用户名: 密码: 验证码:
县域农田生态系统土壤氮素平衡模拟及其潜在环境风险评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以江苏省仪征市(北亚热带)与江西省余江县(中亚热带)作为研究区域。采用野外调查和室内分析测试,定点研究和区域分析数据,利用地统计学分析和GIS空间建模技术,分析了不同县域内土壤性质的时空变异特征、分布状况及成因;研究了县域农田生态系统表观氮素平衡状况;建立了县域农田潜在可溶出氮模型,并开展了县域尺度上的土壤潜在可溶出氮模拟和验证研究;最后开展了农田生态系统氮素潜在环境风险评价的研究,为我国农田养分科学管理提供理论指导和决策依据。主要的论文结论如下:
     1)在不同时期的区域研究结果中,仪征市与余江县土壤有机质、全氮、pH值的空间分布大都表现为强烈的或中等空间自相关性,说明受区域性因素影响较大,在2001年余江县全氮和pH值的空间分布表现为弱空间相关性,空间渐变性规律较差,说明受人为因素影响较大。在仪征市,三个时期的土壤有机质、全氮及两个时期的土壤pH值(1984、2000年)在空间分布上的总体趋势是由西北向东南递增,2004年的pH值呈现为中间的小块斑状值低于周边地区;在余江县,1985年的土壤有机质和全氮含量空间分布比较单一;1998和2001年的土壤有机质和全氮空间分布呈中间低南北高的趋势;三个时期的土壤pH值的空间分布规律性较差。
     总的来说,1984-2004年仪征市的土壤有机质、全氮变化率在大部分地区呈增加趋势,pH值的变化率在研究区域的北部以增加为主,南部沿江地区呈降低趋势。余江县1985-2001年土壤有机质、全氮变化率均有不同程度的增加与降低,增加的区域都主要分布在研究区域的南部和北部的丘陵,pH值的变化率在大部分地区以降低为主。
     2)农田表观氮素单位面积耕地年平均收入、支出与盈余量的最大值分别位于仪征市东南角沿江区域的朴席镇和余江县河谷平原的邓埠镇;仪征市与余江县在2000-2005年的表观氮素平衡都处于增长趋势,且增长比较平缓。仪征市6年的表观氮素盈余量大于余江县的盈余量。余江县的农田表观氮素盈余量小于余江县的氮素支出量,而仪征市的氮素盈余量大于仪征市的氮素支出量,说明仪征市农田生态系统中积累了过多的氮素,对环境有更大的潜在风险。
     3)综合利用气象要素模型与NLEAP矿化模型,与表观氮素模型相耦合,建立了土壤潜在可溶出氮模型,选择适用于我国自然条件下的参数方案,以旱地与水田的氮素循环为研究对象,模拟了县域尺度上的农田生态系统的土壤潜在可溶出氮量,并进行了相关验证。结果表明:以水田为主的余江县有机质年平均矿化率低于主要以水田旱地轮作的仪征市,仪征市的水田有机质矿化量小于仪征市旱地有机质矿化量。潜在可溶出氮的结果中,仪征市土壤潜在可溶出氮含量的高值区集中在东南部沿江平原的朴席镇;余江县可溶出氮含量的高值区集中在西南部丘陵岗地的杨溪乡和位于河谷平原的邓埠镇。两个区域的潜在可溶出氮高值区都主要聚集在经济发达的中心城镇及周边城镇。
     4)从农田氮素损失的三个主要途径(径流损失、淋溶损失、气态损失)入手,筛选出影响氮素盈余的主要因素,通过层次分析法确定影响因素权重,构建氮素潜在环境风险评价模型,并且提出了在表观氮素盈余量控制下的潜在风险评价法。从风险等级来看,仪征农田氮素潜在环境风险以潜在风险为主,低风险区主要位于仪征西南部,潜在风险区主要位于仪征西部、中部、南部镇及东部的部分地区,高风险区主要位于仪征北部以及东南部。余江农田氮素潜在环境风险以低风险为主,风险的分布趋势是东北、西南高,中部低。从土地利用类型来看,水田的氮素损失潜在风险大于旱地。
This paper took Yizheng City,Jiangsu Province and Yujiang County,Jiangxi Province as the case study areas,by using field survey data and laboratory analysis test,locational research and datas of regional study,combined with geostatistic analysis and spatial modeling technology of GIS,the temporal and spatial variability of soil properties,distribution and genesis in different areas were analyzed;and the regional agro-ecosystem apparent nitrogen balance were caculated. Then a regional agricultural soil potential soluble nitrogen model was introduced and verified, which simulated the regional scale of the soil potential soluble nitrogen;Finally the field ecosystem nitrogen potential environmental risk assessment studies were carried out.Results can improve decision-making for application of agricultural nutrients in China.The major conclusions of this study are as fllowed:
     1)At different times the spatial distribution of soil organic matter(SOM),total nitrogen(TN), soil pH in Yizheng City and Yujiang County had the performance of strong or medium spatial autocorrelation,showing that was affected by regional factors.In 2001 the spatial variability of pH and TN in Yujiang County showed weak spatial correlation,which illustrates a greater impact by human factors.In Yizheng City,the spatial distribution of SOM,TN in three periods and soil pH in 1984 and 2000 tend to is increased from northwest to southeast,and pH in 2004 showed low values in the central part with a small blocks.For Yujiang County,SOM,TN content had a single spatial distribution in 1985;and in 1998 and 2001,the spatial distribution of SOM,TN had a trend of low in middle and high in north-south part;the spatial distribution of soil pH had gradient poor law in all three periods.
     Totally,SOM,TN increased in most regions during 1984 to 2004 in Yizheng.The soil pH value mainly increased in the northern part,and decreased in southern areas along the river.The SOM and TN in Yujiang County during 1985-2001 are mainly increased in the southern and northern hills regions,soil pH values descresed in most regions.
     2)The maximum value of the average annual input,output and surplus apparent of nitrogen for cultivated land appeared in Puxi Town located in the southeast corner region along the Yangtze River in Yizheng and Dengbu Town located in river valley plain in Yujiang County.Apparent nitrogen surplus of yizheng City and Yujiang County had a increasing trend during 2000-2005 with a low increase rate.The surplus of the apparent nitrogen of Yizheng City was greater than Yujiang County.The surplus of farmland apparent nitrogen is less than the output in Yujiang County,while it was larger than nitrogen output in Yizheng.This showed that nitrogen accumulated at a high extent in the agro-ecosystems in Yizheng,which has a high potentially riskto the environment.
     3)By coupling meteorological factors Mode,NLEAP mineralization model,and the apparent nitrogen balance model,a soil potential soluble nitrogen(SPSN) simulation model was established to simulate the nitrogen surplus risk at the regional scale.The simulation results showed that average annual mineralization rate of soil organic matter(SOM) in Yujiang County(mainly in paddy fields) was less than Yizheng City(with a main rotation of rice-wheat),the mineralization of SOM in paddy fields in Yizheng was less than uplands.According to the results by SPSN,the high-value areas of the SPSN content was located in Puxi town on the south-eastern plains along the river in Yizheng city;while Yangxi town located in the southwestern hills and Dengbu Town located in the Tang valley plain in Yujiang county,where were the center town or surrounding towns with developed economies.
     4)The major factors affecting three main ways of nitrogen losses from farm(run-off losses, leaching losses,gaseous losses) was selected.By using the analytic hierarchy process,the weight factors was decided and the potential environmental risk assessment model based on apparent nitrogen surplus.The evaluation result showed that farmland nitrogen surplus in Yizheng had an a average potential risks.Low-risk areas were mainly located in the southwestern part of Yizheng, high-risk areas are mainly located in the north and the south-east part of Yizheng.The farmland nitrogen surplus in Yujiang was averaged at a lower risk level.The high risk region was in the northeast and southwest part,and the low risk region was in the central part of Yujiang.For the land-use type,the nitrogen loss potential risk of the paddy fields was greater than the uplands.
引文
[1]Ahuja,L.,K.Rojas,J.Hanson.Root Zone Water Quality Model:Modelling Management Effects on Water Quality and Crop Production.LLC,Highlands Ranch,CO:Water Resources Publication,2000:372.
    [2]Angstr(o|¨)m,A.Solar and atmospheric radiation.Q.J.R.Met.Soc,1924,20:121-126.
    [3]Barthelmie,R.J.,S.C.Pryor.Implications of ammonia emissions for the aerosol formation an visibility impairment—a case study from the Lower Fraser Valley.British Columbia.Atmos Eviron,1998,32:345-352.
    [4]Berghuijs-van Dijk,J.T..P.E.Rijtema,C.W.J.Rocst.ANIMO Agricultural Nitrogen Model.NOTA 1671,Institute for land and Water Management Research,Wageningen,The Netherlands,1985.
    [5]Bergstr(o|¨)m,L.,H.Johnsson,G.Torstensson.Simulation of soil nitrogen dynamics using the SOILN model.Fertilizer Research,1991,27:181-188.
    [6]Bouwman,A.F.,G.Van Drecht,K.W.Van der Hoek.Global and regional surface nitrogen balances in intensive agricultural production systems for the period 1970-2030.Pedosphere,2005b,15(2):137-155.
    [7]Bradbury,N.J.,A.P.Whitmore,PB.S.Hart,et al..Modelling the fate of nitrogen in crop and soil in the years following application of ~(15)N-labelled fertilizer to winter wheat.Journal of Agricultural Science,Cambridge,1993,121:363-379.
    [8]Burns,I.A simple model for predicting the effects of leaching of fertilizer of nitrate during the growing season on the nitrogen fertilizer need of crops.J Soil Sci,1980,31:175-185.
    [9]Byrnes,B.H.Environment effects of N fertilizer use-an overview.Atmos Environ,1984,18:1797-1804.
    [10]Cabon,F.,G Girard,E.Ledoux.Modelling of the nitrogen cycle in farm land areas.Fertilizer Research,1991,27:161-169.
    [11]Cabrera,M.L.Modeling the flush of nitrogen mineralization caused by drying and rewetting soils.Soil Sci.Soc.AmJ.,1993,57:63-66.
    [12]Cambardella,C.,T.Moorman,NovakJhi,et al..Field-scale variability of soil ProPerties in central lowa soils.Soil Sci Soc Am J,1994,58:1501-1511.
    [13]Cates,R.L.,Jr.,D.R.Keeney.Nitrous Oxide Production throughout the Year from Fertilized and Manured Maize Fields.Environ Qual,1987,16:443-447.
    [14]DEFRA.Department for Environment,Food and Rural Affairs,Guidelines for Farmers in NVZs-England.PB5505,Crown,UK.,2002:32.
    [15]Delgado,J.A.,A.R.Mosier.Mitigation alternatives to decrease nitrous oxides emissions and urea-nitrogen loss and their effect on methane flux.Environ Qual,1999,25(6):1105-1111.
    [16]Eckersten,H.,P.E.Hansson,H.Johnsson.SOILN Model User's Manual,Version 9.2.Division of Hydrotechnics,Communications 98:6.Swedish University of Agricultural Science,Uppsala,1998:113.
    [17]Fedra,K.Distributed models and embedded GIS:integration strategies and case studies.In:GoodChild,M.F.et al.(Eds.).GIS and Environmental Modelling:Progress and Research Issues.GIS World,Inc.,Fort Collins,CO,USA,1996:413-417.
    [18]Follett,R.F.NLEAP model simulation of climate and management effects on N leaching for corn grown on sandy soil.Journal of Contaminant Hydrology,1995,20:241-252.
    [19]Franko,U.Modelling approaches of soil organic matter turnover within the CANDY system.In.D.S.Powlson,P.Smith,J.U.Smith(Eds).Evaluation of Soil Organic Matter Models,Nato ASI Series,Springer,Berlin,1996,38.
    [20]Franko,U.,B.Oelschl(a|¨)gel,S.Schenk.Simulation of temperature,water,and nitrogen dynamics using the model CANDY.Ecological Modelling,1995,81:213-222.
    [21]Franko,U.,B.Oelschlagel.Das Bodenprozess model CANDY(The soil process model CANDY).In H.Muhle and S.Claus,(Eds).Reaktionsverhalten von agrarischen (O|¨)kosystemen homogener Areale.Teubner,Leipzig,1996.
    [22]Groenendijk,P.,J.G.Kroes.Modelling the Nitrogen and Phosphorus Leaching to Groundwater and Surface Water.ANIMO 3.5.Report 144,DLO Winand Starting Centre,Wageningen,The Netherlands,1997.
    [23]Hansen,S.,H.E.Jensen,N.E.Nielsen,et al..Descripiton of the Soil Plant System Model DAISY-Basic Principles and Modelling Approach.Jordbrugsforlaget,The Royal Veterinary and Agricultural University,Copenhagen,Denmark,1993a.
    [24]Hansen,S.,H.E.Jensen,N.E.Nielsen,et al..Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY.Fertilizer Research,1991,27,245-259.
    [25]Hansen,S.,H.E.Jensen,N.E.Nielsen,et al..Users Guide to the DAISY Simulation Model.The Royal Veterinary and Agricultural University,Copenhagen,Denmark.,1993b.
    [26]Huang,B.,W.Sun,Y.Zhao,et al..Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices.Geoderma,2007,139:336-345.
    [27]Johsson,H.,L.Bergstr(o|¨)m,P.E Jansson,et al..Simulation nitrogen dynamics and losses in a layered agricultural soil.Agriculture.Ecosystem and Environment,1987,18:333-356.
    [28]Jones,C.A.,J.R.Kiniry.CERES-Maize:A simulation model of maize growth and development.Texas A&M University Press,College Station,1986.
    [29]Kersebaum,K.C.,J.Richter.Modelling nitrogen dynamics in a plant-soil system with a simple model for advisory purposes.Fertilizer Research,1991,27:273-281.
    [30]Leonard,R.A.,W.G.Kinsel,D.S.Still.GLEAMS:Groundwater loading effects of agricultural management systems.Trans ASAE,1987,30:1403-1418.
    [31]Li,C.,S.Frolking,T.A.Frolking.A model of nitrous oxide evolution from soil driven by rainfall events,1.Model structure and sensitivity.J.Geophys.Res,1992a,97:9759-9776.
    [32]Li,C.,S.Frolking,T.A.Frolking.A model of nitrous oxide evolution from soil driven by rainfall events,2.Model structure and sensitivity.J.Geophys.Res,1992b,97:9777-9783.
    [33]Liao,H.,U.S.Tim.Interactive vrater quality modeling within GIS environment.Comp.Environ.Urban.Syst,1994,18:343-363.
    [34]Linn,D.M.,J.W.Doran.Effect of Water-Filled Pore Space on Carbon Dioxide and Nitrous Oxide Production in Tilled and Nontilled Soils.Soil Science Society of America Journal,1984,48:1267-1272.
    [35]Malcoin,B.,McGechan,L.W..A Review of Carbon and Nitrogen Processes in European Soil Nitrogen Dynamics Models.CHAPTER5.In M.J.Shaffer et al.(Eds.) Modeling Carbon and Nitrogen Dynamics for Soil Management.CRC Press,Boca Raton,FL,2001:103-167.
    [36]Molina,J.A.E.,C.E.Clapp,M.J.Shaffer,et al..NCSOIL,a model of nitrogen and carbon transformation in soil:description,calibration,and behavior.Soil Sci.Soc.Am.J.,1983,47:85-91.
    [37]National Academy of Sciences (NAS).Risk assessment in federal government:managing the process.National Academy Press,Washington D C,1983.
    [38]Nordmeyer,H.,J.RICHTER.Incubation experiments on nitrogen mineralization in loess and sandy soils.Plant and Soil,,1985,83:433-445
    [39]Oenema,0.,H.Kros,W.D.Vries.Approaches anduncertainties in nutrient budgets:implications fornutrient management and environmental policies.European Journal of Agronomy,2003,20(12):3-16.
    [40]Rasiah V.Comparison of pedotransfer functions to predict nitrogen mineralization parameters of one pool and two pool models.Communications in Soil Science and Plant Analysis,1995,26((11/12)):1873-1884.
    [41]Rijtema,P.E.,J.G.Kroes.Some results of nitrogen simulations with the model ANIMO.Fertilizer Research,1991,27(189-198).
    [42]Ritchie,J.T.,D.C.Godwin,S.Otter-Nacke.CERES-Wheat:A Simulation Model of Wheat Growth and Development.CERES Model description.Department of Crop and Soil Science,Michigan State University,East Lansing,1986.
    [43]Saporito,L.S.,L.E.Lanyon.Evaluating Management and Soil and Weather Contributions to Potential Nitrate Leaching from a Pennsylvania Dairy Farm using NLEAP.J Environ Qual,1998,27:1367-1375.
    [44]Shaffer,M.J.,A.D.Halvorson,F.J.Pierce.Nitrate leaching and economic analysis package(NLEAP):Model description and application.In:R.F.Follett,D.R.Keeney,and R.M. Cruse(eds.).Managing Nitrogen for Groundwater Quality and Farm Profitability.Madison,WI:Soil Science Society of America,1991:285-322.
    [45]Shaffer,M.J.,B.K.Wylie,M.D.Hall.Identification and mitigation of nitrate leaching hot spots using NLEAP-GIS technology.Journal of Countaminant Hydrology,1995,20:253-263.
    [46]Shaffer,M.J.,B.K.Wylie,R.F.Follett,et al..Using climate/weather data with the NLEAP model to manage soil nitrogen.Agricultural and Forest Meteorology,1994,69:111-123.
    [47]Shaffer,M.J.,K.Lasnik,X.Ou,et al..NLEAP Internet tools for estimating N0_3-N leaching and N_20 emissions.Chapter 12.In M.J.Shaffer et al.(Eds.) ModelingCarbon and Nitrogen Dynamics for Soil Management.CRC Press,Boca Raton,FL,2001:403-426.
    [48]Shaffer,M.,W.Larson.NTRM,A soil-crop simulation model for nitrogen,tillage,and crop-residue management.USDA Cons Res Rep,1987,34(1):103.
    [49]Shen,R.P.,B.Sun,Q.G.Zhao.Spatial and Temporal Variability of N,P and K Balances in Agroecosystems in China.Pedosphere,2005,15(3):347-355.
    [50]Smith,P.,J.U.Smith,D.S.Powlson,et al.A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments.Geoderma,1997,81:153-225.
    [51]Srinivasan,R.,B.A.Engel.A spatial decision support system for assessing agricultural non-point source pollution.Water Resour.Bull,1994,30:441-452.
    [52]Srinivasan,R.,J.G.Arnold,W.RosenthaI,et al..Hydrologic modeling of Texas Gulf basin using GIS.In:GoodChild,M.F.et al.(Eds.).GIS and Environmental Modeling:Progress and Research Issues.GIS World,Inc.,Fort Collins,CO,1996:213-217.
    [53]Standford,G.,S.J.Smith.Nitrogen mineralization potentials of soils.Soil Sci.Soc.Amer.Proc,1972,36:465-472.
    [54]Sun,B.,R.P.Shen,B.A F.Surface N Balances in Agricultural Crop Production Systems in China for the Period 1980-2015.Pedosphere,2008,18(3):304-315.
    [55]Sun,B.,Shenglu Zhou,Qiguo Zhao.Evaluation of spatial and temporal changes of soil quality based on geostatistical analysisin the hill region of subtropical China.Geoderma,2003,115:85-99.
    [56]Tim,U.S.Coupling vadose zone models with GIS:Emerging trends and potential bottlenecks.J.Environ.Qual.,1996,25:535-544.
    [57]Tim,U.S.,R.Jolly.Evaluating agricultural non-point source pollution using integrated geographic information system and hydrologic/water quality modeling.J.Environ.Qual.,1994,23:25-35.
    [58]Tsegaye,T.,R.L.Hill.Intensive tillage effects on spatial variability of soil test,plant growth,and nutrient uptake measurement.Soil Sci.Soc.Am.J.,1998,163:155-165.
    [59]Van Drecht,G.,A.F.Bouwman,J.M.Knoop,et al..Global modeling of the fate of nitrogen from point and nonpoint sources in soils,groundwater and surface water.Global Biogeochemical Cycles,2003,17(4):26-1 - 26-20.
    [60]Xing,G.X.,Z.L.Zhu.An assessment of N loss from agricultural fields to the environment in China.Nutrient Cycling Agroecosystems,2000,57(1):67-73.
    [61]Xing,G.X.,Z.L.Zhu.Regional nitrogen budgets for China and its major watersheds.Biogeochemistry,2002,57/58:405-427.
    [62]Xu,C.,M J.Shaffer,M.Al-kaisi.Simulating the impact of management practices on nitrous oxide emission.Soil Science Society of America Journal,1998,62:736-742.
    [63]Yost,R.S.,G.Uehara,R.L.Fox.Geostatistical analysis of soil chemical properties of large land areas.I.Semivariograms.Soil.Sci.Soc.Am.J.,1982,46:1028-1032.
    [64]Zhu,Z.L.,D.L.Chen.Nitrogen Fertilizer use in China-contributions to food production,impacts on the environment strategies.Nutrient Cycling in Agroecosystems,2002,63(2):117-127.
    [65]卜跃先,谢初昀,刘鑫宇,等.引进外来物种的环境风险评价初探--以美国斑点叉尾鮰为例.水利渔业,2008,28(1):82-84.
    [66]蔡贵信,张绍林.测定稻田土壤氮素矿化过程的淹水蜜闭培养法的条件试验.土壤,1979,(6):234-240.
    [67]蔡文.物元分析及其应用.北京,科学技术文献出版社.1994.
    [68]曹永华.美国CERES作物模拟模型及其应用.世界农业,1991,(9):52-55.
    [69]陈辉,刘劲松,曹宇,等.生态风险开价研究进展.生态学报,2006,26(5):1558-1566.
    [70]陈明昌.土壤氮素循环模型研究进展:矿化-固定和淋洗.土壤学进展,1992,20(6):9-14.
    [71]陈述彭,鲁学军,周成虎.地理信息系统导论.北京,中国科学出版社.2001.
    [72]丛源,郧萍,陈岳龙,等.北京农田生态系统土壤重金属元素的生态风险评价.地质通报,2008,27(5):681-688.
    [73]杜锁军.国内外环境风险评价研究进展.环境科学与管理,2006,31(5):193-194.
    [74]段水旺,章中,陈喜保.长江下游氮、磷含最变化及其输送量的估计.环境科学,2000,21:53-56.
    [75]段争虎,周上麟,吴守仁.土壤特性对氮挥发影响的研究.土壤通报,1990,(3):131-139.
    [76]范成五.不同有机质肥料的有机氮矿化研究.贵州农业科学,2006,34(增刊):57-58.
    [77]封忠明,方玉东.甘肃省县域农田氮素投入产出平衡研究.干旱地区农业研究,2006,24(2):152-158.
    [78]冯平,李绍飞,李建柱.基于突变理论的地下水环境风险评价.自然灾害学报,2008,17(2):13-18.
    [79]冯绍元,郑耀泉.农田氮素的转化与损失及其对水环境的影响.农业环境保护,1996,15(6):277-279.
    [80]付光辉.土地整理生态风险评价研究.南京农业大学博士学位论文,2007.
    [81]干爱华,于斌,刘军,等.海河干流、大沽排污河沉积物中重金属污染及潜在生态风险评价.安全与环境学报,2006,6(5):39-41.
    [82]甘海华,彭凌云,卢瑛,等.广东新会地区耕地土壤肥力指标的时空变异性.应用生态学报,2007,18(7):1464-1469.
    [83]高国栋,陆渝蓉.气候学.北京,气象出版社.1988.1-10.
    [84]高鹏程,张一平.氨挥发与土壤水分散失关系的研究.西北农林科技大学学报(自然科学版),2001,29(6):22-26.
    [85]谷洁,高华.提高化肥利用率技术创新展望.农业工程学报,2000,16(2):17-20.
    [86]郭怀成,周丰,刀谓.地统计方法学研究进展.地理研究,2008,27(5):1191-1202.
    [87]郭旭东,傅伯杰,马克明,等.基于GIS和地统计学的土壤养分空间变异特征研究--以河北省遵化市为例.应用生态学报,2000,11(4):557-563.
    [88]国家环境保护总局.1998年中国环境状况公报.环境保护,1999,(7):3-9.
    [89]胡二邦.环境风险评价实用技术和方法.中国环境科学出版社,2000.
    [90]胡克林,余艳,张凤荣,等.北京郊区土壤有机质含最的时空变异及其影响因素.中国农业科学,2006,39(4):764-771.
    [91]黄健,王爱文,张慧琳,等.吉林省农田养分平衡的研究.吉林农业科学,2001,26(2):36-40.
    [92]江苏省仪征县土壤志.仪征县土壤普查办公室,1986.
    [93]江西土壤普查办公窒.江西土壤.北京,中国农业科技出版社.1991.375-440.
    [94]李辉霞,蔡永立.太湖流域主要城市洪涝灾害生态风险评价.灾害学,2002,17(3):91-96.
    [95]李慧琳,韩勇,,蔡祖聪.上海地区水稻上氮素矿化及其模拟.土壤学报,2004,21(4):503-510.
    [96]李菊梅,李冬初.红壤双季稻田不同施肥下的氨挥发损失及其影响因素.生态环境,2008,17(4):1610-1613.
    [97]李明.上海市崇叫县农田生态风险评价.华东师范大学,研究生硕士学位论文,2006.
    [98]李绍飞,孙书洪,王向余.突变理论在海河流域地下水环境风险评价中的应用.水利学报,2007,38(1J):1312-1317.
    [99]李生秀.植物营养与肥料学科的现状与展望.植物营养与肥料学报,1999,5(3):193-205.
    [100]李艳,史周,徐建明,等.地统计学在土壤科学中的应用及展望.水土保持学报,2003,17(1):178-182.
    [101]李韵珠,李保国.土壤溶质运移.北京,科学出版社.1998.
    [102]李振高,俞慎.土壤硝化反硝化作用研究进展.土壤,1997,(6):281-286.
    [103]李忠佩,林心雄.田间条件下红壤水稻土有机碳的矿化量研究.土壤,2002,(6):310-314.
    [104]李自珍,李维德,石洪华,等.生态风险灰色评价模型及其在绿洲盐渍化农田生态系统中的应用.中国沙漠,2002,22(6):617-622.
    [105]连纲,王德建,林静慧,等.太湖地区稻田土壤养分淋洗特征.应用生态学报,2003,14(11):1879-1883.
    [106]连纲,王德建.太湖地区麦季氮素淋失特征.土壤通报,2004,35(2):163-165.
    [107]刘付程,史学正,于东升,等.基于地统计学和GIS的太湖典型地区土壤属性制图研究--以土壤全氮制图为例.土壤学报,2004,41(1):20-27.
    [108]刘付程,史学正,于东升,等.太湖流域典型地区土壤全氮的空间变异特征.地理研究,2004,23(1):63-70.
    [109]刘付程,史学正,于东升.近20年来太湖流域典型地区土壤酸度的时空变异特征.长江流域资源与环境,2006,15(6):740-744.
    [110]刘立新.旱地氮肥的挥发损失及提高肥效措施的研究.化肥工业,1990,(3):51-56.
    [111]刘秀萍,吴彦霖.基于精细管理地区减少氮淋失的管理模型.水土保持应用技术,2006,5:7-9.
    [112]卢忠达,张达山.层次分析法在环境风险评价中的应用.环境科学导刊,2007,26(3):79-81.
    [113]鲁如坤,刘鸿翔,闻大中,等.我国典型地区农业生态系统养分循环和平衡研究Ⅱ.农田养分收入参数.土壤通报.1996,27(4):151-154.
    [114]鲁如坤,时正元,施建平.中国南方6省农田养分平衡现状评价.中国农业科学,2000,33(2):63-67
    [115]鲁如坤.上壤-植物营养学原理和施肥.北京,化学工业出版社.1998.
    [116]路鹏,黄道友,宋变兰,等.亚热带红壤丘陵典型区土壤全氮的空间变民特征.农业工程学报,2005,21(8):181-183.
    [117]罗定贵,徐卫东.环境质量评价的物元分析模型.地下水,1997,19(2):49-55.
    [118]罗吸,潘贤章,孙波,等.江西余江县土壤有机质含量的时空变异规律研究.40,2008,3:403-406.
    [119]穆兴民,樊小林.土壤氮素矿化的生态模型研究.应用生态学报,1999,10(1):114-118.
    [120]彭令发,郝明德,来璐.土壤有机氮组分及其矿化模型研究.水土保持研究,2003,10(1):46-49.
    [121]秦静,孔祥斌,姜广辉.北京典型边缘区25年来土壤有机质的时空变异特征.农业工程学报,2008,24(3):124-129.
    [122]秦钟立,秦松,刘洪斌.贵州省植烟区土壤pH值和养分空间变异特征的研究.土壤通报,2007,38(6):1046-1051.
    [123]沈善敏.氮肥在中国农业发展中的贡献和农业中氮的损失.土壤学报,2002,39(增刊):12-25.
    [124]沈善敏.中国土壤肥力.北京,中国农业出版社.1998.484.
    [125]宋歌,孙波.县域尺度稻麦轮作农田土壤无机氮的时空变化--以江苏省仪征市为例.农业环境科学学报,2008,28(2):636-642.
    [126]宋歌.长江下游稻麦轮作区土壤氮素的时空变异--以仪征市为例.中国科学院南京土壤研究所硕士文,2006.
    [127]宋松柏,蔡焕杰.区域水资源可持续利用评价的人工神经网络模型.农业工程学报,2004,20(6):89-92.
    [128]苏成国,尹斌,朱兆良,等.稻田氮肥的氨挥发损失与稻季大气氮的湿沉降.应用生态学报,2003,14(11):1884-1888.
    [129]孙波,沈润平.中国农田生态系统中氮素平衡状况及其变化趋势.中国农业面源污染控制对策.朱兆良,N.David and孙波,中国环境科学出版社.2006:20-29.
    [130]孙波,赵其国,闾国年.低丘红壤肥力的时空变异.土壤学报,2002,39(2):190-198.
    [131]孙希华.基丁GIS的济南市土壤侵蚀潜住危险度评价研究.水土保持学报,2003,17(6):47-50.
    [132]孙志梅,薛世川,彭正萍.影响土壤NO-3.N淋失的因素及预防措施.河北农业大学学报,2001,24(3):95-99.
    [133]唐国勇,黄道友,童成立,等.土壤氮素循环模型及其模拟研究进展.应用生态学报,2005,16(11):2208-2212.
    [134]陶勤南.稻田土壤氮矿化速率的研究.土壤学报,1993,30(3):237-244.
    [135]王彩绒,吕家珑,胡月正义,等.太湖流域典型蔬菜地土壤氮及pH空间变异特征.水土保持学报,2005,19(3):17-20.
    [136]王春梅,王金达,刘景双,等.东北地区森林资源生态风险评价研究.应用生态学报,2003,14(6):863-866.
    [137]王激清,马文奇,江荣凤,等.中国农田生态系统氮素平衡模型的建立及其应用.农业工程学报,2007,23(8):210-215.
    [138]王绍强,朱松丽,周成虎.中国土壤土层厚度的空间变异性特征.地理研究,2001,20(2):161-169.
    [139]王胜强,孙津生.海河沉积物重金属污染及潜在生态风险评价.环境工程,2005,23(2):62-64.
    [140]王淑英,路苹,王建立,等.不同研究尺度下土壤有机质和仝氮的空间变异特征--以北京市平谷区为例.生态学报,2008,28(10):4957-4964.
    [141]王炜明.基于GIS的地统计学方法在土壤科学中的应用.中国农学通报,2007,23(5):404-408.
    [142]王效科,李长生.中国农业土壤N_2O排放量估算.环境科学学报,2000,20(4):483-488.
    [143]王政权.地统计学及在生态学中的应用.北京,科学出版社.1999.69-93.
    [144]翁笃鸣.中国辐射气候研究.北京,气象出版社.1997.16-18.
    [145]徐吉炎,Webster R.土壤调查数据低于统计的最佳估值研究--彰武县表层土壤含N量的半方差图和块状Kriging估值.土壤学报,1983,20(4):419-430.
    [146]徐建华.现代地理学中的数学方法(第二版).北京,高等教育出版社.2004.224-249.
    [147]徐镜波,王咏.生态风险评价.松辽学刊(自然科学版),1999,(2):10-13.
    [148]徐人萃.试论我国氮肥工业发展战略.化工设计,1998,(1):1-9.
    [149]徐仁扣.我国降水中的NH_4~+及其在土壤酸化中的作用.农业环境保护,1996,15(3):139-142.
    [150]许学工,林辉平,付在毅.黄河三角洲湿地区域生态风险评价.北京大学学报(自然科学版),2001,37(1):111-120.
    [151]阳文锐,王如松,黄锦楼,等.生态风险评价及研究进展.应用生态学报,2007,18(8):1869-1876.
    [152]杨帆,余建星.南水北调中线工程施工阶段环境风险评价方法探讨.中国水利,2004,14:30-32.
    [153]杨娟.岛屿生态风险评价的理论与方法-崇叫三岛实证研究.华东师范大学,博士研究生学位论文.2007.
    [154]杨丽霞,杨梓山,苑韶峰.影响土壤氮素径流流失的因素探析.中国生态农业学报,2007,15(6):190-194.
    [155]杨林,薛栋森.生物固体对土壤氮循环和硝态氮淋洗的影响.农业环境保护,1997,16(4):182-186.
    [156]杨林章,孙波.中国农田生态系统养分循环和平衡及其管理.北京,科学出版社.2008.1-310.
    [157]杨晓梅,潘国栋.土壤氮管理模拟模型简介.水土保持科技情报,2004,3:8-10.
    [158]杨学云,黎青慧,孙本华,等.陕西省典型农区农田生态系统养分平衡研究.西北农林科技大学学报(自然科学版),2001,29(2):99-104.
    [159]叶厚专,范业成,陶其骧.江西农田C、N、P、K 平衡研究.江西农业学报,1999,11(1):9-16.
    [160]叶厚专,范业成,万美莲.南昌县农田养分平衡和循环研究.江西农业科技,1999,3:23-25.
    [161]叶勇,迟宝明,施枫芝,等.物元可拓法在地下水环境质量评价中的应用.水土保持研究,2007,14(2):52-54.
    [162]余江县土壤.江西省余江县土壤普查办公室,1985.
    [163]袁新民,王周琼.硝态氮的淋沈及其影响因素.干旱区研究,2000,17(4):46-52.
    [164]曾燕,邱新法,刘绍民.起伏地形下天文辐射分布式估算模型.地球物理学报,2005,48(5):1028-1033.
    [165]曾燕,邱新法,缪启龙,等.起伏地形下我国可照时间的空间分布.自然科学进展,2003,13(5):545-549.
    [166]张璐,沈善敏,廉鸿志,等.有机物料中有机碳、氮矿化进程及土壤供氮力研究.土壤通报,1997,28(2):71-73.
    [167]张庆忠,陈欣,沈善敏.农田土壤硝酸盐积累与淋失研究进展.应用生态学报,2002,13(2):233-238.
    [168]张世熔.基于GIS的区域水氮行为模拟与管理分析.中国农业大学博士学位论文,2002.
    [169]张淑娟,何勇.基于GPS和GIS的田间土壤特性空间变异性的研究.农业工程学报,2003,19(2):39-44.
    [170]张树清.甘肃省农田氮磷钾养分平衡状况探析.中国生态农业学报,2006,14(1):112-114.
    [171]张学林,王金达,张博,等.区域农业景观生态风险评价初步构想.地球科学进展,2000,15(6):712-716.
    [172]张有山.北京农田土壤养分肥力提高及培肥措施研究.土壤通报,1996,27(3):107-110.
    [173]张玉铭,胡春胜,张佳宝,等.太行山前平原农田生态系统氮素循环与平衡研究.植物营养与肥料学报,2006,12(1):5-11.
    [174]赵其国等.红壤物质循环及其调控.北京,科学出版社.2002.
    [175]周启星,王如松.城镇化过程生态风险评价案例研究.生态学报,1998,18(4):337-342.
    [176]周伟,曾云英,陈绍军,等.西藏高原基础设施建设规划的生态风险评价--以西藏山南地区为例.自然灾害学报,2007,16(4):21-26.
    [177]朱静,黄标,孙维侠.长江三角洲典型地区农田土壤有机质的时空变异特征及其影响因素.土壤,2006,38(2):158-165.
    [178]朱兰保,盛蒂,周开胜,等.淮河安徽段沉积物中重金属污染及其潜在生态风险评价.环境与健康杂志,2007,24(10):784-786.
    [179]朱兆良,N.David,孙波.中国农业面源污染控制对策.北京,中国环境科学出版社.2006.6-287.
    [180]朱兆良,孙波,杨林章,等.我国农业面源污染的控制政策和措施.科技导报,农业,2005,23(4):47-51.
    [181]朱兆良,孙波.中国农业面源污染控制对策研究.环境保护,2008,(8):4-6.
    [182]朱兆良,文启孝.中国土壤氮素.南京,江苏科学技术出版社.1992.37-59.
    [183]朱兆良.对我国粮食安全的几点思考.中国科学院刊,2006,2l(5):371-372.
    [184]朱兆良.农田中氮肥的损失与对策.土壤与环境,2000,9(1):1-6.
    [185]朱兆良.中国土壤氮素研究.土壤学报,2008,45(5):778-783.
    [186]庄舜尧,尹斌,朱兆良.表面分子膜抑制稻田氨挥发的模拟研究.土壤,2001,2:60-63.
    [187]庄舜尧,尹斌,朱兆良.表面分子膜抑制稻田氨挥发的模型研究.中国农业科学,2002,35(2):1506-1509.
    [188]左大康,周允华,项月琴等.地球表层辐射研究.北京,科学出版社.1991.68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700