用户名: 密码: 验证码:
微重力环境下质子交换膜燃料电池内两相流体动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1965年,质子交换膜燃料电池作为空间项目主电源首次应用于美国国家航空航天局的双子星载人飞船并登入太空。上世纪90年代起,质子交换膜燃料电池由于取得了技术上的突破,逐渐取代了碱性燃料电池在空间领域的应用。质子交换膜燃料电池由于其具有较高的能量转化效率高,零排放,运行温度低和燃料可再生等优点,有希望成为新一代的空间任务主电源。
     质子交换膜燃料电池技术在工程应用上的一个关键问题是液态水管理。目前,所有关于质子交换膜燃料电池内部液态水动态特性及其对电池性能影响的研究都是在地面常重力环境下进行。关于质子交换膜燃料电池在微重力环境中的运行特性未见公开发表物报道。微重力环境下气/液两相流呈现出与地面常重力环境迥然不同的特性,受气/液两相流动态特性的影响,微重力环境中的氢质子交换膜燃料电池的运行特性将与地面常重力环境不同。因此,研究氢质子交换膜燃料电池在微重力环境下的运行特性及其内部的流体管理则显得尤为重要。
     首先,本文建立了氢质子交换膜燃料电池流场内液态水传递的基本理论体系,采用理论分析和实验研究方法研究了氢质子交换膜燃料电池内液态水传递及两相流动的动态特性。
     其次,本文设计了新型紧凑式透明氢质子交换膜燃料电池,采用透明电池直接可视化方法,研究了具有单蛇形通道流场方位的氢质子交换膜燃料电池在短时微重力环境中的运行特性。全部微重力实验在中国科学院力学研究所国家微重力实验室完成,该实验室的落塔微重力实验设施为本文实验提供了3.6秒的短时微重力实验环境。
     最后,本文建立了燃料电池流道内气/液两相区环形膜状凝结数学模型,选用MATLAB软件编程进行数值求解,得到了描述氢质子交换膜燃料电池流道内凝结段两相流体动力学特性参量的数值结果。
     本文主要工作和取得的主要成果包括:
     1.对常重力环境下采用直接可视化方法研究氢质子交换膜燃料电池内两相流体动力学特性的公开发表物进行了全面回顾。
     2.理论分析与实验研究氢质子交换膜燃料电池阴极侧液态水流体动力学特性。建立氢质子交换膜燃料电池流场内液态水传递的基本理论体系,计算并预测液态水开始凝结的临界曲线,得到了由运行参数划分的单相区与两相区。实验研究氧气流量,运行温度,电池角度对氢质子交换膜燃料电池流场内两相流特性和电池性能的影响。
     3.设计并建立用于落塔短时微重力氢质子交换膜燃料电池实验系统,并实现实验系统中的电气与控制系统与落舱电气与控制系统对接。实验系统包括:物料供应,物料排放与回收系统,电池温度测控系统,数据采集系统,可视化拍摄系统。设计制作了发光二极管直流驱动电路照明系统。设计建立了实验系统设备的主,控电路系统。
     4.改进设计并加工了紧凑式轻型透明氢质子交换膜燃料电池。高性能稳定运行的透明燃料电池能够真实反应氢质子交换膜燃料电池的实际运行特性。校核计算了螺栓,螺纹强度以及螺杆在冲击载荷下抗剪切能力。
     5.研究了竖直角度放置的流道方位内,重力因素变化对不同运行工况下流场内两相流体动力学特性以及电池的伏安输出特性的影响。结果表明,电池外电路电阻为0.01?时,电池产水量较多。进入微重力环境后强化竖直流道上升段排水,消除流道淹没,电池性能得到提升。电池外电路电阻为0.03?时,电池产水量较少。进入微重力环境后,重力消失促进了液态水在竖直流道上升段的移动。但重力因素对液态水的动态特性及电池性能变化影响不一致。实验结果同时表明,重力因素变化越大,电池内的流动特性和电池输出特性变化越明显。
     6.研究了竖直角度放置的流道方位内,重力因素变化对不同运行工况下流场内两相流体动力学特性以及电池的伏安输出特性的影响。结果表明,水平角度放置的流道内液态水量较少,液态水主要以液滴形式存在。微重力环境下,液滴脱落直径将增大。在水平方位的流道内,短时微重力持续时间内产生的液态水滞留在流道空间内,降低电池性能。落舱入网瞬间形成15g左右的冲击加速度造成的超重作用,改变了氢质子的迁移方向,使电池电势暂时升高,电流降低。
     7.建立了燃料电池流道内气/液两相流动区环形膜状凝结数学模型,选用MATLAB软件编程进行数值求解,得到描述氢质子交换膜燃料电池流道内凝结段两相流体动力学特性参量的数值结果。结果表明,两相区长度受表面张力,气相主流速度和流道当量尺寸影响。流道当量尺寸减小,两相区长度减小;增大气相主流速度,两相区长度增加;表面张力增大,两相区长度增加。凝结过程受电池温度和环境温度影响。电池温度升高,凝结加速,凝结放热量增加;环境温度升高,凝结速度减慢,凝结放热量减小。
In the field of space engineering, PEMFC (Proton exchange membrane fuel cell) with the membrane of polystyrene was firstly applied to GEMINI space missions of NASA (National Aeronautics and Space Administration). Since 1990s, the AFC was replaced by PEMFC gradually in the space mission application due to both the breakthrough of PEMFC in technologies and the disadvantage of AFC. PEMFC is the prospective candidates as power sources for space application with short-term missions due to the characteristics including: high energy conversion efficiency, zero emission, low temperature, regenerative operation etc.
     A significant technical challenge in PEMFC applied operation is the liquid management. All the studies of the two-phase flow dynamic inside PEMFC and it’s effect on cell performance mentioned above were performed in the earth environment (normal gravity), however, it seems that no publication reports the liquid water transport and dynamic characteristics inside PEMFC in micro-gravity environment until now. In microgravity condition, the liquid/gas fluid flow is great different from that in normal gravity condition due to the absence of the gravity. Therefore, PEMFCs will show distinct behaviors in the reduced gravity environment because both the two phase flow dynamic inside PEMFC and cell performance are different. The study of fluid flow dynamic inside PEMFC and cell performance under the micro gravity condition will supply the approach for the reference of PEMFC operating characteristics and the liquid management in reduced gravity environment, for example in the space.
     First of all, in this study, the basic mathematic model for liquid water mass transport inside the PEMFC was built. The liquid water transport and two phase flow dynamic characteristic was studied both theritically and experimentally.
     Secondly, in this study, a noval, compact transparent PEMFC was designed, and the PEMFC operating characteristics with a single serpentine channel in a short-term micro gravity environment based on the 3.6s drop tower in the National Microgravity Laboratory, Institute of Mechanics, Chinese Academy Sciences, were performed.
     At last, in this study, a mathematical model of annular film condensation in the flow channel of PEMFC was developed, and the mathematical model was resolved numerically by MATLAB. The results of two phase flow characteristic parameter to predict the shape of the gas-liquid interface were obtained.
     The main work and results of this study are presented as the following:
     1. An extensive review on the direct visual study of two phase flow dynamic inside PEMFC by the aid of transparent PEMFC in normal gravity condition was summarized.
     2. The dynamic characteristic of liquid water in the flow channel of PEMFC was studied theritically and experimentally. The basic mathematic model for liquid water mass transport inside the PEMFC was built, and the critical curve to separate the single phase zone and the two phase flow zone depending on the liquid water condensation were obtained. The effects of oxygen flow rate, operating temperature, and cell orientation on the cell performance were studied experimentally.
     3. A PEMFC test system was designed for the study of two phase flow dynamic inside PEMFC under short-term micro gravity condition. The power system and driver circuit of the test system were successfully connected to the control system of drop capsule. The test system includes: reactants supply system, excess reactant gas release system, liquid recovery system, cell temperature controller unit, data acquisition and control system, and high-speed video recording system. A group of LEDs (light-emitting diode) was employed to meet the lighting requirement for captureing images. The power circuit and driver circuit of test system were designed.
     4. A noval, compact transparent PEMFC was designed in this study. A good design transparent fuel cell can reflect the real transport process inside practical operating PEMFCs. Verification of the screw and rod of bolts was performed to confirm the strength of bolts.
     5. The study on the effect of gravity level on the two phase flow dynamic inside PEMFC and cell performance of PEMFC with the vertical orientation configuration was performed. The results showed that when the load with resistant of 0.01? was connected to the fuel cell, the water production was high. The accumulated liquid water in the vertical parts of flow channel was removed easily by the reactant gas in the micro gravity environment. The cell performance was enhanced dramatically in the micro gravity condition because the flooded area in the flow channel was exposed to the reactant gas again. While, when the load with resistant of 0.03? was conneted to the fuel cell, the water production was low. In the micro gravity condition, the liquid water was removed upward by the gas phase due to the absence of gravity. But the effect on the liquid water dynamic and cell performance was not coincident. The results also showed that the more the gravity level changed, the more the cell performance was influenced.
     6. The study on the effect of gravity level on the two phase flow dynamic inside PEMFC and cell performance of PEMFC with the horizontal orientation configuration was performed. The results showed that little liquid water was found in the horizontal orientation configuration flow channel, and the water columns to pinch off the flow channel were difficult to be formed. In micro gravity condition, the water droplets departure diameter increased. The liquid water formed during the micro gravity condition duration was prone to stay in the flow channel, therefore, the cell performance was deteriorated due to the liquid water flooding in the flow channel in the micro gravity condition. A hyper gravity condition with the gravity of about 15g was induced when the drop capsule fell into the recovery string bag. The results also showed that the hyper gravity effect change the proton transport direction lead to a dynamic of current decreasing and voltage increasing.
     7. A mathematical model of annular film condensation in the flow channel of PEMFC was developed in this study, and the mathematical model was resolved numerically by MATLAB. The results of two phase flow characteristic parameter to predict the shape of the gas-liquid interface were obtained. The results showed that the length of two phase flow regime was influenced by the surface tension, the gas flow rate and equivalent diameter of flow channel. The length of two phase flow regime decreased with the decreasing of equivalent diameter; the length of two phase flow regime increased with the increasing of gas flow rate; and the length of two phase flow regime increased with the increasing of surface tension. The results also showed that the condensation was influenced by the cell temperature and environmental temperature. Increasing the cell temperature accelerated the condensation and enhanced the heat transport; increasing the environmental temperature reduced the condensation and reduced the heat transport.
引文
1 G. Dolf, S. Giorgio. Prospects for Hydrogen and Fuel Cells. In: Proc. 16th WHEC, 13-16 June. Lyon, France, 2006.
    2 Edwark S. Cassedy著.段雷,黄永梅译.可持续能源的前景.清华大学出版社.第一版, 2002, 1~18
    3马经国.新能源技术.江苏科学技术出版社.第一版, 1992, 1~6
    4 J. H. Scott. The development of Fuel Cell Technology for Electric Power Generation: From NASA’s Manned Space Program to the“Hydrogen Economy”. In: Proc. IEEE, October 2006, 94(10): 1815~1825
    5衣宝廉.燃料电池-高效、环境友好的发电方式.第一版.北京,化学工业出版社, 2000: 7, 8~9, 13, 59
    6李瑛,王林山,燃料电池,北京:冶金工业出版社, 2000. 156
    7黄倬,屠海令,张冀强,詹锋,质子交换膜燃料电池的研究开发与应用,北京:冶金工业出版社, 2000.5, 20~25
    8 V. Mehta, J. S. Cooper. Review and analysis of PEM fuel cell design and manufacturing. Journal of Power Source. 2003(114): 32~53
    9 I. Bar-On, R. Kirchain, R. Roth. Technical cost analysis for PEM fuel cells. Journal of Power Sources. 2002(109): 71~75
    10 J. P. Meyers, H. L. Maynard. Design considerations for miniaturized PEM fuel cells. Journal of Power Sources. 2002 (109): 76~88
    11刘风君.高效环保的燃料电池发电系统以及应用.北京,机械工业出版社, 2006
    12贺孝思,航天电源综述.世界导弹与航天, 1988, 1: 29~32
    13 A. J. Appleby, F. R. Foulkes. Fuel cell handbook. New York: 1989
    14黄镇江,刘风君.燃料电池及其应用,北京:电子工业出版社, 2005.8, 94~99
    15 M. Marshy, P. Prokopius. The fuel cell in space: Yesterday, Today and Tomorrow. Journal of Power Sources, 1990, 29: 193~200
    16詹姆斯·拉米尼,安德鲁·迪克斯著.朱红译,衣宝廉校.燃料电池系统-原理·设计·应用.北京,科学出版社, 2006年
    17 Ryan O’Hayre,车硕源, Whitney Colella, Fritz B. Drinz著,王晓红,黄宏等译.燃料电池基础.北京,电子工业出版社, 2007
    18王东,张伟,刘向.质子交换膜燃料电池及其空间应用.上海航天. 2005 (2): 39~42
    19隋智通,隋升,罗冬梅.燃料电池及其应用,北京:冶金工业出版社, 2004.3 119~124
    20 W. Smith. The Role of Fuel Cells in Energy Storage. Journal of Power Sources. 2000, 86(1): 74~83
    21 W. Marvin, P. Paul, L. Michael, V. Gerald. The NASA Fuel Cell Upgrade Program for the Space Shuttle Orbiter. Energy Conversion Engineering Conference. 1997. IECEC-97. In Proc.
    32nd Intersociety. 228~231. Jul. 27-Aug. 1. 1997
    22 N. Lior. Power from space. Energy conversion and management. 2001, 42: 1769~1805
    23 K. A. Burke. Fuel cell for space science application. NASA/ TM-2003-212730, NASA: NASA Center for Aerospace Information, 2003: 1~10
    24 D. J. Bents, V. J. Scullin. Hydrogen-oxygen PEM regenerative fuel cell energy storage system. NASA/ TM-2005-213381, NASA: NASA Center for Aerospace Information, 2005: 1~19
    25吴峰,叶芳,郭航,马重芳.燃料电池在航天中的应用.电池, 2007, 37(3): 238~240
    26衣宝廉.燃料电池-原理·技术·应用.北京,化学工业出版社, 2003
    27邓才清,航天氢氧燃料电池的发展与应用分析,航天情报研究系列报告(七卷), 1994, 7: 619~636
    28 Y. Sone. M. Ueno, S. Kuwajima. Fuel Cell Development for Space Application: Fuel Cell System in a Closed Environment. Journal of Power Sources. 2004, 137(2): 269~276
    29 F. Barbir, T. Molter, L. Dalton. Efficiency and Weight Trade-off Analysis of Regenerative Fuel Cell as Energy Storage for Aerospace Applications. International of Hydrogen Energy. 2005, 30(4): 351~357
    30毕道治.中国燃料电池的发展.电源技术. 2000(24): 103~107
    31李国欣. 20世纪上海航天器电源技术的进展.上海航天,第3期, pp: 42~48, 2002.
    32姜炜,卫星,何雅玲,唐桂华,陶文铨.工作角度对燃料电池性能影响的实验研究.工程热物理学报, 2007, 28(6): 1025~1027
    33吴玉厚,陈士忠,孙红.重力对PEM燃料电池性能的影响.可再生能源. 2007, 25(2): 66~69
    34陈士忠,吴玉厚.重力对质子交换膜燃料电池性能的影响.沈阳建筑大学学报(自然科学版). 2006, 22(4):686~690
    35 V. Stanic, R. Wynne, P. Borthwick, M. Hoberecht. Gravitational Effect on PEM Fuel Cell Water Management. In Proc. 3rd International Energy Conversion Engineering Conference, 15-18 August 2005, San Francisco, California, AIAA, 2005-5678
    36吕成道,李佛金,王汉强,程尚模.微重力条件下两相流动沸腾换热地面等效模拟实验研究的必要性.上海航天, 1996, 6: 59~62.
    37律翠萍.微重力下直接甲醇燃料电池阳极流场内两相流的实验研究.北京工业大学硕士论文. 2006
    38吴峰.小型直接甲醇燃料电池在微重力环境中的实验研究.北京工业大学硕士论文. 2007
    39 G. Q. Lu, C. Y. Wang. Electrochemical and flow characterization of a direct methanol fuel cell. Journal of Power Sources. 2004 (134): 33~40.
    40 H. Guo, C. F. Ma, M. H. Wang, J. Yu, X. Liu. Heat and mass transfer and two-phase flow in hydrogen proton exchange membrane fuel cells and direct methanol fuel cells, In: Proc. 1st International Conference on Fuel Cell Science, Engineering and Technology, April 21-23, 2003, Rochester, NY, USA, 471~476.
    41 K. H. Choi, D. H. Peck, C. S. Kim, D. R. Shin, T. H. Lee. Water transport in polymer membranes for PEMFC. Journal of Power Sources. 2000 (86): 197~201.
    42 D. Picot, R. Metkemeijer, J. J. Bezian, L. Rouveyre. Impact of the water symmetry factor on humidification and cooling strategies for PEM fuel cell stacks. Journal of Power Sources. 1998(75): 251~260.
    43 S. Ahmed, J. Kopasz, R. Kumar, M. Krumpelt. Water balance in a polymer electrolyte fuel cell system. Journal of Power Sources. 2002, (112):519~530
    44汪茂海,郭航,马重芳.运行参数对直接甲醇燃料电池动态响应的影响-II电池温度,氧气压力和流量.电源技术. 2005, 6(29): 406~409
    45 H. Guo, C.F. Ma, M.H. Wang, et al.. Experimental investigation of flow bed configuration effect on performance of liquid feed direct methanol fuel cells. In: Proc. 2nd Sino - German Workshop on Fuel Cells. Günzburg, Germany, 2003: 15~18
    46 M.H. Wang, H. Guo, C.F. Ma, et al.. Experimental study on the performance of a direct methanol fuel cell with microchannel flow bed. In: Proc. 3rd International Symposium on Heat Transfer Enhancement and Energy Conservation, South China University of TechnologyPress. January 12-15, 2004, Guangzhou, China, pp. 1494~1499
    47郭航,马重芳,汪茂海等.热物理参数对燃料电池内传质过程的影响.中国工程热物理学会传热传质年会论文集.北京, 2003: 1031~1034
    48 P. Argyropoulos, K. Scott, W.M. Taama. Hydrodynamic modeling of direct methanol liquid feed fuel cell stacks. Jounal of Applied Electrochemistry. 2000,30(8):899-913
    49 A. S. Arico, P. Creti, V. Baglio. Influence of flow field design on the performance of a direct methanol fuel cell. Journal of Power Sources, 2000,91(2):202-209
    50 D. Buttin, M. Dupont, M. Straumann. Development and operation of a 150W air-feed direct methanol fuel cell stack. Journal of Applied Electrochemistry, 2001,31(3):275-279
    51 M. Kunimatsu, T. Shudo, Y. Nakajima. Study of performance improvement in a direct methanol fuel cell. JASE Review. 2002, 23(1):21-26
    52 W. Sun, B.A. Peppley, K. Karan. Modeling the influence of GDL and flow-field plate parameters on the reaction distribution in the PEMFC cathode catalyst layer. Journal of Power Sources. 2005, (144): 42–53
    53 F. Barreras, A. Lozano, L. Valino, C. Mar?n, A. Pascau. Flow distribution in a bipolar plate of a proton exchange membranen fuel cell: experiments and numerical simulation studies. Journal of Power Sources. 2005, (144): 54–66
    54 J. Scholta, G. Escher, W. Zhang, L. Kuppers, L. Jorissen, W. Lehnert. Investigation on the influence of channel geometries on PEMFC performance. Journal of Power Sources, 2005, in press
    55 K. Tüber, A. Oedegaard, M. Hermann, C. Hebling. Investigation of fractal flow-fields in portable proton exchange membrane and direct methanol fuel cells. Journal of Power Sources. 2004, (131): 175–181
    56 A. A. Kulikovsky. The effect of cathodic water on performance of a polymer electrolyte fuel cell. Electrochimica Acta. 2004, (49):5187–5196
    57 Q. Dong, J. Kull, M.M. Mench. Real-time water distribution in a polymer electrolyte fuel cell. Journal of Power Sources. 2005, (139): 106–114
    58 H. K. Hsuen. Performance equations for cathodes in polymer electrolyte fuel cells with non-uniform water flooding in gas diffusers. Journal of Power Sources. 2004, (137):183–195
    59 G. Karimi, X. Li. Electroosmotic flow through polymer electrolyte membranes in PEM fuelcells. Journal of Power Sources. 2005, 140: 1–11
    60 P. Costamagna, S. Srinivasan. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000, partⅠ.Fundamental scientific aspects. Journal of Power Sources. 2001, 102(1-2): 242–252
    61 F. N. Buchi. S. Srinivasan. Operating proton exchange membrane fuel cells without external humidification of the reactant gases. Journal of Electrochem Socience. 1997, 144(2):2767-2772
    62 S. Miachon, P. Aldebert. Internal hydration H2/O2 100 cm2 polymer electrolyte membrane fuel cell. Journal of Power Sources. 1995, 56(1): 31-36
    63 I. Wood, L. David, J.S. Yi, T.V. Nguyen. Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells. Electrochimica Acta. 1998, 43(24):3795-3809
    64 T. H. Yang, Y. G. Yoon, C. S. Kim, S. H. Kwak, K. H. Yoon. A novel preparation method for a self-humidifying polymer electrolyte membrane. Journal of Power Sources. 2002, 106(1-2):328-332
    65 P. Costamagna, S. Srinivasan. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000, PartⅡ.Engineering, technology devenology and application aspects. Journal of Power Sources. 2001, 102(1-2): 253-269
    66 H. H. Voss, D. P. Wilkinson, P. G.Pickup, M. C.Johnson, B V.asura. Anode water removal: a water management and diagnostic technique for solid polymer fuel cells. Electrochimica Acta. 1995, 40(3):321-328
    67 T. E. Springer, M. S. Wilson, S. Gottesfeld. Modeling and experimental diagnostics in polymer electrolyte fuel cells. Journal of Electrochemical Society. 1993(140): 3513~3526.
    68 J. J. Baschuk, X. Li. Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding. Journal of Power Sources. 2000(86): 181~196.
    69 S. Um, C.Y. Wang, K. S. Chen. Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells. Journal of Electrochemical Society. 2000(147): 4485~4493.
    70 Z. H. Wang, C. Y. Wang, K. S. Chen. Two-phase tow and transport in the air cathode of proton exchange membrane fuel cells. Journal of Power Sources. 2001(94): 40~50.
    71 L. You, H. Liu. A two-phase flow and transport model for the cathode of PEM fuel cells.International Journal of Heat and Mass Transfer. 2002(45): 2277~2287.
    72 F. Chen, Y. G. Su, C. Y. Soong, W. M. Yan, H. S. Chu. Transient behavior of water transport in the membrane of a PEM fuel cell. Journal of Electroanalysis Chemistry. 2004(566): 85~93
    73 U. Pasaogullari, C. Y. Wang. Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells. Journal of Electrochemical Society. 2004(151): A399~A406.
    74 R. J. Bellows, M. Y. Lin, M. Arif, et al.. Neutron imaging technique for in situ measurement of water transport grad ients within Nafion in polymer electrolyte fuel cells. Journal of the Electrochemical Society, 1999, 146: 1099-1103.
    75 D. J. Ludlow, C. M. Calebrese, S. H. Yu, et al.. PEM fuel cell membrane hydration measurement by neutron imaging. Journal of Power Sources, 2006, 162(1): 271-278.
    76 A. Turhan, K. Heller, J. S. Brenizer, et al.. Quantification of liquid water accumulation and distribution in a polymer electrolyte fuel cell using neutron imaging. Journal of Power Sources, 2006, 160(2): 1195-1203.
    77 D. Kramer,J. Zhang, R. Shimoi, et al.. In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging: Part A. Experimental, data treatment, and quantification. Electrochimica Acta, 2005, 50(13): 2603-2614.
    78 J. Zhang, D. Kramer, R. Shimoi. et al.. In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging: Part B. Material variations. Electrochimica Acta. 2006, 51(13): 2715-2727.
    79 X. Li, I. Sabir, J. Park. A flow channel design procedure for PEM fuel cells with effective water removal. Journal of Power Sources, 2007, 163(2): 933-942.
    80 S. Litster, D. Sinton, N. Djilali. Ex situ visualization of liquid water transport in PEM fuel cell gas diffusion layers. Journal of Power Sources, 2006, 154(1): 95-105.
    81 A. Bazylak, D. Sinton, Z. S. Liu, et al.. Effect of compression on liquid water transport and microstructure of PEMFC gas diffusion layers. Journal of Power Sources, 2007, 163(2): 784-792.
    82 K. W. Feindel, L. P. A. LaRocque. D. Starke, et al.. Insitu observations of water production and distribution in an operating H2/O2 PEM fuel cell assembly using H-NMR microscopy. Journal of the American Chemical Society, 2004, 126(37): 11436-11437.
    83 T. Shohji, T. Kazuhiro, N. Kousuke, et al.. Water content distribution in a polymer electrolytemembrane for advanced fuel cell system with liquid water supply. Magnetic Resonance Imaging, 2005, 23(2): 255-258.
    84刘璿.质子交换膜燃料电池性能及阴极凝水现象的实验研究,北京工业大学硕士论文,2004
    85贾杰林.液态进料直接甲醇燃料电池阳极流场内两相流的实验研究,北京工业大学硕士论文, 2005
    86 T. Bewer, T. Beckmann, H. Dohle, J. Mergel, D. Stolten. Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution. Journal of Power Sources. 2004, 125: 1–9.
    87 P. Argyropoulos, K. Scott, W.M. Taama. Carbon dioxide evolution patterns in direct methanol fuel cells. Electrochim. Acta. 1999, 44:3575–3584.
    88 P. Argyropoulos, K. Scott, W.M. Taama. Gas evolution and power performance in direct methanol fuel cells, Journal of Applied Electrochemistry. 1999, 29: 661-669.
    89 K. Scott, P. Argyropoulos, P. Yiannopoulos, W.M. Taama. Electrochemical and gas evolution characteristics of direct methanol fuel cells with stainless steel mesh flow beds. Journal of Applied Electrochemistry. 2001, 31: 823–832.
    90 K. Scott, W. M. Taama. Material Aspects of the Liquid Feed Direct Methanol Fuel Cells . Journal of Applied Electrochemistry. 1998, 28 (12):1389–1397.
    91 K. Scott, W. M. Taama, P. Argyropoulos. Engineering Aspects of the Direct Methanol Fuel Cell System. Journal of Power Sources. 1999, 79 (1):43–59.
    92 J. Nordlund, C. Picard, E. Birgersson, etc. The Design and Usage of a Visual Direct Methanol Fuel Cell. Journal of Applied Electrochemistry. 2004, 34(8):763-770.
    93 H. Yang, T. S. Zhao, P. Cheng. Gas-liquid Two-phase Flow Patters in a Miniature Square Channel with a Gas Permeable Sidewall. International Journal of Heat and Mass Transfer. 2004, 47(26):5725-5739.
    94 H. Yang, T. S. Zhao, Q. Ye. In Situ Visualization Study of CO2 Gas Bubble Behavior in DMFC Anode Flow Fields. Journal of Power Sources. 2005, 139 (1-2):79–90.
    95 H. Yang, T. S. Zhao. Effect of Anode Flow Field Design on the Performance of Liquid Feed Direct Methanol Fuel Cells. Electrochimica Acta. 2005, 50 (16-17):3243–3245.
    96 H. Yang, T. S. Zhao, Q. Ye. Pressure drop behavior in the anode flow field of liquid feeddirect methanol fuel cells. Journal of Power Sources. 2005 (142): 117~124
    97 K. Tüber, D. Pócz, C. Hebling, Visualization of water buildup in the cathode of a transparent PEM fuel cell. Journal of Power Sources. 2003 (124): 403~414
    98 A. Hakenjos, H. Muenter, U. Wittstadt, C. Hebling, A PEM fuel cell for combined measurement of current and temperature distribution, and flow field flooding. Journal of Power Sources. 2004(131): 213~216
    99 X. G. Yang, F. Y. Zhang, A. L. Lubawy, C. Y. Wang. Visualization of Liquid Water Transport in a PEFC, Electrochemical and Solid-State Letters. 2004, 7(11) : A408-A411
    100 F. Y. Zhang, X. G. Yang, C. Y. Wang. Liquid Water Removal from a Polymer Electrolyte Fuel Cell. Journal of The Electrochemical Society. 2006, 153 (2): A225~A232
    101 C. Y. Wang. Fundamental Models for Fuel Cell Engineering, Chemical Reviews. 2004, (104): 4727~4766
    102 X. Liu, H. Guo, C. F. Ma. Water flooding and two-phase flow in cathode channels of proton exchange membrane fuel cells. Journal of Power Sources. 2006 (156): 267~280
    103 H. P. Ma, H. M. Zhang, J. Hu, Y. H. Cai, B. L. Yi. Diagnostic tool to detect liquid water removal in the cathode channels of proton exchange membrane fuel cells. Journal of Power Sources. 2006 (162): 469~473
    104马海鹏,张华民,胡军,才英华,田植群,衣宝廉. PEMFC直条流场水分布可视化研究.电源技术. 2006, 30(11): 880~882
    105马海鹏,张华民,胡军,才英华.增湿温度与气体流速对PEMFC阴极流道内液态水分布及排水影响.化工学报. 2007, 58(9): 2357~2362
    106 A. Theodorakakos, T. Ous, M. Gavaises, J. M. Nouri, N. Nikolopoulos, H. Yanagihara. Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells. Journal of Colloid and Interface Science, 2006 (300): 673~687
    107 X. Liu, H. Guo, F. Ye, C. F. Ma. Water flooding and pressure drop characteristics in flow channels of proton exchange membrane fuel cells. Electrochimica Acta. 2007(52): 3607~3614
    108刘璿,郭航,叶芳,等.质子交换膜燃料电池流道淹没与传质强化[J].工程热物理学报, 2006, 27(S2): 53~56.
    109 D. Spernjak, A. K. Prasad, S. G. Advani. Experimental investigation of liquid water formationand transport in a transparent single-serpentine PEM fuel cell. Journal of Power Sources. 2007 (170): 334~344
    110 F. B. Weng, A. Su, C. Y. Hsu, C. Y. Lee. Study of water-flooding behaviour in cathode channel of a transparent proton-exchange membrane fuel cell. Journal of Power Sources. 2006(157): 674~680
    111 K. Nishida, T. Murakami, S. Tsushima. Microscopic visualization of state and behavior of liquid water in a gas diffusion layer of PEFC. ELECTROCHEMISTRY. 2007,75 (2): 149~151
    112 T. MURAHASHI, H. KOBAYASHI, E. NISHIYAMA. In situ visualization of water droplets in polymer electrolyte fuel cell cathode. Electrochemistry. 2007, 75(2): 261~263
    113 K. NISHIDA, S. TSUSHIMA, K. TERANISHI, S. HIRAI. Visualization of Microscopic Behavior and Promotion of Water Removal in a Porous Electrode of Polymer Electrolyte Fuel Cell.化学工学论文集, 2007, 33(2): 181~185
    114 S. H. Ge, C. Y. Wang. Liquid Water Formation and Transport in the PEFC Anode. Journal of The Electrochemical Society, 2007, 154 (10): B998~B1005
    115 T. Ous, C. Arcoumanis. Visualisation of water droplets during the operation of PEM fuel cells, Journal of Power Sources, 2007, (173): 137~148
    116 F. B. Weng, A. Su, C. Y. Hsu. The study of the effect of gas stoichiometric flowrate on the channel flooding and performance in a transparent fuel cell. International Journal of Hydrogen Energy, 2007 (32): 666 ~ 676
    117 X. Liu, H. Guo, F. Ye, C. F. Ma. Flow dynamic characteristics in flow field of proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2008, 33: 1040~1051.
    118 X. Liu, H. Guo, C. F. Ma. Visualization of water accumulation in cathode channels of a proton exchange membrane fuel cell. In: Proc. of the 5th international symposium on multiphase flow, heat, mass transfer and energy conversion. July 3-6, 2005, Xi’an, China, CD-ROM, PAPER NO.044.
    119王景涛.微重力实验环境.物理,1998, (27):392-398
    120王景涛,葛培文.微重力环境利.物理,2000, (29):665-673
    121奚日升.微重力效应的物理解释及其应用.空间科学学报,2002, 22(4):346-356
    122王景涛.微重力应用导引.中国科学技术出版社, 1988
    123田兰桥.国家微重力实验室介绍.物理,1998,27(3):179-184
    124夏益霖.微重力落塔试验技术及其应用.强度与环境,1995,(2):22-31
    125 P. L. Spedding, D. R. Spence. Flow regimes in two-phase gas-liquid flow. Internatioanl Journal of Multiphase Flow. 1993, 19(2): 245-280
    126赵建福,林海,解京昌,胡文瑞,吕从民,张玉涵.微重力条件下气/液两相流压降实验研究.应用基础与工程科学学报,2002, 4 (9):373-380
    127 J. F. Zhao, J. C. Xie, H. Lin, et al.. Experimental studies on two-phase flow patterns aboard the mir space station. International Journal Multiphase Flow, 2001, 27(11):1931-1944
    128张孝谦,韦明.微重力燃烧研究用落塔.工程热物理学报,1995,4 (16):503-506
    129韩慕嵩.地面长时间微重力装置原理及设计.强度与环境,1999, (3):57-65
    130张孝谦,韦明,张培元,谢珍.微重力燃烧实验落塔技术改进.工程热物理学报,1998, 4(19):519-523
    131吕从民,席龙,赵光恒,张玉涵.基于失重飞机的微重力科学实验系统.清华大学学报, (自然科学版),2003, 8(43):1064-1068
    132赵建福,林海,解京昌,等.失重飞机搭载气/液两相流实验研究.空间科学学报. 2000,20(4):340347.
    133郭烈锦.两相与多相流动力学.西安交通大学出版社,2002,第一版,8-11
    134徐硕昌.微重力流体科学及其应用.科学中国人,1996, 11:13-14
    135赵建福.微重力条件下气/液两相流流型研究进展.力学进展,1999, 29(3):369-382
    136王维城,刘瑜珂,张立宁,曾宪忠.微重力下管内凝结换热性能的研究.清华大学学报(自然科学版),1997,37(2):1-5
    137 P. D. Jong, K. S. Gabriel. A preliminary study of two-phase annular flow at microgravity: experimental data of film thickness. International Journal of Multiphase Flow, 2003, 29: 1203–1220
    138 P. D. Marco, W. Grassi. Motivation and results of a long-term research on pool boiling heat transfer in low gravity. International Journal of Thermal. Science. 2002, 41: 567–585
    139 J. N. Chung. Bubble dynamics, two phase flow, and boiling heat transfer in a microgravity environment, International Journal of Multiphase Flow, 1995, 20:75-86
    140 L. Zhao, K. S. Rezkallah. Gas-liquid flow patterns at microgavity conditions. InternationalJournal of Multiphase Flow. 1993, 19(5): 751-763
    141吕成道,李佛金,程尚模.微重力下两相流动沸腾换热综述.上海航天, 1997,(5): 44-49
    142 D. C. Lowe, K. S. Rezkallah. Flow regime identification in microgravity two-phase flows using void fraction signal. International Journal of Multiphase Flow, 1999, 25(3):433-457
    143 D. H. Christopher, J. Kim. A study of the effects of heater size, subcooling, and gravity level on pool boiling heat transfer. International Journal of Heat and Fluid Flow. 2004, 25:262–273
    144 J. Zhao, J. Xie, H. Lin. Microgravity Experiments of Two-Phase Flow Patterns aboard Mir Space Station. Acta Mechanica Sinica, 2001, 17(2):151-159
    145 D. B. Hepper, C.D. King, J.W. Littles. Zero-g experiments in two-phase fluid flow regimes. ASME paper 1975, A75-40880
    146 A. E. Dukler, J. A. Fabre, J. B. McQullen, R. Vernon. Gas-liquid flow at microgravity conditions: flow patterns and their transitions. International Journal Multiphase Flow, 1988,14(4):389-400
    147 C. Colin, J. Fabre, A. E. Dukler. Gas-liquid flow at microgravity conditions-I.Dispersed bubble and slug flow. International Journal of Multiphase Flow. 1993, 17(4):533-544
    148 C. Colin, J. Fabre. Gas-liquid pipe flow under microgravity condit ions: influence of tube diameter on flow patterns and presure drop. A dvances in Space Research, 1995, 16 (7) : 137-142
    149 W. S. Bousman, J. B. Mcuillen, L. C. Write. Gas-liquidflow pat terns in microgravity: effects of tube diameter, liquid visco sity and surface tension. International Jounal of Multiphase Flow. 1996, 22 (6): 1035-1053
    150 T. Fujii, T. Nakazawa, H. Asano, H. Yamada. Flow characteristics of gas-liquid two-phase anular flow under microgravity. Trans JSME, 1995,61B(585):1640-1645
    151 L. Zhao, K. S. Rezkallah. Pressure drop in gas-liquid flow at microgravity conditions. International Journal of Multiphase Flow. 1995, 21(5):837-849
    152 G. F. Hewitt. Multiphase flow: the gravity of the situation. In:3rd Microgravity Fluid Physics Conference, Cleveland, Ohio. 1996:13-15
    153 R. W. Rite, K. S. Rezkallah. Local and mean heat transfer coefficients in bubbly and slug flows under microgravity congditions. International Journal of Multiphase Flow.1997,23(1):37-57
    154 L. B. Fore, L. C. Witte, J. B. Mcquillen. Heat transfer to two-phase slug flows under reduced-gravity conditions, International Journal of Multiphase Flow. 1997, 23(2):301-311
    155 Y. Taitel. The role of surface tension in microgravity slug flow. Chemical Engineering Science, 1996, 51(5):695-700T.
    156 J. F. Zhao, J. C. Xie, H. Lin, W. R. Hu. Experimental study on two-phase gas-liquid flow patterns at the reduced gravity conditions. SCIENCE IN CHINA (Series E), 2001, 44(5):553-560
    157 T. Takamasa, T. Iguchia, T. Hazuku, T. Hibiki, M. Ishii. Interfacial area transport of bubbly flow under microgravity environment. International Journal of Multiphase Flow. 2003, (29): 291–304
    158 T. Takamasa, T. Hazuku, N. Fukamachi, N. Tamura, T. Hibiki, M. Ishii. Effect of gravity on axial development of bubbly flow at low liquid Reynolds number Experiments in Fluids. International Journal of Multiphase Flow. 2004, (37):631–644
    159 M. Iguchi, Y. Terauchi. Microgravity effects on the rising velocity of bubbles and slugs in vertical pipes of good and poor wettability. International Journal of Multiphase Flow. 2001, 27:2189-2198
    160赵建福,谢京昌,林海,胡文瑞.常重力和低重力条件下气液两相流实验研究.中国科学(E辑), 2002, 32(4): 491-495
    161赵建福,谢京昌,林海,胡文瑞, A.V. Ivanov, A.Y. Belyaev.部分重力条件下气液两相流型研究.工程热物理学报, 2004, 25(1): 85-87
    162赵建福,谢京昌,林海,胡文瑞, A.V. Ivanov, A.Y. Belyaev.不同重力条件下气/液两相流实验研究.工程热物理学报, 2001, 22(3):367-369
    163赵建福,胡文瑞.微重力气/液两相泡状流的摩擦压降.力学与实践, 2000,22:12-13
    164赵建福, K.S. Gabriel.微重力条件下90度弯管气液两相流型研究.工程热物理学报, 2004, 25(5): 801-803
    165赵建福.气泡初始尺寸对泡-弹状流型转换的影响.工程热物理学报, 2005, 26(5): 793-795
    166赵建福,胡文瑞.微重力两相流相似准则.工程热物理学报, 2003, 24(1): 131-133
    167赵建福,胡文瑞.微重力两相流相似模拟准则新探.应用基础与工程科学学报. 2002,10(1): 1-7
    168赵建福,论微重力弹环状流转换的空隙率匹配模型.应用基础与工程科学学报. 2000, 8(4): 394-397
    169吕成道,李佛金,王汉强等.地面模拟微重力下两相流动沸腾换热的分析.华中理工大学学报, 1998, 26(4): 81~83.
    170肖泽军,陈炳德,贾斗南.微重力下沸腾传热研究进展.核动力工程, 2003, 24(5): 435-438
    171俞平,王维城.微重力下气液两相流流型转换的通用关系式.清华大学学报(自然科学版), 1998, 32(10): 42-46
    172 K. S. Rezkallah. Weber number based flow-pattern maps for liquid-gas flows at microgravity. International Journal of Multiphase Flow. 1996, 22(6):1265-1270
    173 J. F. Zhao, W. R. Hu. Slug to Annular Flow Transition of Micorgravity Two-Phase Flow. International Journal of Multiphase Flow. 2000, 26(8):1295-1304
    174刘璿,郭航,马重芳.质子交换膜燃料电池低化学计量比的性能研究.工程热物理学报, 2005, 26(6): 1025-1027
    175刘璿,郭航,叶芳,马重芳.铜离子对PEMFC膜电极性能影响及恢复方法.北京工业大学学报,2006,32(12), 1135-1139.
    176 Picot D, Metkemeijer R, Bezian JJ, Rouveyre L. Impact of the water symmetry factor on humidification and cooling strategies for PEM fuel cell stacks. J Power Sources 1998; 75: 251-260.
    177 Choi KH, Peck DH, Kim CS, Shin DR, Lee TH. Water transport in polymer membranes for PEMFC. J Power Sources 2000; 86: 197-201.
    178 L. Valota, C. Kurwitz, A. Shephard. Microgravity flow regime data and analysis. International Journal of Multiphase Flow, 33(11): 1172-1185, 2007
    179 T. P. Lyubimova, R. V. Skuridin, I. S. Faizrakhmanova. Thermo- and soluto-cupillary convection in the floating zone process in zero gravity conditions. Journal of Crystal Growth. 303(1): 274-278, 2007.
    180施明恒,甘永平,马重芳.沸腾和凝结.高等教育出版社.第一版, 1995.
    181 S. Vasavada, X. Sun, M. Ishii. Study of two-phase flows in reduced gravity using ground based experiments. Experiments in Fluids, 43(1): 53-75, 2007.
    182 U. Rosendahl, M. E. Dreyer. Design and performance of an experiment for the investigation of open capillary channel flows. Experiments in Fluids. 42(5): 683-696, 2007.
    183 A. Grah, D. Haake, U. Rosendahl, et al. Stability limits of unsteady open capillary channel flow. Journal of Fluid Mechanics. 600: 271-289, 2008.
    184 U. Rosendahl, A. Ohlhoff, M. E. Dreyer, et al. Investigation of forced liquid flows in open capillary channels. Microgravity Science and Technology. 13(4): 53-59, 2002.
    185 A. Barbu, M. Ellis, C. Kurwitz, et al. Acoustic gauge monitoring of fluid inventory in a microgravity vortex separator. Measurement Science & Technology. 17(2): 403-410, 2006.
    186 H. W. Han, K. Gabriel. Flow physics of upward cocurrent gas-liquid annular flow in a vertical small diameter tube. Microgravity Science and Technology. 18(2): 27-38, 2006.
    187 J. F. Zhao, H. Lin, J. C. Xie, et al. Pressure drop of bubbly two-phase flow in a square channel at reduced gravity. Impact of the Gravity Level on Material Processing and Fluid Dynamics. 29(4): 681-686, 2002.
    188 S. K. Majumder, G. Kundu, D. Mukherjee. Pressure drop and bubble-liquid interfacial shear stress in a modified gas non-Newtonian liquid downflow bubble column. Chemical Engineering Science. 62(9): 2482-2490, 2007.
    189 K. Nilpueng, S. Wongwises. Flow pattern and pressure drop of vertical upward gas-liquid flow in sinusoidal wavy channels. Experimental Thermal and Fluid Science. 30(6): 523-534, 2006.
    190 T. Hibiki, T. Takamasa, M. Ishii, et al. One-dimensional drift-flux model at reduced gravity conditions. AIAA Journal, 44(7): 1635-1642, 2006.
    191 D. H. Everett, J. M. Haynes. Model studies of capillary condensation; 1. cylindrical pore model with zero contact angle. Journal of Colloid and Interface Science, 38(1): 125-137, 1972.
    192 T. V. Gestel, D. Sebold, W. A. Meulenberg, et al. Development of thin-film nano-structured electrolyte layers for application in anode-supported solid oxide fuel cells. Solid State Ionics. 179(11-12): 428-437, 2008.
    193 J. H. Tian, Z. Y. Shi, J. S. Shi, et al. Preparation of water management layer and effects of its composition on performance of PEMFCs. Energy Conversion and Management. 49(6): 1500-1505, 2008.
    194 S. Wongwises, M. Pipathattakul. Flow pattern, pressure drop and void fraction of two-phase gas-liquid flow in an inclined narrow annular channel. Experimental Thermal and Fluid Science. 30(4): 345-354, 2006.
    195 Y. Abe, A. Iwasaki, K. Tanaka. Microgravity experiments on phase change of self-rewetting fluids. Transport Phenomena in Microgravity. 1027: 269-285, 2004.
    196 J. F. Zhao, K. S. Gabriel. Two-phase flow patterns in a 90 degrees bend at microgravity. Acta Mechanica Sinica. 20(3): 206-211, 2004.
    197 J. F. Zhao, J. C. Xie, H. Lin, et al. Experimental study on two-phase gas-liquid flow patterns at normal and reduced gravity conditions. Science in China Series E-Technological Sciences. 44(5): 553-560, 2001.
    198 D. Haake, U. Rosendahl, A. Ohlhoff, et al. Title: Flow rate limitation in open capillary channel flows. Interdisciplinary Transport Phenomena in the Space Sciences. 1077: 443-458, 2006.
    199 Y. K. Chen, M. M. Weislogel, C. L. Nardin. Capillary-driven flows along rounded interior corners. Journal of Fluid Mechanics. 566: 235-271, 2006.
    200 U. Rosendahl, A. Ohlhoff, M. E. Dreyer. Choked flows in open capillary channels: theory, experiment and computations. Journal of Fluid Mechanics. 518: 187-214, 2004
    201 V. S. Mourik, A. Veldman, M. E. Dreyer. Simulation of capillary flow with a dynamic contact angle. Microgravity Science and Technology. 17(3): 87-94, 2005
    202传热学(第二版),杨世铭,高等教育出版社,北京,1987,10
    203 Chow L C., Faghri A., Forced condensation in a tube with suction at the wall for microgravitational applications, J. Heat transfer, 1988, vol. 110, pp 982-985
    204王补宣,杜小泽,表面张力对低Re下细竖管内流动凝结的影响,自然科学进展,第9卷,第8期,1999,723-728,
    205范铭,高鹰,葛海燕,竖壁膜状凝结理论分析,化工学报,第51卷,第2期,2000,278-281,
    206王补宣,杜小泽,水平和竖直细圆管内流动凝结换热特性的对比研究,工程热物理学报,第21卷,第1期,2000,66-70
    207 Munoz-Cobo, J.L., Herranz, L., Sancho, J., Tkachenko, I., and Verdu, G., 1996, Turbulent vapor condensation with noncondensible gases in vertical tubes, Int. J. Heat Mass Transfer,Vol. 39, No. 15, pp. 3249-3260.
    208 Wallis, G.B., 1969, One-Dimensional two-phase flow, McGraw-Hill, New York.
    209 Bowman, W.J, Hitchcock, J.E., Transient Compressible Heat Pipe Vapor Dynamics, Proc. ASME National Heat Transfer Conference, Houston, TX, 1988,vol.1, pp.329-338.
    210 Jang, J.H., Faghri, A. and Chang, W.S., Analysis of the Transient Compressible Vapor Flow in Heat Pipes, Int. J Heat Mass Transfer, 1991, vol.34, pp 2029-2037.
    211 Faghri A., Heat Pipe Science and Technology, Taylor and Francis, Washington, D.C.
    212 B.V. Derjaguin, Definition of the Concept of and Magnitude of the Disjoining Pressure and its Role in the Statics and Kinetics of Thin Layers of Liquid. Kolloidny Zhurnal, Vol. 17, pp. 191-197, 1955.
    213 F.W. Holm and S.P. Goplen, Heat Transfer in the Meniscus Thin-Film Transition Region. ASME J. Heat Transfer, Vol. 101, No. 3, pp. 543-547, 1979.
    214 Potash, Jr., M., and Wayner, Jr., P. C., Evaporation from a Two-Dimensional Extended Meniscus, Int. J. Heat and Mass Transfer, Vol. 15, 1972, pp, 1851-1863.
    215 Bankston, C.A. and Smith, H.J., 1973, Vapor flow in cylindrical heat pipes, J Heat Transfer, Vol. 95, pp. 371-376.
    216工程热力学(第三版),沈维道,蒋智敏,童均耕,高等教育出版社,北京,2001
    217 Seungmin Oh, Shripad T. Revankar, Complete condensation in a vertical tube passive condenser, Int. Comm. Heat and Mass Tran, 2005, 32, 593-602
    218 Faghri A. Chow L C., Annular condensation heat transfer in a microgravity environment, Int. Comm Heat and Mass Tran, 1991, 18(5):715-729
    219 R.A. SEBAN, A. FAGHER, Film condensation in a vertical tube with a closed top, Int. J. Heat Mass transfer, vol. 27, no. 6. pp. 944-948
    220高等应用数学问题的MATLAB求解,薛定宇,陈阳泉,清华大学出版社,北京,2004,8
    221 MATLAB教程,张志涌,北京航空航天大学出版社,北京,2006年8月,
    222 MATLAB与科学计算(第二版),王沫然,电子工业出版社,北京,2003,
    223 MATLAB原理与工程应用(第二版),Edward B. Magrab,Shapour Azarm,Balakumar Balachandran,James H. Duncan,Keith E. Herold,Gregory C. Walsh著,高会生,李新叶,胡智奇等译,电子工业出版社,北京,2006,
    224计算方法引论,徐萃薇,高等教育出版社,北京,1985,
    225数值方法和MATLAB实现与应用,Gerald Recktemwald著,伍卫国,万群,张辉等译,机械工业出版社,北京,2004,9
    226 Forsythe G E, Malcolm M A, Moler C B, Computer methods for mathematical computations. Englewood Cliffs: Prentice-Hall, 1977.
    227 W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical recipes in C. Cambridge University Press, New York, 2d edition, 1992.
    228 L. Shamping, R. Allen, Jr., and S. Preuss. Fundamentals of numerical computing. Wiley, New York, 1997.
    229 J. Dormand and P. Prince. A family of embedded Runge-Kutta formulae. Journal of computational and applied mathematics 1980, 6: 19-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700