用户名: 密码: 验证码:
HIV-Tat-CLIO标记对大鼠骨髓间充质干细胞生物学行为的影响及MRI示踪效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分HIV-Tat-CLIO标记对大鼠骨髓间充质干细胞生物学行为的影响
     目的:
     探讨HIV-Tat蛋白转导域交联氧化铁复合物(HIV transduction domaincross-linked iron oxide,HIV-Tat-CLIO)标记对体外培养的大鼠骨髓间充质干细胞(rat marrow-derived mesenchymal stem cells,rMSCs)的可行性、剂量关系以及对细胞活力、增殖、分化和迁移能力等生物学行为的影响。
     材料与方法:
     原代培养rMSCs至第3代,检测CD34,CD45和CD90的表达以鉴定之。不同浓度的HIV-Tat-CLIO标记rMSCs后利用普鲁士铁染色、体外MRI显像及台盼兰细胞活性测定等方法确定最佳标记条件。用CLIO 25μg/ml和HIV-Tat-CLIO 25μg/ml分别标记rMSCs各24h,通过普鲁士兰铁染色比较两组纳米铁的细胞标记效率。运用普鲁士兰染色及扫描电镜技术观察铁颗粒的细胞内存在部位。MTT实验测定该标记方法对细胞增殖能力的影响;流式细胞仪测定标记前后细胞表面标记物的表达及细胞周期的变化;通过油红0和碱性磷酸酶染色测定这种标记方法对rMSCs细胞分化能力的影响;Transwell实验测定其对干细胞迁移能力的变化。
     结果:
     培养的第3代rMSCs CD34(-),CD45(-)和CD90(+)。HIV-Tat-CLIO最佳标记浓度为25μg/ml。HIV-Tat-CLIO组较CLIO组在rMSCs的标记效率上获得明显改善。细胞标记后,A570波长的光吸收值无明显变化;细胞表面CD34、CD45和CD90分子的表达无明显差异;处于S期的MSCs数量(S%)、G_1%、增殖指数PrI值(S+G_2M)%以及细胞凋亡情况均无显著改变;这种标记物对细胞分化和运动迁移能力均无显著影响。
     结论:
     HIV-Tat-CLIO标记大鼠MSCs后对其生物学行为无明显影响,标记后的干细胞可以正常增殖、分化及运动迁移,为磁共振活体监测干细胞移植后的动态变化提供有力的保证。
     第二部分干细胞移植治疗大鼠后肢缺血中HIV-Tat-CLIO标记磁共振体内示踪的研究
     目的:
     探讨磁共振成像(Magnetic Resonance Imaging,MRI)无创体内示踪HIV-Tat-CLIO(HIV transduction domain cross-linked iron oxide)标记的移植大鼠骨髓间充质干细胞(rat Marrow-derived Mesenchymal Stem cells,rMSCs)的可行性和有效性,并且对该标记后的rMSCs移植治疗大鼠后肢缺血的效果进行客观评价。
     材料和方法:
     原代培养6周龄雄性SD大鼠的rMSCs至第3代,检测CD34,CD45和CD90的表达以鉴定。用HIV-Tat-CLIO 25μg/ml标记rMSCs 24h。另有一组细胞继续以5-溴脱氧尿苷(BrdU)3μg/ml复合标记rMSCs 24h。于大鼠右后肢缺血模型建立后的第7天进行rMSCs细胞移植。选用6周龄雄性SD大鼠28只,分为4组,每组各7只。A组为移植HIV-Tat-CLIO标记的rMSCs;B组为移植HIV-Tat-CLIO及BrdU复合标记的rMSCs;C组为移植未标记的rMSCs;D组为注射同移植体积的无菌PBS液。分别在移植术后3d、1周、2周、4周进行MRI检查示踪HIV-Tat-CLIO标记的rMSCs分布情况(C组和D组仅于术后第3d进行MRI扫描1次)。在第4周各组均采用非致冷红外热成像仪检测大鼠后肢皮肤温度,进行缺血后肢的损伤评分,并进行DSA造影,之后处死所有大鼠进行组织学检查。进行HE染色和普鲁士兰铁染色,BrdU、Ⅷ因子免疫组化染色,并计算毛细血管密度。
     结果
     培养的第3代rMSCs CD34(-),CD45(-)和CD90(+)。B组和C组各有1只实验鼠因切口感染坏死,分别于术后第5天和第8天死亡,B组另有1只于移植术后第2周MRI检查时麻醉意外死亡。其余25只均存活至术后第4周。MRI检查:A组和B组在MRI上的显示接近。C组和D组在MRI上无特殊信号变化。A组和B组在术后第3d,MRI显示注射部位圆形低强度信号影;术后1周,MRI显示原低信号灶呈中心向周围扩散趋势,信号呈颗粒状,部位与随后的组织学检查结果一致;术后第2周见低密度影进一步扩散,信号强度有所弱化;术后第4周信号强度进一步弱化。低密度颗粒扩散范围局限于原部位7mm处。非致冷红外热成像仪检测大鼠后肢皮肤温度发现:A、B、C和D组的右后肢平均皮肤温度分别为32.12±0.51℃、32.39±0.61℃,31.97±0.56℃、31.16±0.67℃。A、B、C这3组间平均皮肤温度无显著性差异(P>0.05),A组与D组,B组与D组,C组与D组间均有显著性差异(P<0.05)。缺血后肢的损伤评分:A、B、C和D组的缺血后肢损伤评分分别为0.68±0.17、0.65±0.24、0.67±0.11、1.79±0.22。A、B、C这3组间缺血后肢损伤评分无显著性差异(P>0.05),A组与D组,B组与D组,C组与D组间均有显著性差异(P<0.05)。DSA造影:A、B、C和D组的造影显示大鼠缺血侧后肢大腿部从股骨大转子至股骨下段区域内的血管评分平均各为:2.56±0.37、2.51±0.29、2.58±0.26、1.33±0.41。A、B、C这3组间缺血后肢DSA造影血管评分无显著性差异(P>0.05),A组与D组,B组与D组,C组与D组间均有显著性差异(P<0.05)。组织学检查:A、B、C和D组的缺血后肢肌肉组织中毛细血管密度分别为570.35±68.17/mm~2、563.02±61.26/mm~2、576.97±77.87/mm~2、513.01±70.68/mm~2。A、B、C这3组间毛细血管密度无显著性差异(P>0.05),A组与D组,B组与D组,C组与D组间均有显著性差异(P<0.05)。BrdU染色、普鲁士铁染色、Ⅷ因子免疫荧光及MRI的结果有良好的相关性。
     结论
     HIV-Tat-CLIO标记的rMSCs移植入大鼠后肢缺血模型后可以运用MRI进行动态监测,根据低强度信号的范围变化可以比较清晰的显示移植后的rMSCs在宿主体内的迁移和分布。rMSCs移植能够提高大鼠后肢缺血组织的血管再生能力,促进缺血肢体的血运重建和功能恢复,而HIV-Tat-CLIO标记并不影响rMSCs的治疗作用。
Part One Effects of HIV-Tat-CLIO on the physiological manner of rat marrow-derivedmesenchymal stem cells
     Objective
     To evaluate the feasibility of HIV transduction domain cross-linked iron oxide (HIV-Tat-CLIO) labeling technique and its labeling efficiency, toxicity and effect on cellular function of rat marrow-derived mesenchymal stem cells (rMSCs).
     Materials and Methods
     On the basis of the difference of cellular adherent ability, MSCs from primary cultures of rat marrow were isolated and purified by the preplate technique. To verify the nature of cultured rMSCs, the 3rd passage cells were labeled against CD34, CD45 and CD90 and analyzed by flow cytometry. We chose the 3rd passage rMSCs to follow the later study. The cells were labeled by the HIV-Tat-CLIO with 25μg /ml for 24h or by CLIO with 25μg/ml for 24h. The labeling percentage was assessed by the Prussian blue staining to compare the effects of different tag technique. After labeling of rMSCs with HIV-Tat-CLIO complexes, Prussian blue staining and electron microscopy confirmed the presence of iron oxide nanoparticles inside the cells and cellular toxicity, functional capacity were determined by trypan blue exclusion, MTT assay, oil 0 and AKP staining and FITC-and PE-conjugated monoclonal antibodies directed against CD34, CD45 and CD90.We used transwell test to assess the ability of migration.
     Results
     After 3 passages, rMSCs were negative for CD34 and CD45 and positive for CD90.The labeling percentage of HIV-Tat-CLIO was better than the CLIO group. HIV-Tat-CLIO labeled cells demonstrated no short or long-term toxicity, changes in differentiation capacity of the rMSCs, or changes in phenotype when compared with unlabeled cells. There was also no change on the manifestation of cells capability for differentiation and migration.
     Conclusion
     The HIV-Tat-CLIO incorporation did not affect the capability for cell viability, proliferation, differentiation and migration of rMSCs which can be tracked lively by MRI. It was an efficient and effective technique for incorporating the nanoparticles within endosomes, thereby labeling cells that can be detected by MRI. Cell labeling using these methods was likely to enhance the development of cell-based strategies for the repair or replacement of tissues and other novel therapies.
     Part TwoMagnetic Resonance Tracking of Transplanted Rat Marrow-derived MesenchymalStem Cells Labeled by HIV-Tat-CLIO in Rat Model of Hindlimb Ischemia
     Objective
     To investigate the feasibility and effect of using HIV-Tat-CLIO to label rMSCs for monitoring their temporal and spatial migration in vivo by magnetic resonance imaging (MRI) and evaluate the treatment efficiency of the implantation of HIV-Tat-CLIO labeled rMSCs in the model of rat hindlimb ischemia.
     Materials and Methods
     MSCs from primary cultures of rat marrow were isolated and cultured to the 3rd passage. The cells were labeled against CD34, CD45 and CD90 and analyzed by flow cytometry to verify the nature of cultured rMSCs. The cells were labeled by the HIV-Tat-CLIO with 25μg /ml for 24h and another cells were double labeled by BrdU (5-bromodeoxyuridine) with 3μg /ml for 24h, respectively. Twenty eight SD rats were randomly divided into 4 groups, containing 7 ones in each. The femoral arteries of the rats were excised to establish the model of right hindlimb ischemia and the model was check as successful according to the DSA imaging. At the 7th day after the operation, rMSCs implantation was accomplished with the technique of intramuscularly injection. We established 4 group, including A, B, C and D individually injected with HIV-Tat-CLIO labeling rMSCs, double labeled rMSCs with HIV-Tat-CLIO and BrdU, unlabeled rMSCs and same volume PBS liquids. MRI was performed at 4 different time points after the ischemia model procedure (the 3rd day, 1st week, 2nd week and the 4th week, individually) and the group C and D were only checked once on the 3rd day. That is, in vivo MR imaging was used to track their fate. At the 4th week, the skin temperatures of the ischemic hindlimb were measured with infrared thermography and the impaired score of limb function were assessed. Additionally, we carried out DSA to evaluate the hindlimb angiography and used immunohistochemistry technique to record the capillary density of the ischemic muscular tissue to observe the formation of new blood vessels. We united the staining techniques of Prussian blue and BrdU and MRI to assess the labeled effected of transplanted rMSCs.
     Results
     The 3rd passage rMSCs were negative for CD34 and CD45 and positive for CD90.During our experiment, there were 3 rats dead. Two rats in group B and C died of incision infection and the other in group B was due to the anethesia incident. The implanted cells were visible on MR images as a hypointense area at the injection site on the 3rd day after the rMSCs implantation. Then gradually separated into small particles and dispersed around the injection site during the follow 3 weeks. The skin temperature of the ischemic hindlimb was higher in A (32.12±0.51℃),B (32.39±0.61℃)and C (31.97±0.56℃) group than in group D (31.16±0.67℃) 4 weeks after the implantation procedure (P<0.05) . There were no group difference between group A and B, B and C or A and C (P>0.05) . Impaired score of limb function was significantly lower in group A (0.68±0.17) , B (0.65±0.24) and C (0.67±0.11) than in group D (1.79±0.22) 4 weeks after the implantation procedure (P < 0.05) . There were no obviously group difference between group A and B, B and C or A and C (P> 0.05) . The hindlimb angiography showed that the average angiographic score was 2.56±0.37 in group A, 2.51±0.29 in group B, 2.58±0.26 in group C and1.33±0.41 in group D. Group A, B and C were significantly higher than group D (P < 0.05) . There were no obviously group difference between group A and B, B and C or A and C (P>0.05) . The capillary density was 570.35±68.17/mm~2 in group A, 563.02±61.26/mm~2 in group B, 576.97±77.87/mm~2 in group C and 513.01 + 70.68/mm~2 in group D. Group A, B and C were significantly higher than group D (P < 0.05) . There were no obviously group difference between group A and B, B and C or A and C (P>0.05) .
     Conclusion
     The technique of MRI in vivo tracking transplanted rMSCs preoperatively labeled by HIV-Tat-CLIO was feasible and effective. The HIV-Tat-CLIO labeled rMSCs implantation could stimulate the formation of the new blood vessels and promote the foundation of the blood flow and rehabilitation of limb function in the model of rat hindlimb ischemia. Using the HIV-Tat-CLIO combination for magnetic cellular labeling should facilitate translation of this approach into clinical trials.
引文
1.朱兵,戈小虎,刘杰,等.无创检查诊断下肢动脉闭塞症的应用价值.中国普通外科杂志,2003,12(6):459—461.
    2.刘清泉,杨俊德,朱雯霞,等.下肢动脉硬化闭塞症的诊治.中国普通外科杂志,2002,11(7):440—441.
    3. Lenk K, Adams V, hurz P, et al. Therapeutical potential of blood derived progenitor cells in patients with peripheral arterial occlusive disease and critical limb ischaemia. Eur Heart J, 2005, 26(18): 1903—1909.
    4. De Nigris F, Williams-Ignarro S, Sica V, et al. Therapeutic effects of concurrent autologous bone marrow cell infusion and metabolic intervention in ischemia-induced angiogenesis in the hypercholesterolemic mouse hindlimb. Int J Cardiol, 2007, 117(2):238—243.
    5. Tatsumi T, Matsubara H. Therapeutic angiogenesis for peripheral arterial disease and ischemic heart disease by autologous bone marrow cells implantation. Nippon Rinsho, 2006, 64(11):2126—2134.
    6. Yamamoto K, Kondo T, Suzuki S, et al. Molecular evaluation of endothelial progenitor cells in patients with ischemic limbs: therapeutic effect by stem cell transplantation. Arteriosclera Thromb Vasc Biol, 2004,24(12): e192—e196.
    7. Padilla L, Krotzsch E, De La Garza AS, et al. Bone marrow mononuclear cells stimulate angiogenesis when transplanted into surgically induced fibrocollagenous tunnels: Results from a canine ischemic hindlimb model. Microsurgery, 2007, 27(2):91—97.
    8.黄平平,李尚珠,韩明哲,等.自体外周血干细胞移植治疗下肢动脉硬化性闭塞症.中华血液学杂志,2003,24(6):308—311.
    9. Wang PP, Li JZ, Han M Z, et al. Autologous transplantaion of peripheral blood stem cells as an effective therapeutic approach for severe arteriosclerosis obliterans of lower extremities. Thromb Haemost, 2004, 91:606—609.
    10.郭连瑞,谷涌泉,张建,等.不同途径移植骨髓单个核细胞治疗大鼠后肢缺血.中国临床康复,2005,9(10):57—59.
    11. Cao Y, Hong A, Schulten H, Post MJ. Update on therapeutic neovascularization. Cardiovasc Res 2005, 65(3):639—648.
    12.杨晓凤,吴雁翔,王红梅,等.自体外周血干细胞移植治疗62例缺血性下肢血管病的临床研究.中华内科杂志,2005,44(2):95—98.
    13.吴雁翔,杨晓凤,王红梅,等.干细胞治疗下肢缺血性疾病疗效观察.中国修复重建外科杂志,2005,19(12):1019—1021.
    14. Sykova E, Jendelova P. Magnetic resonance tracking of transplanted stem cells in rat brain and spinal cord. Neurodegener Dis. 2006, 3(1-2):62—67.
    15. Arbab AS, Yocum GT, Kalish H, et al. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood. 2004, 104(4):1217—1223.
    16. Bos C, Delmas Y, Desmouliere A, et al. In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology. 2004, 233(3):781—789.
    17. Himes N, Min JY, Lee R, et al. In vivo MRI of embryonic stem cells in a mouse model of myocardial infarction. Magn Reson Med. 2004, 52(5):1214—1219.
    18. Lewin M, Carlesso N, Tung CH, et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol. 2000, 18(4):410—414.
    19. Arbab AS, Yocum GT, Rad AM, et al. Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed. 2005, 18(8):553—559.
    20. Frank JA, Miller BR, Arbab AS, et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology. 2003, 228(2):480—487.
    21. Arbab AS, Bashaw LA, Miller BR, et al. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nancparticles and transfection agent for cellular MR imaging. Radiology. 2003, 229(3):838—846.
    22. Fretz MM, Penning NA, Al-Taei S, et al. Temperature-, concentration- and cholesterol-dependent translocation of L- and D-octa-arginine across the plasma and nuclear membrane of CD34+ leukaemia cells. Biochem J, 2007, 403(2):335—342.
    23.丁劲,刘军,薛采芳,等.TAT-乙肝病毒靶向核糖核酸酶融合蛋白原核载体的构建及表达.细胞与分子免疫学杂志,2003,19:49—52.
    24. Garden Oh, Reynolds PR, Yates J, et al. h rapid method for labelling CD4+ T cells with ultrasmall paramagnetic iron oxide nanoparticles for magnetic resonance imaging that preserves proliferative, regulatory and migratory behaviour in vitro. J Immunol Methods, 2006, 314(1-2):123—133.
    25. Wagstaff KM, Glover DJ, Tremethick DJ, et al. Histone-mediated transduction as an efficient means for gene delivery. Mol Ther, 2007,15(4):721—731.
    26. Walter GA, Cahill KS, Huard J, et el. Noninvasive monitoring of stem cell transfer for muscle disorders. Magn Reson Med, 2004,51:273—277.
    27. Kraitchman DL, Heldman AW, Atalar E, et al. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation, 2003,107:2290—2293.
    28. Lu CW, Hung Y, Hsiao JK, et al. Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett, 2007, 7(1): 149-154.
    29. Brooks H, Lebleu B, Vives E, et al. Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev, 2005,57(4):559—577.
    30. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science, 1999,284:143—147.
    31. Tsai RY, Kittappa R, McKayRD, et al. Plasticity, niches, and the use of stem cells. Dev Cell, 2002,2(6):707—712.
    32. Emmerich J, Fiessinger JN. Medical treatment of critical leg ischemia: current status and future perspectives of gene and cell therapy. Bull Acad Natl Med, 2006, 190(3):667—680.
    33. Unger EC. How can superparamagnetic iron oxides be used to monitor disease and treatment? Radiology, 2003,229(3):615—616.
    34. Kalish H, Arbab AS, Miller BR, et al. Combination of transfection agents and magnetic resonance contrast agents for cellular imaging: relationship between relaxivities, electrostatic forces and chemical composition. Magn Resort Med. 2003, 50(2):275—282.
    35.柯以铨,修俊刚,杨志军,等.超顺磁性氧化铁颗粒用于分子成像和神经细胞成像的研究进展.中华神经医学杂志,2006,5(3):308—311.
    36. Zhao M, Kircher MF, Josephson L, et al. Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug Chem, 2002,13(4):840—844.
    37. Arbab AS, Bashaw LA, Miller BR, et al. Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques. Transplantation, 2003,76(7):1123—1130.
    38.杨志军,徐如祥,姜晓丹,等.菲立磁标记大鼠骨髓基质细胞及自体移植后磁共振示踪的研究.中华神经医学杂志,2005,4(2):115—120.
    39. Bulte JW, Kraitchman DL, Mackay AM, et al. Chondrogenic differentiation of mesenchymal stem cells is inhibited after magnetic labeling with ferumoxides. Blood, 2004,104(10):3410—3412.
    40. Hill JM, Dick AJ, Raman VK, et al. Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation, 2003, 108(8):1009—1014.
    41. Kostura L, Kraitchman DL, Mackay AM, et al. Feridex labelling of mesenchymal stem cells inhibits chondrogenisis but not adipogenisis or osteogenesis. NMR in Biomed, 2004,17(7):513—517.
    42. Libura J, Drukala J, Majka M, et al. CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood, 2002,100(7):2597—2606.
    43. Belch JJ, Topol EJ, Agnelli G, et al. Critical issues in peripheral arterial disease detection and management: a call to action. Arch Intern Med, 2003,163(8):884—892.
    44. Kawamura A, Horie T, Tsuda I, et al. Clinical study of therapeutic angiogenesis by autologous peripheral blood stem cell (PBSC) transplantation in 92 patients with critically ischemic limbs. J Artif Organs, 2006, 9(4):226-233.
    45. Stabile E, Burnett MS, Watkins C, et al. Impaired arteriogenic response to acute hindlimb ischemia in CD4-knockout mice. Circulation,2003, 108(2):205-210.
    46. Otsuka H, Akashi H, Murohara T, et al. The prostacyclin analog beraprost sodium augments the efficacy of therapeutic angiogenesis induced by autologous bone marrow cells. Ann Vasc Surg. 2006, 20(5):646—652.
    47. Blasberg RG, Tjuvajev JG. Molecular genetic imaging: current and future perspectives. J Gin Invest, 2003, 111 (10): 1620—1629.
    48. Chapon C, Franconi F, Lemaire L, et al. High field magnetic resonance imaging evaluation of superparamagnetic iron oxide nanoparticles in a permanent ratmyocardial infarction. Invest Radi, 2003, 38(3):141 —146.
    49. Bulte JW, Arbab AS, Douglas T, et al. Preparation of magnetically labeled cells for cell tracking by magnetic resonance imaging. Methods Enzymol,2004, 386(2):275-299.
    50. Wei JJ, Wang RZ, Lu JJ, et al. In vivo tracking of bone marrow mesenchymal stem cells labeled with superparamagnetic iron oxide after cerebral ischemia in rats by magnetic resonance imaging. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2007, 29(1): 73-77.
    51. Arbab AS, Jordan EK, Wilson LB, et al. In vivo trafficking and targeted delivery of magnetically labeled stem cells. Hum Gene Ther, 2004,15(4): 351-360.
    52. Norman AB, Thomas SR, Pratt RG, et al. Magnetic resonance imaging of neural transplants in rat brain using a superparamagnetic contrast agent. Brain Res, 1992, 594 (2): 279-283.
    53. Ben-Hur T, Einstein O, Mizrachi-Kol R, et al. Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia, 2003, 41(1):73—80.
    54. Bulte JWM, Zhang S, van Gelderen P, et al. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA, 1999,96:15256-15261.
    55. Jendelova P, Herynek V, Urdzikova L, et al. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res, 2004, 76(2) :232 -243.
    56. Modo M, Mellodew K, Cash D, et al. Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage, 2004, 21(1) :311—317.
    57. Zhang ZG, Jiang Q, Zhang R, et al. Magnetic resonance imaging and neurosphere therapy of stroke in rat. Ann Neurol, 2003, 53(2):259—263.
    58. Lee IH, Bulte JW, Schweinhardt P, et al. In vivo magnetic resonance tracking of olfactory ensheathing glia grafted into the rat spinal cord. Exp Neurol, 2004, 187(2): 509-516.
    59. Rogers WJ, Meyer CH, Kramer CM, et al. Technology insight: in vivo cell tracking by use of MRI. Nat Clin Pract Cardiovasc Med, 2006, 3(10):554-562.
    60. Heil M, Ziegelhoeffer T, Mees B, et al. A different outlook on the role of bone marrow stem cells in vascular growth: bone marrow delivers software not hardware. Circ Res, 2004, 94(5):573-574.
    61. Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood, 2003, 101(9):3722—3729.
    62. Tse WT, Pendleton JD, Beyer WM, et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation, 2003, 75(3):389—397.
    63. Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 2002, 99(10):3838—3843.
    64. Le Blanc K, Tammik L, Sundberg B, et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol, 2003, 57(1): 11-20.
    65. Le Blanc K, Tammik C, Rosendahl K, et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol, 2003, 31 (10) :890—896.
    66. Sasaki S, Inoguchi T, Muta K, et al. Therapeutic angiogenesis by ex vivo expanded erythroid progenitor cells. Am J Physiol Heart Circ Physiol, 2007, 292(1) :H657-H665.
    1. Chauhan A, Tikoo A, Kaput AK, et al. The taming of the cell penetrating domain of the HIV Tat: myths and realities. J Control Release, 2007, 117(2) : 148—162.
    2.丁劲,刘军,薛采芳,等.TAT-乙肝病毒靶向核糖核酸酶融合蛋白原核载体的构建及表达.细胞与分子免疫学杂志,2003,19:49—52.
    3. Vladimir P, Torchilin, Tatyana S, et al. Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. ProcNatl Acad Sci USA, 2003,100(4):1972—1977.
    4. Suk JS, Suh J, Choy K, et al. Gene delivery to differentiated neurotypic cells with RGD and HIV Tat peptide functionalized polymeric nanoparticles. Biomaterials, 2006,27(29):5143—5150.
    5. Al-Taei S, Penning NA, Simpson JC, et al. Intracellular traffic and fate of protein transduction domains HIV-1 TAT peptide and octaarginine. Implications for their utilization as drug delivery vectors. Bioconjug Chem, 2006, 17(1):90—100.
    6. Jarajapu YP, Baltunis J, Knot HJ, et al. Biological evaluation of penetration domain and killing domain peptides. J Gene Med, 2005, 7(7):908—917.
    7. Zhou SH, He DC, Zhang LJ, et al. Prokaryotic expression of fusion protein TAT-EDAG and study on its transduction activity. Sheng Wu Gong Cheng Xue Bao, 2006, 22(4):598—603.
    8. Tkachenko AG, Xie H, Liu Y, et al. Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjug Chem, 2004, 15(3):482—490.
    9. Toro A, Grunebaum E. TAT-mediated intracellular delivery of purine nu(?)leoside phosphorylase corrects its deficiency in mice. J Clin Invest, 2006,116(10) :2717—2726.
    10. Hetzer C, Dormeyer W, Schnolzer M, et al. Decoding Tat: the biology of HIV Tat posttranslational modifications. Microbes Infect, 2005, 7(13): 1364 -1369.
    11. Lewin M, Carlesso N, Tung CH, et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol. 2000,18(4):410-144.
    12. Eguchi A, Akuta T, Okuyama H, et al. Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells. J Biol Chera, 2001, 276(28):26204-26210.
    13. Becker-Hapak M, McAllister SS, Dowdy SF, et al. TAT mediated protein transduction into mammalian cells. Methods, 2001, 24:247—256.
    14. Leifert JA, Harkins S, Whitton JL. Full-length proteins attached to the HIV tat protein transduction domain are neither transduced between cells, nor exhibit enhanced immunogenicity. Gene Therapy,2002, 9:1422—1428.
    15. Rusnati M, Tulipano G, Urbinati C, et al. The basic domain in HIV-1 Tat protein as a target for polysulfonated heparin-mimicking extracellular Tat antagonists. J Biol Chem, 1998, 273(26): 16027-16037.
    16. Garden OA, Reynolds PR, Yates J, et al. A rapid method for labelling CD4+ T cells with ultrasmall paramagnetic iron oxide nanoparticles for magnetic resonance imaging that preserves proliferative, regulatory and migratory behaviour in vitro. J Immunol Methods, 2006, 314(1-2): 123—133.
    17. Marty C, Meylan C, Schott H, et al. Enhanced heparan sulfate proteoglycan-mediated uptake of cell-penetrating peptide-modified liposomes. Cell Mol Life Sci, 2004, 61 (14): 1785-1794.
    18. Orii KO, Grubb JH, Vogler C, et al. Defining the pathway for Tat-mediated delivery of beta-glucuronidase in cultured cells and MPS VII mice. Mol Ther, 2005, 12(2): 345-352.
    19. Fretz M, Jin J, Conibere R, et al. Effects of Na+/H+ exchanger inhibitors on subcellular localisation of endocytic organelles and intracellular dynamics of protein transduction domains HIV-TAT peptide and octaarginine. J Control Release, 2006,116(2):247-254.
    20. Park J, Ryu J, Kim KA, et al. Mutational analysis of a human immunodeficiency virus type 1 Tat protein transduction domain which is required for delivery of an exogenous protein into mammalian cells. J Gen Virol, 2002, 83:1173 — 1181.
    21. Futaki S, Suzuki T, Ohashi W, et al. Arginine-rich Peptides. J Biol Chem, 2001, 276(8) :5836-5840.
    22. Schwarze SR, Dowdy SF. In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol Sci, 2000, 21(2):45-48.
    23. Cao GD, Pei W, Ge HL, et al. In vivo delivery of a bcl-xl fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis. J of Neuroscience,2002 ,22(13):5423 -5431.
    24. Asoh S, Ohsawa I, Mori T, et al. Protection against ischemic brain injury by protein therapeutics. Proc Natl Acad Sci USA. 2002, 99(26): 17107-17112.
    25. Wright LR, Rothbard JB, Wender PA, et al. Guanidinium rich peptide transporters and drug delivery. Curr Protein and Peptide Sci, 2003, 4(2):105—124.
    26. Vires E, Richard JP, Rispal C, et al. TAT peptide internalization: seeking the mechanism of entry. Curt Protein Pept Sci, 2003 Apr, 4(2):125—132.
    27. Ho A, Schwarze SR, Mermelstein SJ, et al. Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo. Cancer Res, 20(11,61(2):474—477.
    28. Futaki S, Goto S, Suzuki T, et al. Structural variety of membrane permeable peptides. Curr Protein Pept Sci, 2003,4(2):87—96.
    29. Fretz MM, Penning NA, Al-Taei S, et al. Temperature-, concentration- and cholesterol-dependent translocation of L-and D-octa-arginine across the plasma and nuclear membrane of CD34+ leukaemia cells. Biochem J, 2007, 403(2):335—342.
    30. Shen H, Mai JC, Qiu L, et al. Evaluation of peptide-mediated transduction in human CD34+ cells. Hum Gene Ther, 2004,15(4):415—419.
    31. Tyagi M, Rusnati M, Presta M, et al. Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans.J Biol Chem, 2001,276(5):3254—3261.
    32. Silhol M, Tyagi M, Giacca M, et al. Different mechanisms for cellular internalization of the HIV-1 TAT-derived cell penetrating peptide and recombinant proteins fused to TAT. Eur J Biochem, 2002,269(2):494—501.
    33. Yang Y, Ma J, Song Z, et al. HIV-1 TAT mediated protein transduction and subcellular localization using novel expression vectors. FEBS Lett, 2002,532(122):36—44.
    34.何火聪,刘树滔,潘剑茹,等.TAT-PTD融合蛋白可能存在的跨膜递送作用机制.中 国生物化学与分子生物学报,2006,9:704—710.
    35.严世荣,丁爱玲,朱明磊等.HIV TAT-一种生物大分子的运载体.药物生物技术,2002,9(4):187—190.
    36.李志奇,胡小波,杨胜利,等.Tat蛋白的PTD区段促进GFP蛋白进入骨髓瘤细胞SP2/0.生物工程学报,2002,18(5):644—647.
    37. Tiriveedhi V, Butko P. A fluorescence spectroscopy study on the interactions of the TAT-PTD peptide with model lipid membranes. Biochemistry, 2007, 46(12):3888—3895.
    38.陈菁,傅蓉,刘树滔,等.C端融合之Tat蛋白转导区域的跨膜递送作用.中国生物化学与分子生物学报,2005,21(3):26—31.
    39. Wagstaff KM, Glover DJ, Tremethick DJ, et al. Histone-mediated transduction as an efficient means for gene delivery. Mol Ther, 2007,15(4):721—731.
    40. Jin LH, Bahn JH, Eum WS, et al. Transduction of human catalase mediated by an HIV-1 TAT protein basic domain and arginine—richpeptides into mammalian cells. Free Radic Biol Med, 2001,31(11):1509—1519.
    41. Kilic E, Kilic U, Hermann DM. TAT fusion proteins against ischemic stroke: current status and future perspectives. Front Biosci, 2006, 11(5):1716—1721.
    42. Goda N, Tenno T, Inomata K, et al. LBT/PTD dual tagged vector for purification, cellular protein delivery and visualization in living cells. Biochim Biophys Acta, 2007, 1773(2):141-6.
    43. Mani K, Sandgren S, Lilja J, et al. HIV-Tat protein transduction domain specifically attenuates growth of polyamine deprived tumor cells. Mol Cancer Ther, 2007,6(2):782—788.
    44. Schenk D, Barbour R, Dunn W, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature, 1999, 400(6740):173—177.
    45. Sik Eum M, Soon Choung I, Zhen Li M, et al. HIV-1 tat mediated protein transduction of Cu, Zn-superoxide dismutase into pancreatic β cells in vitro and in vivo. Free Radical Biology medicine, 2004,37(3):339—349.
    46.彭涛,刘英辉,杨春蕾,等.体内蛋白转导的研究进展.中国药科大学学报,2003,34(5):477—480.
    1.朱兵,戈小虎,刘杰,等.无创检查诊断下肢动脉闭塞症的应用价值.中国普通外科杂志.2003,12(6):459—461.
    2.刘清泉,杨俊德,朱雯霞,等.下肢动脉硬化闭塞症的诊治.中国普通外科杂志.2002,11(7):440—441.
    3. Lenk K, Adams V, Lurz P, et al. Therapeutical potential of blood derived progenitor cells in patients with peripheral arterial occlusive disease and critical limb ischaemia. Eur Heart J, 2005,26(18):1903-1909.
    4. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res, 1999,85(3): 221—228.
    5. Shintani S, Murohara T, Ikeda H, et al. Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation, 2001,103(6):897—903.
    6. Yamamoto K, Kondo T, Suzuki S, et al. Molecular evaluation of endothelial progenitor cells in patients with ischemic limbs: therapeutic effect by stem cell transplantation. Arteriosclera Thromb Vasc Biol, 2004,24(12): e192—e196.
    7. Padilla L, Krotzsch E, De La Garza AS, et al. Bone marrow mononuclear cells stimulate angiogenesis when transplanted into surgically induced fibrocollagenous tunnels: Results from a canine ischemic hindlimb model. Microsurgery, 2007, 27(2):91—97.
    8.黄平平,李尚珠,韩明哲,等.自体外周血干细胞移植治疗下肢动脉硬化性闭塞症.中华血液学杂志,2003,24(6):308—311.
    9. Wang PP, Li JZ, Hart M Z, et al. Autologous transplantaion of peripheral blood stem cells as an effective therapeutic approach for severe arteriosclerosis obliterans of lower extremities. Thromb Haemost, 2004, 91:606—609.
    10.郭连瑞,谷涌泉,张建,等.不同途径移植骨髓单个核细胞治疗大鼠后肢缺血.中国临床康复,2005,9(10):57—59.
    11. Cao Y, Hong A, Schulten H, et al. Update on therapeutic neovascularization. Cardiovasc Res, 2005, 65(3):639—648.
    12.杨晓凤,吴雁翔,王红梅,等.自体外周血干细胞移植治疗62例缺血性下肢血管病的临床研究.中华内科杂志,2005,44(2):95—98.
    13.吴雁翔,杨晓凤,王红梅,等.干细胞治疗下肢缺血性疾病疗效观察.中国修复重建外科杂志,2005,19(12):1019—1021.
    14.王瑞华,金星,吴学君,等.血管腔内介入联合外科手术治疗下肢多节段动脉硬化闭塞症.中国普通外科杂志,2006,15(5):324—327.
    15.谷涌泉,Royal JP.DSA检查对预测血管性截肢平面的初步研究.外科理论与实践,2001,6(5):298—300.
    16. Tepper OM, Galiano RD, Kalka C, et al. Endothelial progenitor cells: the promise of vascular stem cells for plastic surgery. Plast Reconstr Surg,2003,111(2):846—854.
    17. Isner J, Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest, 1999,103 (9): 1231—1236.
    18. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997, 275 (5302): 964—967.
    19.吴英锋,谷涌泉,张建,等.犬骨髓源血管内皮祖细胞体外扩增效能的动态研究. 中国临床康复, 2005, 9(10) :63-65.
    20. Kalka C, Masuda H, Takahashi T, et al. Transplantation of exvivo expanded endathelial progenitor cells for therapeutie neovasclarization. Proc Natl Aoad Sci USA, 2000, 97(7):3422-3427.
    21. Weissman IL. Stem cells: units of development, units of regeneration and units in evolution. Cell, 2000,100:157—168.
    22. Sica V, Williams-Ignarro S, de Nigris F, et al. Autologous bone marrow cell therapy and metabolic intervention in ischemia-induced angiogenesis in the diabetic mouse hindlimb. Cell Cycle, 2006 5(24):2903—2908.
    23. Hamano K, Li T S, Kobayashi T, et al. The induction of angiogenesis by the implantation of autologous bone marrow cells: a novel and simple therapeutic method. Surgery, 2001, 130:44—54.
    24. Abdulaziz AK, Hilal A, Jacques G, et al. Therapeutic angiogenesis using autologous bone marrow stromal cells: improved blood flow in a chronic limb ischemia model. Ann Thorac Surg, 2003, 75:204—209.
    25. Padilla L, Krotzsch E, Schalch P, et al, Administration of bone marrow cells into surgically induced fibro collagenous tunnels induces angiogenesis in ischemic rat hindlimb model. Microsurgery, 2003, 23(6):568 -574.
    26. Ciulla MM, Lazzari L, Pacchiana R, et al. Homing of peripherally injected bone cells in rat after experimental myocardial injury. Haemat Logica, 2003, 88(6) : 614-621.
    27. Hirata K, Li TS, Nishida M, et al. Autologous bone marrow cell implantation as therapeutic angiogenesis for ischemic hindlimb in diabetic rat model. Am J Physiol Heart Circ Physiol, 2003, 284:H66—H70.
    28.赵玉国,金毕,李毅清,等.自体骨髓干细胞移植治疗下肢缺血的实验研究.临床外科杂志,2004,13(5):286—288.
    29. Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomized controlled trial. Lancet, 2002,360(9331):427—435.
    30. Esato K, Hamano K, Li TS, et al. Neovascularization induced by autologous borne marrow cell implantation in peripheral arterial disease. Cell Transplant, 2002,11:747—752.
    31. Saigawa T, Kato K, Ozawa T,et al. Clinical application of bone marrow implantation in patients with arteriosclerosis obliterans, and the association between efficacy and the number of implanted bone marrow cells. Circ J, 2004,68(12):1189—1193.
    32.杨晓凤,吴雁翔,王红梅,等.自体外周血干细胞移植治疗糖尿病足26例临床研究.中国实用内科杂志,2004,24(11):676—678.
    33. Gu YQ. Determination of amputation level in ischaemic lower limbs. AN Z J Surg, 2004,74 (1—2):31—33.
    34.谷涌泉,郭连瑞,张建,等.自体骨髓干细胞移植治疗严重下肢缺血1例.中国实用外科杂志,2003,23(11):670—670.
    35.谷涌泉,张建,郭连瑞,等.自体骨髓干细胞移植治疗下肢严重缺血:32例报告.中国临床康复,2004,8(35):7970—7972.
    36.董国祥,赵军,栾景源.骨髓移植治疗下肢缺血.中国微创外科杂志,2003,3(3):202--203.
    37.郭连瑞,谷涌泉,张建,等.自体骨髓干细胞移植治疗糖尿病足13例报告.中华糖尿病杂志,2004,12:313—316.
    38.谷涌泉,张建,汪忠镐,等.自体骨髓干细胞移植治疗严重下肢缺血28例.干细胞与再生医学,2004,1(1):55—57.
    39. Huang PP, Li S,Han M,et al. Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care, 2005,28(9):2155—2160.
    40.辛世杰,宋清斌,胡海地,等.自体骨髓单个核细胞移植治疗42例严重慢性下肢缺血性疾病.中国医科大学学报,2006,35(6):627—630.
    41. Kamihata H, Matsubara H, Nishiue T, et al. Improvement of collateral perfusion and regional function by implantation of peripheral blood mononuclear cells into ischemic hibernating myocardium. Arterioscler Thromb Vasc Biol, 2002,22:1804—1810.
    42. Fujiyama S, Amano K, Uehira K, et al. Bone marrow monocyte lineage cells adhere on injured endothelium in a monocyte chemoattractant protein-l-dependent manner and accelerate reendothelialization as endothelial progenitor cells. Circ Res, 2003,93(10):980—989.
    43.谷涌泉,张建,齐立行,等.不同移植浓度自体骨髓干细胞治疗下肢缺血临床疗效的影响.中国修复重建外科杂志,2006,20(5):504—506.
    44.谷涌泉,张建,齐立行,等.自体骨髓干细胞移植治疗慢性下肢缺血94例不同分期疗效的比较.中国临床康复,2005,9(38):7—10.
    45. Kawamura A, Horie T, Tsuda I, et al. Clinical study of therapeutic angiogenesis by autologous peripheral blood stem cell (PBSC) transplantation in 92 patients with critically ischemic limbs. J Artif Organs, 2006, 9(4):226—233.
    46. Kinnaird TD, Stabile E, Burnettm S, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation, 2004, 109 (12) : 1543-1549.
    47. Kalka C, Masuda H, Takahashi T, et al. Vascularendothelial growth factor (165) genetransfer augments circulating endothelial progenitor cells in human subjects. Cire Res, 2000,86(12): 1198—1202.
    48. Sumi M, Sata M, Toya N, et al. Transplantation of adipose stromal cells, but not mature adipocytes, augments ischemia-induced angiogenesis. Life Sci, 2007, 80(6): 559-665.
    49. Baumgartner I, Schainfeld R, Graziani L Management of peripheral vascular disease. Annu Rev Med, 2005, 56:249-272.
    50. Emmerich J, Fiessinger JN. Medical treatment of critical leg ischemia: current status and future perspectives of gene and cell therapy. Bull Acad Natl Med, 2006, 190(3):667-680.
    51. Tatsumi T, Matsubara H. Therapeutic angiogenesis for peripheral arterial disease and ischemic heart disease by autologous bone marrow cells implantation. Nippon Rinsho, 2006, 64(11) :2126—2134.
    52.UmemuraT, NishiokaK, Igarashi A, et al. Autologous bone marrow mononuclear cell implantation induces angiogenesis and bone regeneration in a patient with compartment syndrome. Circ J, 2006, 70(10): 1362-1364.
    53. Iwase T, Nagaya N, Fujii T, et al. Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovasc Res, 2005, 66(3) :543—551.
    54. Sasaki S, Inoguchi T, Muta K, et al. Therapeutic angiogenesis by ex vivo expanded erythroid progenitor cells. Am J Physiol Heart Circ Physiol, 2007, 292(1) :H657—H665.
    55. Moon MH, Kim SY, Kim YJ, et al. Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol Biochem, 2006, 17(5-6):279—290.
    56. Emmerich J. Current state and perspective on medical treatment of critical leg ischemia: gene and cell therapy. Int J Low Extrem Wounds, 2005, 4(4): 234 -241.
    57. De Nigris F, Williams-Ignarro S, Sica V, et al. Therapeutic effects of concurrent autologous bone marrow cell infusion and metabolic intervention in ischemia-induced angiogenesis in the hypercholesterolemic mouse hindlimb. Int J Cardiol, 2007, 117(2):238-243.
    58. Otsuka H, Akashi H, Murohara T, et al. The prostacyclin analog beraprost sodium augments the efficacy of therapeutic angiogenesis induced by autologous bone marrow cells. Ann Vasc Surg. 2006, 20(5):646—652.
    59. Kohlman-Trigoboff D, Lawson JH, Murphy MP, et al. Stem cell use in a patient with an ischemic foot ulcer: a case study. J Vasc Nurs, 2006, 24(2):56 -61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700