006) 1046-50.
    [8] F.A. Carino, J.F. Koener, F.W. Plapp, Jr., and R. Feyereisen, Constitutive overexpression of the cytochrome P450 gene CYP6A1 in a house fly strain with metabolic resistance to insecticides. Insect Biochem Mol Biol 24 (1994) 411-8.
    [9] J.F.Andersen, J.G. Utermohlen, and R. Feyereisen, Expression of house fly CYP6A1 and NADPH-cytochrome P450 reductase in Escherichia coli and reconstitution of an insecticide-metabolizing P450 system. Biochemistry 33 (1994) 2171-7.
    [10] B.C. Dunkov, V.M. Guzov, G. Mocelin, F.Shotkoski, A. Brun, M. Amichot, R.H. Ffrench-Constant, and R. Feyereisen, The Drosophila cytochrome P450 gene Cyp6a2: structure, localization, heterologous expression, and induction by phenobarbital. DNA Cell Biol 16 (1997) 1345-56.
    [11] J.B. Berge, R. Feyereisen, and M. Amichot, Cytochrome P450 monooxygenases and insecticide resistance in insects. Philos Trans R Soc Lond B Biol Sci 353 (1998) 1701-5.
    [12] M. Amichot, S. Tares, A. Brun-Barale, L. Arthaud, J.M. Bride, and J.B. Berge, Point mutations associated with insecticide resistance in the Drosophila cytochrome P450 Cyp6a2 enable DDT metabolism. Eur J Biochem 271 (2004) 1250-7.
    [13] X. Li, M.R. Berenbaum, and M.A. Schuler, Molecular cloning and expression of CYP6B8: a xanthotoxin-inducible cytochrome P450 cDNA from Helicoverpa zea. Insect Biochem Mol Biol 30 (2000) 75-84.
    [14] P.J. Daborn, J.L. Yen, M.R. Bogwitz, G. Le Goff, E. Fell, S. Jeffers, N. Tijet, T. Perry, D. Heckel, P. Batterham, R. Feyereisen, T.G. Wilson, and R.H. ffrench-Constant, A single p450 allele associated with insecticide resistance in Drosophila. Science 297 (2002) 2253-6.
    [15] G. Le Goff, S. Boundy, P.J. Daborn, J.L. Yen, L. Sofer, R. Lind, C. Sabourault, L. Madi-Ravazzi, and R.H. ffrench-Constant, Microarray analysis of cytochrome P450 mediated insecticide resistance in Drosophila. Insect Biochem Mol Biol 33 (2003) 701-8.
    [16] S. Kuruganti, V. Lam, X. Zhou, G. Bennett, B.R. Pittendrigh, and R. Ganguly, High expression of Cyp6gl, a cytochrome P450 gene, does not necessarily confer DDT resistance in Drosophila melanogaster. Gene 388 (2007) 43-53.
    [17] A. Brandt, M. Scharf, J.H. Pedra, G. Holmes, A. Dean, M. Kreitman, and B.R. Pittendrigh, Differential expression and induction of two Drosophila cytochrome P450 genes near the Rst(2)DDT locus. Insect Mol Biol 11 (2002) 337-41.
    [18] J.H. Pedra, L.M. McIntyre, M.E. Scharf, and B.R. Pittendrigh, Genome-wide transcription profile of field-and laboratory-selected dichlorodiphenyltrichloroethane (DDT)-resistant Drosophila. Proc Natl Acad Sci U S A 101 (2004) 7034-9.
    [19] Y.C. Zhu, and G.L. Snodgrass, Cytochrome P450 CYP6X1 cDNAs and mRNA expression levels in three strains of the tarnished plant bug Lygus lineolaris (Heteroptera: Miridae) having different susceptibilities to pyrethroid insecticide. Insect Mol Biol 12 (2003) 39-49.
    [20] 朱昌亮,李建民,田海生,马磊,李秀兰,吴观陵,淡色库蚊细胞色素P450抗性相关基因克隆与初步鉴定.中国寄生虫学与寄生虫病杂志 18(2000)263-268.
    [21] M.E. Scharf, S. Parimi, L.J. Meinke, L.D. Chandler, and B.D. Siegfried, Expression and induction of three family 4 cytochrome P450 (CYP4)~* genes identified from insecticide-resistant and susceptible western corn rootworms, Diabrotica virgifera virgifera. Insect Mol Biol 10 (2001) 139-46.
    [22] D. Nikou, H. Ranson, and J. Hemingway, An adult-specific CYP6 P450 gene is overexpressed in a pyrethroid-resistant strain of the malaria vector, Anopheles gambiae. Gene 318 (2003) 91-102.
    [23] R.D. Newcomb, P.M. Campbell, R.J. Russell, and J.G. Oakeshott, cDNA cloning, baculovirus-expression and kinetic properties of the esterase, E3, involved in organophosphorus resistance in Lucilia cuprina. Insect Biochem Mol Biol 27 (1997) 15-25.
    [24] P. M. Campbell, J.G. Oakeshott, and M.J. Healy, Purification and kinetic characterisation of juvenile hormone esterase from Drosophila melanogaster. Insect Biochem Mol Biol 28 (1998) 501-15.
    [25] C. Sabourault, V.M. Guzov, J.F. Koener, C. Claudianos, F.W. Plapp, Jr., and R. Feyereisen, Overproduction of a P450 that metabolizes diazinon is linked to a loss-of-function in the chromosome 2 ali-esterase (MdalphaE7) gene in resistant house flies. Insect Mol Biol 10 (2001)609-18.
    [26] J.G. Scott, and L. Zhang, The house fly aliesterase gene (MdalphaE7) is not associated with insecticide resistance or P450 expression in three strains of house fly. Insect BiochemMol Biol 33 (2003) 139-44.
    [27] F.D. Guerrero, A.Y. Li, and R. Hernandez, Molecular diagnosis of pyrethroid resistance in Mexican strains of Boophilus microplus (Acari: Ixodidae). J Med Entomol 39 (2002) 770-6.
    [28] R. Hernandez, F.D. Guerrero, J.E. George, and G.G. Wagner, Allele frequency and gene expression of a putative carboxylesterase-encoding gene in a pyrethroid resistant strain of the tick Boophilus microplus. Insect Biochem Mol Biol 32 (2002) 1009-16.
    [29] Y.C. Zhu, G.L. Snodgrass, and M.S. Chen, Enhanced esterase gene expression and activity in a malathion-resistant strain of the tarnished plant bug, Lygus lineolaris. Insect Biochem Mol Biol 34 (2004) 1175-86.
    [30] J. Hemingway, M. Coleman, M. Paton, L. McCarroll, A. Vaughan, and D. Desilva, Aldehyde oxidase is coamplified with the World's most common Culex mosquito insecticide resistance-associated esterases. Insect Mol Biol 9 (2000) 93-9.
    [31] M.G. Paton, S.H. Karunaratne, E. Giakoumaki, N. Roberts, and J. Hemingway, Quantitative analysis of gene amplification in insecticide-resistant Culex mosquitoes. Biochem J 346 Pt 1 (2000) 17-24.
    [32] X. Yang, L.L. Buschman, K.Y. Zhu, and D.C. Margolies, Susceptibility and detoxifying enzyme activity in two spider mite species (Acari: Tetranychidae) after selection with three insecticides. J Econ Entomol 95 (2002) 399-406.
    [33] N.J. Hawkes, and J. Hemingway, Analysis of the promoters for the beta-esterase genes associated with insecticide resistance in the mosquito Culex quinquefasciatus. Biochim Biophys Acta 1574 (2002) 51-62.
    [34] GJ. Small, and J. Hemingway, Molecular characterization of the amplified carboxylesterase gene associated with organophosphorus insecticide resistance in the brown planthopper, Nilaparvata lugens. Insect Mol Biol 9 (2000) 647-53.
    [35] John G. Vontas, Nikos Cosmidis, Michael Loukas, Spyridon Tsakas, Mir Jalil Hejazi, Anna Ayoutanti, and J. Hemingway, Altered acetylcholinesterase confers organophosphate resistance in the olive fruit fly Bactrocera oleae. Pesticide Biochemistry and Physiology 71 (2001) 124-132.
    [36] F.D. Guerrero, Cloning of a horn fly cDNA, HialphaE7, encoding an esterase whose transcript concentration is elevated in diazinon-resistant flies. Insect Biochem Mol Biol 30(2000)1107-15.
    [37] E. Haubruge, M. Amichot, A. Cuany, J.B. Berge, and L. Arnaud, Purification and characterization of a carboxylesterase involved in malathion-specific resistance from Tribolium castaneum (Coleoptera: Tenebrionidae). Insect Biochem Mol Biol 32 (2002) 1181-90.
    [38] H. Ranson, and J. Hemingway, Mosquito glutathione transferases. Methods Enzymol 401 (2005)226-41.
    [39] C.P. Tu, and B. Akgul, Drosophila glutathione S-transferases. Methods Enzymol 401 (2005) 204-26.
    [40] A.A. Enayati, H. Ranson, and J. Hemingway, Insect glutathione transferases and insecticide resistance. Insect Mol Biol 14 (2005) 3-8.
    [41] S.H. Wei, A.G Clark, and M. Syvanen, Identification and cloning of a key insecticide-metabolizing glutathione S-transferase (MdGST-6A) from a hyper insecticide-resistant strain of the housefly Musca domestica. Insect Biochem Mol Biol 31 (2001)1145-53.
    [42] J.G. Vontas, G.J. Small, and J. Hemingway, Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J 357 (2001) 65-72.
    [43] J.G. Vontas, G.J. Small, D.C. Nikou, H. Ranson, and J. Hemingway, Purification, molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown planthopper, Nilaparvata lugens. Biochem J 362 (2002) 329-37.
    [44] M.D. Adams, S.E. Celniker, R.A. Holt, C.A. Evans, J.D. Gocayne, P.G. Amanatides, S.E. Scherer, P.W. Li, R.A. Hoskins, R.F. Galle, R.A. George, S.E. Lewis, S. Richards, M. Ashburner, S.N. Henderson, G.G. Sutton, J.R. Wortman, M.D. Yandell, Q. Zhang, L.X. Chen, R.C. Brandon, Y.H. Rogers, R.G. Blazej, M. Champe, B.D. Pfeiffer, K.H. Wan, C. Doyle, E.G. Baxter, G. Helt, C.R. Nelson, G.L. Gabor, J.F. Abril, A. Agbayani, H.J. An, C. Andrews-Pfannkoch, D. Baldwin, R.M. Ballew, A. Basu, J. Baxendale, L. Bayraktaroglu, E.M. Beasley, K.Y. Beeson, P.V. Benos, B.P. Berman, D. Bhandari, S. Bolshakov, D. Borkova, M.R. Botchan, J. Bouck, P. Brokstein, P. Brottier, K.C. Burtis, D.A. Busam, H. Butler, E. Cadieu, A. Center, I. Chandra, J.M. Cherry, S. Cawley, C. Dahlke, L.B. Davenport, P. Davies, B. de Pablos, A. Delcher, Z. Deng, A.D. Mays, I. Dew, S.M. Dietz, K. Dodson, L.E. Doup, M. Downes, S. Dugan-Rocha, B.C. Dunkov, P. Dunn, K.J. Durbin, C.C. Evangelista, C. Ferraz, S. Ferriera, W. Fleischmann, C. Fosler, A.E. Gabrielian, N.S. Garg, W.M. Gelbart, K. Glasser, A. Glodek, F. Gong, J.H. Gorrell, Z. Gu, P. Guan, M. Harris, N.L. Harris, D. Harvey, T.J. Heiman, J.R. Hernandez, J. Houck, D. Hostin, K.A. Houston, T.J. Howland, M.H. Wei, C. Ibegwam, et al., The genome sequence of Drosophila melanogaster. Science 287 (2000) 2185-95.
    [45] H. Ranson, L. Rossiter, F. Ortelli, B. Jensen, X. Wang, C.W. Roth, F.H. Collins, and J. Hemingway, Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochem J 359 (2001) 295-304.
    [46] F. Ortelli, L.C. Rossiter, J. Vontas, H. Ranson, and J. Hemingway, Heterologous expression of four glutathione transferase genes genetically linked to a major insecticide-resistance locus from the malaria vector Anopheles gambiae. Biochem J 373 (2003) 957-63.
    [47] N. Lumjuan, L. McCarroll, L.A. Prapanthadara, J. Hemingway, and H. Ranson, Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti. Insect Biochem Mol Biol 35 (2005) 861-71.
    [48] M. Coleman, J.G. Vontas, and J. Hemingway, Molecular characterization of the amplified aldehyde oxidase from insecticide resistant Culex quinquefasciatus. Eur J Biochem 269 (2002) 768-79.
    [49] D. Fournier, Mutations of acetylcholinesterase which confer insecticide resistance in insect populations. Chem Biol Interact 157-158 (2005) 257-61.
    [50] S.B. Walsh, T.A. Dolden, G.D. Moores, M. Kristensen, T. Lewis, A.L. Devonshire, and M.S. Williamson, Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochem J 359 (2001) 175-81.
    [51] T. Kozaki, T. Shono, T. Tomita, and Y. Kono, Fenitroxon insensitive acetylcholinesterases of the housefly, Musca domestica associated with point mutations. Insect Biochem Mol Biol 31(2001)991-7.
    [52] H. Alout, A. Berthomieu, A. Hadjivassilis, and M. Weill, A new amino-acid substitution in acetylcholinesterase 1 confers insecticide resistance to Culex pipiens mosquitoes from Cyprus. Insect Biochem Mol Biol 37 (2007) 41-47.
    [53] M. Weill, G. Lutfalla, K. Mogensen, F. Chandre, A. Berthomieu, C. Berticat, N. Pasteur, A. Philips, P. Fort, and M. Raymond, Comparative genomics: Insecticide resistance in mosquito vectors. Nature 423 (2003) 136-7.
    [54] F. Li, and Z. Han, Mutations in acetylcholinesterase associated with insecticide resistance in the cotton aphid, Aphis gossypii Glover. Insect Biochem Mol Biol 34 (2004) 397-405.
    [55] S. Toda, S. Komazaki, T. Tomita, and Y. Kono, Two amino acid substitutions in acetylcholinesterase associated with pirimicarb and organophosphorous insecticide resistance in the cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae). Insect Mol Biol 13 (2004) 549-53.
    [56] J.C. Hsu, D.S. Haymer, W.J. Wu, and H.T. Feng, Mutations in the acetylcholinesterase gene of Bactrocera dorsalis associated with resistance to organophosphorus insecticides. Insect Biochem Mol Biol 36 (2006) 396-402.
    [57] John G. Vontas, Nikos Cosmidis, Michael Loukas, Spyridon Tsakas, Mir Jalil Hejazi, Anna Ayoutanti, and J. Hemingway, Altered acetylcholinesterase confers organophosphate resistance in the olive fruit fly Bactrocera oleae. Pesticide Biochemistry and Physiology 71 (2001) 124-132.
    [58] J.G. Vontas, M.J. Hejazi, N.J. Hawkes, N. Cosmidis, M. Loukas, R.W. Janes, and J. Hemingway, Resistance-associated point mutations of organophosphate insensitive acetylcholinesterase, in the olive fruit fly Bactrocera oleae. Insect Mol Biol 11 (2002) 329-36.
    [59] Z. Chen, R. Newcomb, E. Forbes, J. McKenzie, and P. Batterham, The acetylcholinesterase gene and organophosphorus resistance in the Australian sheep blowfly, Lucilia cuprina. Insect Biochem Mol Biol 31 (2001) 805-16.
    [60] X. Ren, Z. Han, and Y. Wang, Mechanisms of monocrotophos resistance in cotton bollworm, Helicoverpa armigera (Hubner). Arch Insect Biochem Physiol 51 (2002) 103-10.
    [61] T. Tomita, O. Hidoh, and Y. Kono, Absence of protein polymorphism attributable to insecticide-insensitivity of acetylcholinesterase in the green rice leafhopper, Nephotettix cincticeps. Insect Biochem Mol Biol 30 (2000) 325-33.
    
    [62] K. Dong, Insect sodium channels and insecticide resistance. Invert Neurosci (2007).
    [63] D.M. Soderlund, and D.C. Knipple, The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem Mol Biol 33 (2003) 563-77.
    [64] H. Vais, M.S. Williamson, S.J. Goodson, A.L. Devonshire, J.W. Warmke, P.N. Usherwood, and C.J. Cohen, Activation of Drosophila sodium channels promotes modification by deltamethrin. Reductions in affinity caused by knock-down resistance mutations. J Gen Physiol 115 (2000) 305-18.
    [65] H. Ranson, B. Jensen, J.M. Vulule, X. Wang, J. Hemingway, and F.H. Collins, Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol 9 (2000) 491-7.
    [66] A.A. Enayati, H. Vatandoost, H. Ladonni, H. Townson, and J. Hemingway, Molecular evidence for a kdr-like pyrethroid resistance mechanism in the malaria vector mosquito Anopheles stephensi. Med Vet Entomol 17 (2003) 138-44.
    [67] H. Vais, M.S. Williamson, A.L. Devonshire, and P.N. Usherwood, The molecular interactions of pyrethroid insecticides with insect and mammalian sodium channels. Pest Manag Sci 57(2001)877-88.
    [68] T. Tomita, N. Yaguchi, M. Mihara, M. Takahashi, N. Agui, and S. Kasai, Molecular analysis of a para sodium channel gene from pyrethroid-resistant head lice, Pediculus humanus capitis (Anoplura: Pediculidae). J Med Entomol 40 (2003) 468-74.
    [69] Z. Liu, J. Tan, S.M. Valles, and K. Dong, Synergistic interaction between two cockroach sodium channel mutations and a tobacco budworm sodium channel mutation in reducing channel sensitivity to a pyrethroid insecticide. Insect Biochem Mol Biol 32 (2002) 397-404.
    [70] Z. Liu, J. Tan, Z.Y. Huang, and K. Dong, Effect of a fluvalinate-resistance-associated sodium channel mutation from varroa mites on cockroach sodium channel sensitivity to fluvalinate, a pyrethroid insecticide. Insect Biochem Mol Biol 36 (2006) 885-9.
    [71] S.D. Buckingham, P.C. Biggin, B.M. Sattelle, L.A. Brown, and D.B. Sattelle, Insect GABA receptors: splicing, editing, and targeting by antiparasitics and insecticides. Mol Pharmacol 68 (2005) 942-51.
    [72] R.H. Ffrench-Constant, N. Anthony, K. Aronstein, T. Rocheleau, and G. Stilwell, Cyclodiene insecticide resistance: from molecular to population genetics. Annu Rev Entomol 45 (2000) 449-66.
    [73] G. Le Goff, A. Hamon, J.B. Berge, and M. Amichot, Resistance to fipronil in Drosophila simulans: influence of two point mutations in the RDL GABA receptor subunit. J Neurochem 92 (2005) 1295-305.
    [74] M.H. Andreasen, and R.H. Ffrench-Constant, In situ hybridization to the Rdl locus on polytene chromosome 3L of Anopheles stephensi. Med Vet Entomol 16 (2002) 452-5.
    [75] J.P. David, C. Strode, J. Vontas, D. Nikou, A. Vaughan, P.M. Pignatelli, C. Louis, J. Hemingway, and H. Ranson, The Anopheles gambiae detoxification chip: a highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. Proc Natl Acad Sci U S A 102 (2005) 4080-4.
    [76] J. Vontas, C. Blass, A.C. Koutsos, J.P. David, F.C. Kafatos, C. Louis, J. Hemingway, G.K. Christophides, and H. Ranson, Gene expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure. Insect Mol Biol 14 (2005)509-21.
    [77] J.H. Pedra, R.A. Festucci-Buselli, W. Sun, WM. Muir, M.E. Scharf, and B.R. Pittendrigh, Profiling of abundant proteins associated with dichlorodiphenyltrichloroethane resistance in Drosophila melanogaster. Proteomics 5 (2005) 258-69.
    [78] R. Aurade, S.K. Jayalakshmi, and K. Sreeramulu, Stimulatory effect of insecticides on partially purified P-glycoprotein ATPase from the resistant pest Helicoverpa armigera. Biochem Cell Biol 84 (2006) 1045-1050.
    [79] Y.T. Aminetzach, J.M. Macpherson, and D.A. Petrov, Pesticide resistance via transposition-mediated adaptive gene truncation in Drosophila. Science 309 (2005) 764-7.
    [80] R. ffrench-Constant, P. Daborn, and R. Feyereisen, Resistance and the jumping gene. Bioessays 28 (2006) 6-8.
    [81] Z. Liu, M.S. Williamson, S.J. Lansdell, I. Denholm, Z. Han, and N.S. Millar, A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). Proc Natl Acad Sci U S A 102 (2005) 8420-5.
    [82] J.G. Oakeshott, I. Home, T.D. Sutherland, and R.J. Russell, The genomics of insecticide resistance. Genome Biol 4 (2003) 202.
    [83] R.A. Holt, G.M. Subramanian, A. Halpern, G.G. Sutton, R. Charlab, D.R. Nusskern, P. Wincker, A.G. Clark, J.M. Ribeiro, R. Wides, S.L. Salzberg, B. Loftus, M. Yandell, W.H. Majoros, D.B. Rusch, Z. Lai, C.L. Kraft, J.F. Abril, V. Anthouard, P. Arensburger, P.W. Atkinson, H. Baden, V. de Berardinis, D. Baldwin, V. Benes, J. Biedler, C. Blass, R. Bolanos, D. Boscus, M. Barnstead, S. Cai, A. Center, K. Chaturverdi, G.K. Christophides, M.A. Chrystal, M. Clamp, A. Cravchik, V. Curwen, A. Dana, A. Delcher, I. Dew, C.A. Evans, M. Flanigan, A. Grundschober-Freimoser, L. Friedli, Z. Gu, P. Guan, R. Guigo, M.E. Hillenmeyer, S.L. Hladun, J.R. Hogan, Y.S. Hong, J. Hoover, O. Jaillon, Z. Ke, C. Kodira, E. Kokoza, A. Koutsos, I. Letunic, A. Levitsky, Y. Liang, J.J. Lin, N.F. Lobo, J.R. Lopez, J.A. Malek, T.C. Mclntosh, S. Meister, J. Miller, C. Mobarry, E. Mongin, S.D. Murphy, D.A. O'Brochta, C. Pfannkoch, R. Qi, M.A. Regier, K. Remington, H. Shao, M.V. Sharakhova, CD. Sitter, J. Shetty, T.J. Smith, R. Strong, J. Sun, D. Thomasova, L.Q. Ton, P. Topalis, Z. Tu, M.F. Unger, B. Walenz, A. Wang, J. Wang, M. Wang, X. Wang, K.J. Woodford, J.R. Wortman, M. Wu, A. Yao, E.M. Zdobnov, H. Zhang, Q. Zhao, et al, The genome sequence of the malaria mosquito Anopheles gambiae. Science 298 (2002) 129-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700