用户名: 密码: 验证码:
使用PLIEF技术定量研究重型柴油机高负荷类似条件下多组份燃油的喷雾结构和特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发动机新的燃烧技术,包括均质压燃(HCCI)和低温燃烧(LTC)技术,依赖于对柴油喷雾发展过程的深入理解。因为柴油成分繁多、复杂以及光学手段的限制,研究人员都使用单组份或者多组份燃油定量研究实际柴油喷雾的发展过程,到目前为止,对现代柴油机高负荷类似条件下柴油喷雾的定量研究所使用的替代燃油为粘度较低的单一组份燃油,其性质与实际柴油相差较大。为此,本文使用复合激光诱导荧光技术定量研究了现代重型柴油机高负荷类似条件(环境温度950 K,环境密度60 kg/m3)下粘度接近2号轻柴油的多组份燃油气、液相喷雾的浓度场和气相喷雾的温度场,喷油压力和喷孔直径分别为180 MPa和0.10 mm。同时,本文分析了燃油粘度对喷雾发展过程以及着火时刻喷雾结构和特性的影响,为从燃油性质的角度控制燃烧提供重要的参考。
     研究发现用单一组份燃油模拟的柴油喷雾可以分为未扰液核(intact core)、液相油滴核(LDC),气相喷雾浓混核(VRC)、低温核(LTcore)以及气相喷雾头部和稀薄外壳。根据这六个结构参数的特征,喷雾的发展过程可以分为三个阶段。通过分析喷雾当量比的微观结构和质量份数分布情况,发现喷雾的三个阶段与燃油的当量比分布存在极大的相关性。同时还发现气相喷雾内部浓度分布极为不均匀,存在明显的分层现象。
     对多组份燃油喷雾发展过程的研究发现,多组份燃油喷雾的发展过程同样经历了与单组份燃油喷雾发展相同的三个发展阶段,但内部结构上因为粘度的差别存在较为明显的区别。燃油粘度主要影响燃油的蒸发,燃油粘度增大,蒸发速度明显减慢,而这种影响使得喷雾的内部结构产生了一系列的变化。此外,改变粘度对宏观特性没有明显影响。
     对着火时刻喷雾结构和特性的研究发现燃油粘度增大可以有效改善着火时刻头部的均匀性,限制过浓区域(如Φ>2)的发展,VRC均匀性改善,LTcore温度升高。同时,燃油粘度的增大使着火时刻Φ>2的气相燃油质量份数减小,0<Φ<1的气相燃油质量份数增大,这样虽然有利于抑制soot的生成,但是会促进NO的产生。
New engine combustion technologies, including HCCI (homogeneous charge compression ignition) combustion and Low-Temperature Combustion (LTC), rely on deep understanding to the diesel spray development. Because of the complexity and variety of the diesel fuel as well as the limitation of optical diagnosis technique, researchers have to employ surrogate fuel, including single or multi-component fuel, to quantitatively investigate the diesel spray development. However, the surrogated fuel employed to quantitatively study the spray structure and characteristics so far under the heavy-duty-diesel-engine like conditions was single-component fuel with lower viscosity compared with commercial diesel fuel. With the aim to understand the diesel spray development more accurately, this work investigated the liquid and vapor phase concentration and temperature distribution of multi-component surrogated fuel, which had a similar viscosity with #2 light diesel fuel, under high-load like conditions of heavy duty diesel engine (950 K, 60 kg/m3 for ambient temperature and density). The injection pressure and nozzle hole diameter were 180 MPa and 0.10 mm respectively. Afterwards, the effect of fuel viscosity on spray structure and characteristics at ignition timing were studied, which laid a foundation for combustion control by changing fuel properties.
     It was found that the sprays of single-component fuel comprised an intact core, a liquid-droplet core (LDC), a vapor-rich core (VRC), a low-temperature core (LTCore), a spray head and a lean sheath. The development of the spray featured three stages according to the spray structure parameters. By increasing the resolution of the equivalence ratio, it was further found that the micro-distribution of equivalence ratio was extremely heterogeneous with various islands of equivalence ratio in a stratified equivalence ratio zone, and the three stages were well correlated with the distribution of equivalence ratio.
     The observation of the spray development of multi-component fuel showed that the spray of multi-component also featured three stages as single-component spray developed. However there were apparent differences between the inner structures of the two kind of fuel, which were resulted from the effect of fuel viscosity. The fuel viscosity mainly influenced evaporation, and the increase of fuel viscosity led to distinct decrease of evaporation rate, thereby inducing a series of changes of inner structures of sprays. Meanwhile, the effect of fuel viscosity on macroscopic characteristics of sprays could be negligible.
     It was observed that increasing fuel viscosity could effectively improve the homogeneity of the spray head at ignition timing, while restricted the development of rich region (Φ>2 in this case). It was also found that concentration of VRC was more homogeneously distributed with lower temperature of LTcore at ignition as fuel viscosity increased. Additionally, the strategy of higher fuel viscosity reduced the fuel mass of overly rich mixturesΦ>2, and enhanced lean premixed mixtures of 0<Φ<1, which is favorable for reduction soot but unfavorable for inhibition of NO formation.
引文
[1]苏万华,赵华,王建昕,均质压燃低温燃烧发动机理论与技术,北京:科学出版社,2010:前言
    [2]李绍安,一种新型车用柴油机电液控制单体喷油器的计算机模拟和实验研究:[硕士学位论文],天津,天津大学,1996
    [3]孙剑萍,汤兆平,满足欧Ⅴ排放标准的轿车主流动力,车用发动机,2006(5):12-15
    [4]王万利,宋钧,周校平,黄震,柴油机排放法规及控制技术分析,内燃机,2002年第四期
    [5] Walter Knecht, Development Trends of Heavy Duty Diesel Engines in View of Future European Legislative Requirements, Sapporo:Seventh International Conference on Modeling and Diagnostics for Advanced Engine Systems (COMODIA 2008), 2008
    [6] J. Warnatz, U. Maas & R. W. Dibble., Combustion: Physical & Chemical Fundamentals, Modelling & Simulation, Experiments, Pollutant Formation (4th ed.), Berlin Heidelberg: Springer -Verlag, 2006
    [7]翁祖亮,平银生,从日益严重的能源和环境问题看我国中小功率柴油机的发展,中国内燃机学会中小功率柴油机分会与基础件分会论文集,2002,2~3
    [8]叶代启,烟气中氮氧化物污染的治理,环境保护科学,1999.4
    [9]魏淑芬,内燃机的排放污染分析及控制,环境保护,1996,(5):6~9
    [10]Youistsu Kakoi et al,“Emission Reductions Technology Applied to High Speed Direct Injection Diesel Engine”, SAE paper 980173, 1998
    [11]Jefferey A.Leet, et al,“EGR’s Effect on Oil Degradation and Intake System Performance”, SAE paper 980179,1998
    [12]Akihama, K., Takatori, Y., Inagaki, K., Mechanism of the smokeless rich Diesel combustion by reducing temperature, SAE paper 2001-01-0655, 2001
    [13]Kamimoto, T., and Bae M., High Combustion Temperature for the Reduction of Particulate in Diesel Engines, SAE paper 880423, 1988
    [14]Lutz, A.E., Kee, R.J., and Miller, J.A., Senkin: A Fortran Program For Predicting Homogenous Gas Phase Chemical Kinetics with Sensitivity Analysis, Sandia National Laboratories, SAND87-8248; 1994
    [15]T Kitamura, T Ito, J Senda and H Fujimoto, Mechanism of smokeless diesel combust ion wi th oxygenated fuels based on the dependence of the equivalence rat io and temperature on soot particle formation, International Journal of EngineResearch, 2002, Vol. 3(4): a223-247
    [16]苏万华,赵华,王建昕,均质压燃地位燃烧发动机理论与技术,北京:科学出版社,2010:110-112
    [17]何学良,李疏松,内燃机燃烧学(第一版),北京:机械工业出版社,1990: 147
    [18]高剑,蒋德明,柴油机喷雾特性的测试方法,柴油机,2002(6)
    [19]Chikahisa T, Araki T. In-Cylinder controle of smoke and NOx by high turbulent two-stage combustion in diesel engines. SAE 962113
    [20]A. Fath, K. U. Munch, Alfred leipertz, Spray Breakup Process of Diesel Fuel Investigated Close to the Nozzle, International Journal of Fluid Mechanics Research, Volume 24, Issue 1-3, Pp.251-260, 1997
    [21]Reitz R D, Bracco F V. Mechanism of Atomization of a Liquid Jet, Phys. Fluids, 1982,25:1730~1742
    [22]Castleman R. A., The Mechanism of Atomization of a Fuel Jet, Journal of Physics, 1932
    [23]Dejuhasz K. J., Dispersion of sprays in solid-injection oil, Journal of Physics, 1931
    [24]Schweitzer P. H., Mechanism of Disintegration of Liquid Jets, J. Appl. Phys., Vol. ... 136-159, 1931
    [25]Bergwerk, W., Flow Pattern in Diesel Nozzle Spray Holes, 1959
    [26]Shkadov V. Y., Instability of a two-layer capillary jet, International Journal of Multiphase Flow, Volume 22, Number 2, 1983
    [27]Rupe J. H., The Liquid Phase Mixing of a Pair of Impinging Streams, Atomization and Sprays, 1989
    [28]Muraszew A. E. Giffen and A. Muraszew, Atomization of Liquid Fuels, John Wiley, New York, 1953
    [29]Bracco F. V., Reitz R. D., Mechanism of Atomization of a Liquid Jet, Phys, Fluids, 1982
    [30]Lin S. P., Kang D. J., Atomization of a liquid jet, Physics of fluids, 1987, 30:2000-2006
    [31]Hiriroyasu H.,Arai M., Structure of Fuel Sprays in Diesel Engines, SAE Paper 900475
    [32]G.J.Smallwood and ?.L.Gülder, Views on the Structure of transient diesel sprays, Atomization and Sprays, vol.10,pp.355-386,2000
    [33]Chaves H., Knapp M., et al, Experimental Study of Cavitation in the Nozzle Hole of Diesel Injectors Using Transperengt Nozzles, SAE Paper 950290, 1995
    [34]Sateriou C., Andrews R., Smith M., Direct Injection Diesel Sprays and the Effectof Cavitation and Hydraulic Flip on Atomization, SAE Paper 950080, 1995
    [35]Tamaki N., Shimizu M., Hiroyasu H., Enhangcement of the atomization of a liquid jet by cavitation in a nozzle hole, Atomization and Sprays, 2001, 11: 125-137
    [36]三木英雄等,柴油机燃油喷雾雾化特性的实验研究,内燃机关(日文),1983, 1983, 22(0):10-17
    [37]Reitz R. D., Diwakar R., The Effect od Drop Breakup on Fuel Sprays, SAE Paper 840469, 1986
    [38]Bracco F. V., Reitz R. D., Mechanism of Atomization of a Liquid Jet, Phys, Fluids, 1982
    [39]Reitz, Rolf D. Atomization and Spray Technology (ISSN 0266-3481), 1987, vol. 3, no. 4:309-337
    [40]Su, T. and Farrell, P. V., Characterization of High-Injection Pressure Diesel Sprays with Relation to Particulate and Nox Emissions, Atomization and Sprays, 1998 vol. 8:83-107
    [41]Hiroyasu, H. and Arai,M. , Structures of Fuel Sprays in Diesel Engines”, SAE Paper No.900475
    [42]Wakuri,Y., Fuji,M., Amitani, T. and Tsuneya, R., Studies on the Penetration of Fuel Spray in a Diesel Engine, Bulletin of JSME , 1960,Vol.3,No.9,pp123-130,
    [43]Heywood J. B., Internal Combustion Engine Fundamental, McGraw-Hill: New York, 1988
    [44]Dent, J.,“A Basis for the Comparison of Various Experimental Methods for Studying Spray Penetration,”SAE Paper 710571,1971
    [45]Hiroyasu, H. and Arai, M.,“Structures of Fuel Sprays in Diesel Engines,”SAE Paper 900475, 1990
    [46]E. Delacourt, B. Desmet, B. Besson, Characterisation of Very High Pressure Diesel Sprays,fuel, 2005(84): 859–867
    [47]Naber,J. and Siebers, D., Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays, SAE Paper 960034,1996
    [48]I.V. Roisman , Lucio Araneo 1, C. Tropea, E?ect of ambient pressure on penetration of a diesel spray, International Journal of Multiphase Flow, 2007(33): 904–920
    [49]Kamimoto, T., Yokota, H. and Kobayashi, H., Effect of High Pressure Injection on Soot Formation processes in a Rapid Compression Machine to Simulate Diesel Flames”, SAE Paper 871610, 1987
    [50]Verhoeven, D., Vanhemelryck, J. and Baritaud, T., Macroscopic and Igniton Characteristics of High-Pressure Sprays of Single-Component Fuels, SAE Paper981069, 1998
    [51]Espey, C. and Dec, J., The Effect of TDC Temperature and Density on the Liquid-Phase Fuel Penetration in a D.I. Diesel Engine, SAE Paper 952456, 1995
    [52]Robert E. Canaan, John E. Dec and Robert M. Green,The Influence of Fuel Volatility on the Liquid-Phase Fuel Penetration in a Heavy-Duty D.I. Diesel Engine,SAE, 980510
    [53]Siebers, D., Liquid-Phase Fuel Penetration in Diesel Sprays, SAE Paper 980809, 1998.
    [54]Brian S. Higgins, Charles J. Mueller and Dennis L. Siebers,Measurements of Fuel Effects on Liquid-Phase Penetration in DI Sprays, SAE, 1999-01-0519
    [55]JoséV. Pastor, J. Javier López, JoséM. García , JoséM. Pastor, A 1D model for the description of mixing-controlled inert diesel sprays, Fuel ,2008(87) :2871–2885
    [56]Siebers, D. L., Scaling Liquid-Phase Fuel Penetration in Diesel Sprays Based on Mixing-Limited Vaporization, SAE Paper 1999-01-0528, 1999
    [57]R. Payri , F.J. Salvador, J. Gimeno, L.D. Zapata,Diesel nozzle geometry in?uence on spray liquid-phase fuel penetration in evaporative conditions , Fuel, 2008(87) :1165–1176
    [58]Felton, P., Bracco, F. and Bardsley, M., On the Quantitative Application of Exciplex Fluorescence to Engine Sprays, SAE Paper 930870, 1993.
    [59]Yeh, C., Kamimoto, T., Kobori, S. and Kosaka, H., 2-D Imaging of Fuel Vapor Concentration in a Diesel Spray via Exciplex-Based Fluorescence Technique, SAE Paper 932652, 1993
    [60]Yeh, C., Kamimoto, T., Kosaka, H. and Kobori, S., Quntitative Measurement of 2-D Fuel Vapor Concentration in a transient Spray via Laser-Induced Fluorescence Technique, SAE paper 941953, 1994
    [61]Senda J. and Kanda, T., Quantitative Analysis of Fuel Vapor Concentration in Diesel Spray by Exciplex Fluorescence Method, SAE Paper 970796, 1997
    [62]Kim, T., and Ghandhi, J.B., Quantitative 2-D Fuel Vapor Concentration Measurements in an Evaporating Diesel Spray using Exciplex Fluorescence, SAE Paper 2001-01-3495,2001
    [63]Tongwoo Kim, Jaal B. Ghandhy, Quantitative Vapor Phase Exciplex Fluorescence Measurements at High Ambient Temperature and Pressure, KSME International Journal, Vol. 17 No. 1, pp. 157-167, 2003
    [64]Tongwoo Kim, Quantitative 2-D Fuel Vapor Concentration Measurements in an Evaporating Diesel Spray Using the Exciplex Fluorescence Method, UMI: 3033311, 2001
    [65]Jong-Uk Kim and Byungyou Hong, Quantitative Vapour–liquid VisualizationUsing Laser-induced Exciplex Fluorescence, J. Opt. A: Pure Appl. Opt. 3: 338–345, 2001
    [66]孙田,苏万华,郭红松,复合激光诱导荧光定量标定技术及其对喷雾特性研究的应用,第一部分:燃油喷雾当量比定量标定方法的研究,内燃机学报,2010,28(1):1-9
    [67]孙田,苏万华,郭红松,复合激光诱导荧光定量标定技术及其对喷雾特性研究的应用,第二部分:喷射压力和喷孔直径对喷雾特性的定量分析,内燃机学报, 2010,28(1):10-19
    [68]Wanhua Su, Liwei Mao, Tengfei Xie, Spray Structure and Characteristics in Modern Diesel-Engine-like Conditions, Proceeding of the combustion institute, PROCI-D-10-00365, 2010
    [69]郭红松,使用PLIEF技术对重型柴油机相似环境条件下柴油喷雾结构及其浓度场的定量研究:[博士学位论文],天津:天津大学,2010
    [70]郭红松,苏万华,毛立伟,谢腾飞,利用复合激光诱导荧光法对气相柴油喷雾温度场和浓度场的定量标定,燃烧科学与技术,2010,16(2):123-127
    [71]Scheid, E., Pischinger, F., Knoche, K., Daams, H., Hassel, E. and Ruter, U., Spray Combustion Chamber with Optical Access, Ignition Zone Visualization and First Raman Measurements of Local Air-Fuel Ration, SAE Paper 861121,1986
    [72]Espey,C., Dec, J., Litzinger, T. and Santavicca, D., Quantitative 2-D Fuel Vapor Concentration Imaging in a Firing D.I. Diesel Engine Using Planar Laser-Induced Rayleigh Scattering, SAE Paper 940682,1994
    [73]Espey,C., Dec, J., Litzinger, T. and Santavicca, D., Planar Laser Rayleigh Scattering for Quantitative Vapor-Fuel Imaging in a Diesel Jet, Combustion and Plame, 1997,Vol 109:65-86
    [74]Anderson,O., Collin, R., Alder, M. and Egnell,R., Quantitative Imaging of Equivalence Ratio in DME Sprays Using a Chemically Preheated Combustion Vessel, SAE Paper,2000
    [75]John E Dec. A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging. SAE, 970873, 1997
    [76]John E. Dec, Patrick F. Fylinn, Charles K. Westbrook, An Intergrated View Combining Laser Diagnotics, Chemical Kinetics, And Experimental Validation , SAE Paper 1999-01-0509
    [77]Kuo, K. K., Principles of Combustion, Wiley & Sons,New York, 1986:589-594
    [78]Heywood, J. B., Internal Combustion Engine Fundamentals, McGraw-Hill, New York, 1988
    [79]Bosch Automotive Handbook, 3rd Ed., Robert Bosch GmbH, Stuttgart, Germany, worldwide distribution through the SAE, Warrendale, PA,1993
    [80]Abraham J, Magi V. A model for multi-component droplet vaporization in sprays.SAE Paper 980511,1998
    [81]Kwang-Jae Myong, Hirotaka Suzukib, Jiro Senda c, Hajime FujimotoEvaporation characteristics of multi-component fuel, Fuel, 2006, 85: 2632–2639
    [82]Kwang-Jae Myong, Hirotaka Suzukib, Jiro Senda c, Hajime Fujimoto,Spray inner structure of evaporating multi-component fuel, Fuel, 2008, 87:202–210
    [83]Chan KK. An evaporation model for coal–water mixture droplets atelevated temperatures. Fuel 1993,72(7):1035–8.
    [84]Gopalakrishnan V, Abraham J. E?ects of multi -component di?usion on predicted ignition characteristics of a n-heptane d?iusion ?ame. Combust Flame 2004;136:557–66.
    [85]Hallett WLH, Clark NA. A model for the evaporation of biomass pyrolysis oil droplets. Fuel 2006;85(4):532–44.
    [86]Abramzon B, Sazhin S. Convective vaporization of a fuel droplet with thermal radiation absorption. Fuel 2006;85(1):32–46.
    [87]Sazhin SS, AbdelghaarWA,Krutitskii PA, Sazhina EM,HeikalMR. New approaches to numerical modelling of droplet transient heating and evaporation. Int J HeatMass Transfer 2005;48(19–20):4215–28.
    [88]Le Clercq PC, Bellan J. Modeling of multi-component-fuel drop-laden mixing layers having a multitude of species. Proc Combust Inst 2005,30(2):2011–9.
    [89]Arias-Zugasti Manuel, Rosner Daniel E. Multi-component fuel droplet vaporization and combustion using spectral theory for a continuous mixture. Combust Flame 2003,135(3):271–84.
    [90] Hiroshi Matsuoka, Hayato Yamashita, Tomohiro Hayashi, Koji Kitano, Effects of Fuel roperties on Diesel Spray Behavior under High Temperature and High Pressure Conditions , SAE Paper 2009-01-0834,2009
    [91]Walter Knecht, Development Trends of Heavy Duty Diesel Engine in View of Future European Lagislative Requirements, COMODIA, Japan, 2008
    [92]Wanhua Su, Yingying Lu, Wenbin Yu, et al, High Density-Low Temperature Combustion in Diesel Engine Based on Technologies of Variable Boost Pressure and Intake Valve Timing, SAE Paper 2009-01-1911
    [92]陈国珍,荧光分析法,科学出版社,1975
    [93]汪洋,苏万华,史绍熙,用激光诱导荧光法(LIF)研究燃油喷雾的撞壁混合
    [94]Hua Zhao, Nicos Ladommatos,Engine Combustion Instrumentation and Diagnostics, Society of Automotive Engineers,Inc.2001
    [95]Melton,L., Spectrally Separated Fluorescence Emissions for Diesel Fuel Droplets and Vapor, Applied Optics, 1983, 22(14):2224-2226,
    [96] Tonghoo.Kim,M.S.Beckman,P.V.Farrell and J.B.Ghandhi,Evaporating SprayConcentration Measurements from Small and Medium Bore Diesel Injectors,SAE Paper 2002-01-0219
    [97]周龙保,内燃机学,第一版,北京:机械工业出版社,1999.32
    [98]孙田,复合激光诱导荧光定量标定技术及其对柴油喷雾特性研究的应用:[博士学位论文],天津;天津大学,2009
    [99]A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, Amsterdam: Gordon and Breach Publishers, 1996
    [100]C. Nan Yeh, T. Kamimoto, H. Kosaka and S. Kobori, Quantitative measurements of 2D Fuel vapor concentration in a Transient Spray via Laser Induced Fluorescence Technique, SAE Paper 941953
    [101]H. Zhao and N. Ladommatos, Optical diagnostics for in-cylinder mixture formation measurements in IC engines, Prog. Energy Combust. Sci. 24, 297-336 (1998)
    [102]Jose V.Pastor, Jose J.Lopez, J.Enrique Julia, Planar Laser-Induced Fluorescence Fuel Concentration Measurement in isothermal Diesel Sprays, Optics Express, Vol.10,N
    [103]M. S. Beckman and P. V. Farrell, Simultaneous Liquid and Vapour Diesel Fuel Spray Images from a HEUI Injector, ILASS Americas, 14th Annual Conference on Liquid Atomization and Spray Systems, Dearborn, MI, May 2001
    [104]El-Wakil, M., Myers, P. and Uyehara, O., Fuel Vaporization and Ignition lag in Diesel Combustion, SAE 560063, 1956
    [105]华自强,工程热力学,第二版,高等教育出版社,1986
    [106]童景山,流体热物性学,第二版,北京:中国石化出版社,2008
    [107] Antoine, C., C.R., 107: 681-836, 1888
    [108]Yaws, C. L., Thermodynamic and Physical Property Data, Gulf Publishing Company
    [109]童景山,流体热物性学,第一版,北京:中国石化出版社,1996
    [110]Bondi A., Ind Eng. Chen. Fundam., 1966, 5: 443
    [111]Prof. Dr.-ling. A. Leipertz, Spary and Atomization, Lehrstuhl fur Technische Thermodynomic (LTT), German, 2007
    [112]Borman G L., Combustion Engineering. Boston: McGraw-Hill, 1998
    [113]C. T. Chang, P.V. Farrell, A study on the effects of fuel viscosity and nozzle geometry on high injection pressure diesel spray characteristics, SAE Paper 970653, 1997
    [114]T. Kamimoto, S. Matsuoka. Prediction of Spray Evaporation in Reciprocating Engines, SAE Trans. 770413
    [115]Ikura, S., Kadota, T. and Hiroyasu, H., Diesel Engine Combustion and ItsModeling Trans. of JSME, 41-345, 1975

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700