用户名: 密码: 验证码:
超支化聚醚的合成、表征及自组装研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超支化聚合物因其独特的分子结构和物理化学性质,已成为近年来高分子科学界的研究热点。与传统的线性聚合物相比,超支化聚合物具有较低的溶液和熔体粘度、良好的溶解性、大量的末端官能团等特点。此外,超支化聚合物的合成相对简单,可以通过一步法合成。这些特点使得超支化聚合物在表面修饰、聚合物加工、生物医药、涂料等领域具有一定的应用价值。目前,超支化聚合物的研究主要集中在探索更有效的控制超支化聚合物支化度的方法以及寻找更加简单实际的合成方法从而把超支化聚合物的制备推向工业化等方面。除此以外,近两年来,超支化聚合物开始在聚合物自组装研究领域崭露头角,超支化聚合物的自组装真正体现了自然界“从不规则到规则,从无序到有序”的普遍规律,引起了科学工作者的极大兴趣。本文围绕这两个研究热点展开研究,研究内容主要包含两大部分,共五章。其中第一部分集中在第二、三章,主要介绍分子量相近且支化度不同的聚3-乙基-3-羟甲基环氧丁烷(PEHO)的合成及其物理性能的表征;第二部分包括第四、五、六章,主要阐述两亲性超支化多臂共聚醚的合成及其自组装行为研究。
     第二章中,我们通过阳离子开环聚合合成超支化PEHO。实验中我们发现,单体和引发剂的投料比对生成PEHO的支化度有影响,投料比越低,即引发剂用量越大,所得PEHO的支化度越高。另外,我们还发现反应温度对PEHO的支化度也有影响。在-50 oC~+30 oC的温度范围内,PEHO的支化度随反应温度的升高而增大,在10 oC以上变化趋势变小,趋向不变。根据这些结论,我们通过改变单体和引发剂的投料比以及改变聚合反应温度的方法合成了一些具有相近分子量且支化度不同的PEHO样品。
     第三章中,我们系统地研究了支化度对PEHO的结晶性能,热力学性能,以及自由体积等物理性能的影响。XRD和DSC等方法表明,支化度较小的PEHO相对结晶度较大,随着支化度的升高,聚合物结晶能力逐渐下降,当支化度达到40%以上时,PEHO呈无定型态。DSC表征得到的玻璃化转变温度(Tg)数据表明,Tg随PEHO支化度的增大而降低,表明支化度对PEHO的Tg影响较大。TGA测得的支化度不同的PEHO的降解温度(Td)在350 oC和360 oC之间,在实验误差范围内可以认为Td没有明显的变化,表明支化度对PEHO的Td影响不大。正电子湮没寿命谱(PALS)研究表明支化度主要影响的是PEHO的自由体积浓度,而不是自由体积尺寸。PEHO的支化度越高,自由体积浓度越大,从而使得PEHO的Tg和结晶性降低。PALS用具体的实验事实,从微观角度解释了支化度对PEHO的宏观物理性能的影响。
     第四章中,我们通过“一壶两步”阳离子开环聚合的方法合成了一系列具有不同亲水亲油比(RA/C)的两亲性超支化多臂共聚物PEHO-star-PPO。NMR和SEC表征证明,PPO成功地接到了PEHO核上。DSC和TGA结果表明PEHO-star-PPO共聚物的Tg和Td都随着RA/C值的增大而减小。超支化PEHO-star-PPO的自组装行为通过TEM、SEM和DLS等方法表征,结果表明不规则的超支化PEHO-star-PPO分子可以组装成规则的球形大胶束,胶束的平均直径在100纳米到300纳米之间,且随PEHO-star-PPO分子的RA/C值增大而减小。PEHO-star-PPO分子的自组装机理通过化学封端、变温红外、NMR以及高分辨TEM等实验方法研究。根据所得实验结果,我们提出了一种可能的PEHO-star-PPO分子的自组装机理,即“多胶束聚集体(MMA)”机理。这个机理认为,在疏水作用的驱动下,PEHO-star-PPO分子先聚集成尺寸较小的胶束,这些小胶束再通过胶束间作用力,比如氢键作用等,进一步聚集形成球形大胶束。
     第五章中,我们用“一壶两步”阳离子开环聚合的方法合成了一种平头状的两亲性超支化多臂共聚醚PEHO-star-PEO。NMR和SEC表征证明PEO成功地接到了PEHO核上。自组装研究发现,该平头状PEHO-star-PEO能够在水中组装成巨大的复合囊泡(LCVs),其直径在10到100微米之间。巨大的尺寸为我们研究这些LCVs的形成机理及其稳定性提供了方便。通过显微镜下的实时观察,我们发现LCVs的形成是一个分级自组装过程。在连续的水合作用下,平头状PEHO-star-PEO先聚集形成囊泡,这些囊泡通过二次聚集,融合等过程形成一个亚稳定的三维囊泡堆(TDVS),在均匀外力的作用下,TDVS会被打碎从而形成巨大的LCVs。组装过程中,平头状PEHO-star-PEO所形成的囊泡的巨大粘性起到了相当重要的作用。稳定性研究发现,影响LCV稳定的因素主要是LCV内囊泡的融合,且LCV所含的囊泡数越少,LCV越不稳定,包含大量囊泡的LCVs在无扰的情况下能够保持稳定直至溶剂完全挥发。
     第六章中,我们通过酰化反应和阳离子开环聚合物合成了荧光标记的PEHO-star-PEO,DNS-PEHO-star-PEO。NMR、紫外光谱、荧光光谱、SEC等表征方法证明了丹磺酰基(DNS)和PEO臂成功的接到了PEHO核上,根据实验结果,我们可以得到DNS-PEHO-star-PEO的超支化多臂分子结构。此外,我们研究了DNS-PEHO-star-PEO在THF/H2O共溶剂中随着水含量的增加而发生的自组装行为。荧光光谱分析结果表明随着水的体积百分比增大,DNS-PEHO-star-PEO的最大发射波长呈阶段性变化。TEM、DLS和荧光显微镜实验证明,这是由DNS-PEHO-star-PEO在含水量不同的THF/H2O的混合溶剂中形成的组装体的形貌发生转变造成的。DNS-PEHO-star-PEO在含水量较少的THF/H_2O共溶剂组装成小胶束,随着水量的增加,DNS-PEHO-star-PEO形成的组装体向“多胶束聚集体”转变,并最终转变成微米尺寸的聚合物大囊泡。这一独特的发现表明:可以通过丹磺酰基标记,根据其最大荧光发射波长的变化来跟踪聚合物组装体形貌的连续转变。所得的聚合物大囊泡在荧光显微镜下能够发出明显的绿色荧光,显示出清晰的囊泡结构。最后,我们通过变温紫外可见光谱测量了聚合物大囊泡的最低临界溶液温度(LCST),得到囊泡的LCST约为20.6 oC。
Hyperbranched polymers (HPs) have received considerable attention in the resent decade due to their unique molecular structures as well as their special physical and chemical properties. Compared with the traditional linear polymers, HPs possess some traits such as low solution and melt viscosity, good solubility, a large amount of terminal groups, and so on. In addition, HPs can be easily prepared through a one-step polymerization procedure. These advantages make HPs promising in the fields of surface modification, polymer processing, biomedicine, and coating etc. Recently, the researches on HPs have been focusing on two important directions. One is to explore more effective methods to control the degree of branching (DB) of HPs, and the other is to seek more convenient and practical approaches of preparing HPs and finally industrialize the synthesis of HPs. More recently, HPs have been freshly applied in the area of supramolecular self-assembly. The self-assembly of HPs, reflecting the principle of from irregularity to regularity in nature, has attracted people’s great interests. In this dissertation, we mainly focus on the researches of the synthesis, characterizations and self-assembly of HPs. The dissertation includes two primary parts of investigation contents. The first part, including Chapter 2 and 3, describes the synthesis and characterizations of a series of hyperbranched poly[3-ethyl-3-(hydroxymethyl)oxetane]s (PEHOs) with a similar molecular weight and different DBs. The second part, including Chapter 4, 5, and 6, elucidates the preparation and self-assembly of amphiphilic hyperbranched multiarm copolyethers.
     In Chapter 2, PEHOs were prepared by the cationic ring-opening polymerization. In the experiments, we found two key factors that may influence the DB of PEHO. One is the feed ratio of monomer to initiator, and the lower the ratio, the higher the DB of the obtained PEHO. The other is the reaction temperature. In the temperature range of -50 oC~+30 oC, the DB of the prepared PEHO increases with increasing reaction temperature and inclines to be of no change when the temperature is higher than 10 oC. In terms of the conclusions, we prepared PEHO samples with a similar molecular weight and different DBs.
     In Chapter 3, we systematically investigated the influence of the DB on the physical properties of PEHO including crystallinity, thermodynamic properties, and free volume. X-ray diffraction (XRD) and Differential Scanning Calorimetry (DSC) measurements indicate that PEHOs with a small DB are semicrystalline polymers, the crystallinity of PEHO decreases with increasing DB, and PEHO will become amorphous when DB is higher than 40%. The data of glass transition temperature (Tg) obtained by DSC show that the Tg of PEHO gradually reduces with the increase of DB. Thermal Gravimetric Analysis (TGA) indicates that DB does not evidently affect the temperature of decomposition (Td) of PEHO. Furthermore, we carried out the positron annihilation lifetime spectrum (PALS) measurement to study the effect of DB on the nanostructures of PEHO. The results show that the effects of DB mainly focus on the concentration of the free volume rather than on the size of the free volume of PEHO, and the higher the DB, the bigger the concentration of the free volume holes of PEHO, which leads to the decrease of Tg and crystallinity of PEHO. The PALS outcomes explain the influence of DB on the macroscopic physical properties of PEHO from a microscopic point of view.
     In Chapter 4, a series of amphiphilic hyperbranched multiarm copolyethers of PEHO-star-PPO with different hydrophile-lipophile ratios (RA/C) were synthesized by a“one-pot two-step”cationic ring-opening polymerization method. The results of Nuclear Magnetic Resonance (NMR) and Size Exclusion Chromatography (SEC) prove that PPO arms have been covalently attached to PEHO cores. DSC and TGA results show that both Tg and Td of PEHO-star-PPO copolymers decrease with increasing RA/C. The self-assembly behaviors of PEHO-star-PPO copolyethers were investigated by Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), and so on. The results indicate that the ill-defined PEHO-star-PPO molecules can aggregate into large regular spherical micelles with average diameters of 100 to 300 nanometers, and the average sizes of the spherical micelles will decrease as RA/C increases. The self-assembly mechanism was explored by temperature-variable FTIR, NMR, TEM, etc. According to the obtained results, we suggest a possible self-assembly mechanism named as multi-micelle aggregate (MMA) to clarify the formation of the large micelles.
     In Chapter 5, a crew-cut amphiphilic hyperbranched multiarm copolyether, PEHO-star-PEO, was prepared by the“one-pot two-step”cationic ring-opening polymerization. The results of NMR and SEC confirm that PEO arms have been covalently grafted to PEHO cores. The crew-cut PEHO-star-PEO molecules can self-assemble into large compound vesicles (LCVs) with an average diameter of 46.9±17.8μm. Such big sizes provide us a unique advantage to study the three-dimensional structure as well as the dynamic behaviors of the LCVs by real-time observations with an optical microscope. Through real-time observations, we found that the formation of the LCVs is an interesting hierarchical self-assembly process. The crew-cut PEHO-star-PEO molecules first self-assemble into vesicles, then the sticky vesicles interconnect together as a result of the successive hydration and membrane fusion to form the special intermediates named as three-dimensional vesicle stack (TDVS), and finally the TDVS will transform into the giant LCVs after it is broken by external disturbances. The strong cohesion of the vesicles formed by the crew-cut PEHO-star-PEOs plays a significant role in the hierarchical self-assembly of the LCVs. The stability of the LCVs was also investigated. It was found that a key factor affecting the stability of the LCVs is the vesicle fusion. The stability of an LCV will enhance with increasing the number of the vesicles inside the LCV. If undisturbed, the LCVs containing a large number of vesicles can keep stable until the solvent volatilizes completely.
     In Chapter 6, we prepared fluorescence-labeled PEHO-star-PEO, DNS-PEHO-star-PEO. NMR, UV/Vis spectrometry, fluorescence spectrometry, and SEC measurements prove that the dansyl groups (DNS) and PEO arms have been covalently linked to PEHO cores, indicating the hyperbranched multiarm molecular structure of DNS-PEHO-star-PEO. Moreover, we studied the self-assembly behaviors of DNS-PEHO-star-PEO in THF/H2O solvent with increasing water content. The results obtained by fluorescence analysis, fluorescence microscopy, TEM, and DLS measurements indicate that DNS-PEHO-star-PEO molecules can aggregate into small micelles in THF/H2O solvent with a small amount of water, the small micelles will evolve into multi-micelle aggregates with increasing water content, and the multi-micelle aggregates will finally transform into giant vesicles with micron sizes. The outcomes reflect that the morphology transitions of polymer aggregates can be tracked by the fluorescence spectra of the DNS groups linked to the polymers. The green fluorescence emitted by the giant vesicles under a fluorescence microscope displays the distinct vesicle structure. Finally, the lowest critical solution temperature (LCST) of the giant vesicles, being about 20.6 oC, was measured by a temperature-variable UV/Vis spectrometer.
引文
1. Fréchet, J. M. J.; Tomalia, D. A. Dendrimers and Other Dendritic Polymers. West Sussex: Wiley 2001.
    2. Voit, B. New Developments in Hyperbranched Polymers. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 2505.
    3. Jikei, M.; Kakimoto, M. Hyperbranched Polymers: A Promising New Class of Materials. Prog. Polym. Sci. 2001, 26, 1233.
    4. Gao, C.; Yan, D. Hyperbranched Polymers: From Synthesis to Applications. Prog. Polym. Sci. 2004, 29, 183.
    5. Flory, P. J. Molecular Size Distribution in Three Dimensional Polymers. VI. Branched Polymers Containing A-R-B (f-1) Type Units. J. Am. Chem. Soc. 1952, 74, 271.
    6. Kim, Y. H.; Webster, O. W. Hyperbranched Polyphenylenes. Polym. Prepr. 1988, 29, 310.
    7. Kim, Y. H.; Webster, O. W. Water-soluble Hyperbranched Polyphenylene: A Unimolecular Micelle. J. Am. Chem. Soc. 1990, 112, 4592.
    8. Kim, Y. H.; Webster, O. W. Hyperbranched Polyhenylenes. Macromolecules 1992, 25, 5561.
    9. Fréchet, J. M. J.; Henmi, M.; Gitsov, I.; Aoshima, S.; Leduc, M. R.; Grubbs, R. B. Self-Condensing Vinyl Polymerization: An Approach to Dendritic Materials. Science 1995, 269, 1080.
    10. Desinomne, J. M. Branching Out into New Polymer Markets. Science 1995, 269, 1060.
    11. Lach, C.; Muller, P.; Frey, H.; Mulhaupt, R. Hyperbranched Polycarbosilane Macromonomers Bearing Oxazoline Functionalities. Macromol. Rapid Commun. 1997, 18, 253.
    12. Yoon, K.; Son, D.Y. Syntheses of Hyperbranched Poly(carbosilarylenes). Macromolecules 1999,
    32, 5210.
    13. Miravet, J. F.; Fréchet, J. M. J. New Hyperbranched Poly(siloxysilanes): Variation of the Branching Pattern and End-Functionalization. Macromolecules 1998, 31, 3461.
    14. Hawker, C. J.; Lee, R.; Fréchet, J. M. J. One-Step Synthesis of Hyperbranched Dendritic Polyesters. J. Am. Chem. Soc. 1991, 113, 4583.
    15. Malmstrom, E.; Johansson, M.; Hult, A. Hyperbranched Aliphatic Polyesters. Macromolecules 1995, 28, 1698.
    16. Mock, A.; Burgath, A.; Hanselmann, R.; Frey, H. Synthesis of Hyperbranched Aromatic Homo- and Copolyesters via the Slow Monomer Addition Method. Macromolecules 2001, 34, 7692.
    17. Uhrich, K. E.; Hawker, C. J.; Fréchet, J. M. J.; Turner, S. R. One-Pot Synthesis of Hyperbranched Polyethers. Macromolecules 1992, 25, 4583.
    18. Jayakannan, M.; Ramakrishnan, S. A Novel Hyperbranched Polyether by Melt Transetherification. Chem. Commun. 2000, 1967.
    19. Kumar, A.; Ramakrishnan, S. Hyperbranched Polyurethanes with Varying Spacer Segments between the Branching Points. J. Polym. Sci., Part A: Polym. Chem. 1996, 34, 839.
    20. Kumar, A.; Meijer, E. W. Novel Hyperbranched Polymer Based on Urea Linkages. Chem. Commun. 1998, 1629.
    21. Feast, W. J.; Aldersley, S. J.; Findlay, P.; Rannard, S. P. Approaches to Water-soluble Aliphatic Hyperbranched Polyamides. Polym. Prepr. 2001, 42, 390.
    22. Brenner, A. R.; Schmaljohann, D.; Voit, B. I.; Wolf, D. Hyperbranched Polyesters and Polyamidesby the AB(x) Polycondensation Process. Macromol. Symp. 1997, 122, 217.
    23. Mathias, L. J.; Carothers, T. W. Hyperbranched Poly(siloxysilanes). J. Am. Chem. Soc. 1991, 113, 4043.
    24. Jikei, M.; Chon, S. H.; Kakimoto, M.; Kawauchi, S.; Imase, T.; Watanebe, J. Synthesis of Hyperbranched Aromatic Polyamide from Aromatic Diamines and Trimesic Acid. Macromolecules 1999, 32, 2061.
    25. Radke, W.; Litvinenko, G.; Müller, A. H. E. Effect of Core-forming Molecules on Molecular Weight Distribution and Degree of Branching in the Synthesis of Hyperbranched Polymers. Macromolecules 1998, 31, 239.
    26. Yan, D.; Zhou, Z. Molecular Weight Distribution of Hyperbranched Polymers Generated from Polycondensation of AB2 Type Monomers in the Presence of Multifunctional Core Moieties. Macromolecules 1999, 32, 819.
    27. Lach, C.; Frey, H. Enhancing the Degree of Branching of Hyperbranched Polymers by Postsynthetic Modification. Macromolecules 1998, 31, 2381.
    28. Yamanaka, K.; Jikei, M.; Kakimoto, M. Preparation of Hyperbranched Aromatic Polyimide without Linear Units by End Capping Reaction. Macromolecules 2001, 34, 3910.
    29. Yan, D.; Gao, C. Hyperbranched Polymers Made from A(2) and BB’(2) Type Monomers. 1. Polyaddition of 1-(2-aminoethyl)piperazine to Divinyl Sulfone. Macromolecules 2000, 33, 7693.
    30. Gao, C.; Yan, D. Synthesis of Hyperbranched Polymers from Commercially Available A(2) and BB’(2) Type Monomers. Chem. Commun. 2001, 107.
    31. Gao, C.; Yan, D. Polyaddition of B-2 and BB’(2) Type Monomers to A(2) Type Monomer. 1. Synthesis of Highly Branched Copoly(sulfone-amine)s. Macromolecules 2001, 34, 156.
    32. Gao, C.; Tang, W.; Yan, D.; Zhu, P.; Tao, P. Hyperbranched Polymers Made from A (2), B-2 and BB’(2) Type Monomers. 2. Preparation of Hyperbranched Copoly(sulfone-amine)s by Polyaddition of N-ethylethylenediamine and Piperazine to Divinylsulfone. Polymer 2001, 42, 3437.
    33. Gao, C.; Yan, D.; Zhu, X.; Huang, W. Preparation of Water-soluble Hyperbranched Poly(sulfone-amine)s by Polyaddition of N-ethylethylenediamine to Divinyl Sulfone. Polymer 2001, 42, 7603.
    34. Morgenroth, F.; Müllen, K. Dendritic and Hyperbranched Polyphenylenes via a Simple Diels-Alder Route. Tegrahedron 1997, 53, 15349.
    35. Morgenroth, F.; Reuther, E.; Müllen, K. Polyphenylene Dendrimers: From Three-dimensional to Two-dimensional Structures. Angew. Chem. Int. Ed. 1997, 36, 631.
    36. Hobson, L. J.; Feast, W. J.; Kenwright, A. M. Poly(amidoamine) Hyperbranched Polymers. Abstr. Pap. Am. Chem. 1997, 214, 258.
    37. Hobson, L. J.; Kenwright, A. M.; Feast, W. J. A Simple ‘One Pot’ Route to the Hyperbranched Analogues of Tomalia's Poly(amidoamine) Dendrimers. Chem. Commun. 1997, 19, 1877.
    38. Huber, T.; B?hme, F.; Komber, H.; Kronek, J.; Luston, J.; Voigt, D.; Voit, B. New Hyperbranched Poly(ether amide)s via Nucleophilic Ring Opening of 2-Oxazoline-containing Monomers. Macromol. Chem. Phys. 1999, 200, 126.
    39. Weimer, M. W.; Fréchet, J. M. J.; Gitsov, I. Importance of Active-site Reactivity and Reaction Conditions in the Preparation of Hyperbranched Polymers by Self-Condensing Vinyl Polymerization: Highly Branched vs. Linear Poly[4-(chloromethyl)styrene] by Metal-catalyzed "Living" Radical Polymerization. J. Polym. Sci., Part A: Polym. Chem. 1998, 36, 955.
    40. Zhang, H.; Ruckenstein, E. Dendritic Polymers from Vinyl Ether. Polym. Bull. 1997, 39, 399.
    41. Baskaran, D. Hyperbranched Polymers from Divinylbenzene and 1,3-Diisopropenylbenzene through Anionic Self-Condensing Vinyl Polymerization. Polymer 2003, 44, 2213.
    42. Hawker, C. J.; Fréchet, J. M. J.; Grubbs, R. B.; Dao, J. Preparation of Hyperbranched and Star Polymers by A ‘Living’, Self-Condensing Free Radical Polymerization. J. Am. Chem. Soc. 1995, 117, 10763.
    43. Gaynor, S. G.; Edelman, S. Z.; Kulfan, A.; Matyjaszewski, K. Synthesis of Branched and Hyperbranched Polystyrenes. Macromolecules 1996, 29, 1079.
    44. Simon, P. F. W.; Radke, W.; Müller, A. H. E. Hyperbranched Methacrylates by Self-Condensing Group Transfer Polymerization. Macromol. Rapid Commun. 1997, 18, 865.
    45. Kim, Y. H. Hyperbranched Polymers 10 Years After. J. Polym. Sci., Part A: Polym. Chem. 1998, 36, 1685.
    46. Liu, M.; Vladimirov, N.; Fréchet, J. M. J. A New Approach to Hyperbranched Polymers by Ring-opening Polymerization of an AB Monomer: 4-(2-Hydroxyethyl)-epsilon-caprolactone. Macromolecules 1999, 32, 6881.
    47. Bednarek, M.; Biedron, T.; Helinski, J.; Kaluzynski, K.; Kubisa, P.; Penczek, S. Branched Polyether with Multiple Primary Hydroxyl Groups: Polymerization of
    3-Ethyl-3-hydroxymethyloxetane. Macromol. Rapid Commum. 1999, 20, 369.
    48. Magnusson, H.; Malmstr?m, E.; Hult, A. Synthesis of Hyperbranched Aliphatic Polyethers via Cationic Ring-opening Polymerization of 3-Ethyl-3-(hydroxymethyl)oxetane. Macromol. Rapid Commum. 1999, 20, 453.
    49. Bednarek, M.; Kubisa, P.; Penczek, S. Multihydroxyl Branched Polyethers. 2. Mechanistic Aspects of Cationic Polymerization of 3-Ethyl-3-(hydroxymethyl)oxetane. Macromelocules 2001, 34, 5112.
    50. Bednarek, M.; Penczek, S.; Kubisa, P. Polymerization of Hydroxymethyloxetanes─Synthesis of Branched Polyethers with Primary Hydroxyl Groups, Macromol. Symp. 2002, 177, 155.
    51. Magnusson, H.; Malmstr?m, E.; Hult, A. Influence of Reaction Conditions on Degree of Branching in Hyperbranched Aliphatic Polyethers from 3-Ethyl-3-(hydroxymethyl)oxetane. Macromelocules 2001, 34, 5786.
    52. Magnusson, H.; Malmstr?m, E.; Hult, A.; Johansson, M. The Effect of Degree of Branching on the Rheological and Thermal Properties of Hyperbranched Aliphatic Polyethers. Polymer 2002, 43, 301.
    53. Yan, D.; Hou, J.; Zhu, X.; Kosman, J. J.; Wu, H. A New Approach to Control Crystallinity of Resulting Polymers: Self-Condensing Ring Opening Polymerization. Macromol. Rapid Commum. 2000, 21, 557.
    54. Sunder, A.; Hanselmann, R.; Frey, H.; Mulhaupt, R. Controlled Synthesis of Hyperbranched Polyglycerols by Ring Opening Multibranching Polymerization. Macromelocules 1999, 32, 4240.
    55. Yan, D.; Müller, A. H. E. Molecular Parameters of Hyperbranched Polymers Made by Self-Condensing Vinyl Polymerization. 2. Degree of Branching. Macromelocules 1997, 30, 7024.
    56. H?lter, D.; Burgath, A.; Frey, H. Degree of Branching in Hyperbranched Polymers. Acta Polym. 1997, 48, 30.
    57. Uhrich, K. E.; Hawker, C. J.; Fréchet, J. M. J.; Turner, S. R. One-Step Synthesis of Hyperbranched Macromolecules. Polym. Mat. Sci. Eng. 1991, 64, 237.
    58. Malmstrom, E.; Johansson, M.; Hult, A. Hyperbranched Aliphitic Polyesters. Macromolecules1995, 28, 1698.
    59. Malmstrom, E.; Hult, A. Kinetics of Formation of Hyperbranched Polyesters Based on 2,2-Bis(methylol)propionic Acid. Macromolecules 1996, 29, 1222.
    60. Kim, Y. H. Lyotropic Liquid Crystalline Hyperbranched Aromatic Polyamides. J. Am. Chem. Soc. 1992, 114, 4947.
    61. Turner, S. R.; Voit, B. I.; Mourey, T. H. All-aromatic Hyperbranched Polyesters with Phenol and Acetate End Groups: Synthesis and Characterization. Macromolecules 1993, 26, 4617.
    62. Kwak, S. Y.; Ahn, D. U. Rheological Details and Melt Processability of Hyperbranched Poly(ether ketone)s with Various Degrees of Branching. Abstr. Par. Am. Chem. 2000, S219, 201.
    63. Alamo, R. G.; Chan, E. K. M.; Mandelkern, L.; Voigt-Martin, I. G. Influence of Molecular Weight on the Melting and Phase Structure of Random Copolymers of Ethylene. Macromolecules 1992, 25, 6381.
    64. Jayakkannan, M.; Ramakrishnan, S. Effect of Branching on the Thermal Properties of Novel Branched Poly(4-ethyleneoxy benzoate). J. Polym. Sci. Part A: Polym. Chem. 2000, 38, 261.
    65. Lehn, J. M. Perspectives in Supramolecular Chemistry-Form Molecular Recognition toward Molecular Information Processing and Self-Organization. Angew. Chem. Int. Ed. Engl. 1988, 27,
    89.
    66. Grantcharova, V.; Alm, E. J.; Baker, D.; Horwich, A. L. Mechanisms of Protein Folding. Curr. Opin. Struct. Biol. 2001, 11, 70.
    67. Neidle, S. Oxford Handbook of Nucleic Acid Structure. Oxford Univ. Press, Oxford, U. K. 1999.
    68. Ikkala1, O.; Brinke, G. T. Functional Materials Based on Self-Assembly of Polymeric Supramolecules. Science 2002, 295, 2407.
    69. Whitesides, G. M.; Grzybowski B. Self-Assembly at All Scales. Science 2002, 295, 2418.
    70. Taylor, P.; Xu, C.; Fletcher, P. D. I.; Paunov, V. N. A Novel Technique for Preparation of Monodisperse Giant Liposomes. Chem. Commun. 2003, 1732.
    71. Kleitz, F.; Thomson, S. J.; Liu, Z.; Terasaki, O.; Schuth, F. Porous Mesostructured Zirconium Oxophosphate with Cubic (Ia3d) Symmetry. Chem. Mater. 2002, 14, 4134.
    72. Caruso, F.; Caruso, R. A.; M?hwald, H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science 1998, 282, 1111.
    73. Bucknall, D. G.; Anderson, H. L. Polymers Get Organized. Science 2003, 302, 1904.
    74. Zhang, L.; Eisenberg, A. Multiple Morphologies of “Crew-Cut” Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers. Science 1995, 268, 1728.
    75. Zhang, L.; Eisenberg, A. Multiple Morphologies and Characteristics of “Crew-Cut” Micelle-like Aggregates of Polystyrene-b-Poly(acrylic acid) Diblock Copolymers in Aqueous Solutions. J. Am. Chem. Soc. 1996, 118, 3168.
    76. Zhang, L.; Eisenberg, A. Ion-induced Morphological Changes in “Crew-Cut” Aggregates of Amphiphilic Block Copolymer. Science 1996, 272, 1777.
    77. Zhang, L.; Eisenberg, A. Morphogenic Effect of Added Ions on Crew-Cut Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers in Solutions. Macromolecules 1996, 29, 8805.
    78. Zhang, L.; Eisenberg, A. Formation of Crew-Cut Aggregates of Various Morphologies from Amphiphilic Block Copolymers in Solution. Polym. Adv. Technol. 1998, 9, 677.
    79. Yu, K.; Eisenberg, A. Bilayer Morphologies of Self-Assembled Crew-Cut Aggregates of Amphiphilic PS-b-PEO Diblock Copolymers in Solution. Macromolecules 1998, 31, 3509.
    80. Cameron, N. S.; Eisenberg, A.; Brown, G. R. Amphiphilic Block Copolymers as Bile Acid Sorbents: 2. Polystyrene-b-poly(N,N,N-trimethylammoniumethylene acrylamide chloride): Self-Assembly and Application to Serum Cholesterol Reduction. Biomacromolecules 2002, 3, 124.
    81. Zhang, L., Bartels, C.; Yu, Y.; Shen, H.; Eisenberg, A. Mesosized Crystal-like Structure of Hexagonally Packed Hollow Hoops by Solution Self-Assembly of Diblock Copolymers. Phys. Rev. Lett. 1997, 79, 5034.
    82. Shen, H.; Eisenberg, A. Control of Architecture in Block Copolymer Vesicles. Angew. Chem. Int. Ed. 2000, 39, 3310.
    83. Luo, L.; Eisenberg, A. Thermodynamic Stabilization Mechanism of Block Copolymer Vesicles. J. Am. Chem. Soc. 2001, 123, 1012.
    84. Luo, L.; Eisenberg, A. One-Step Preparation of Block Copolymer Vesicles with Preferentially Segregated Acidic and Basic Corona Chains. Angew. Chem. Int. Ed. 2002, 41, 1001.
    85. Discher D. E., Eisenberg A. Polymer Vesicles. Science 2002, 297, 967.
    86. Riegel, I. C.; Eisenberg, A.; Petzhold, C. L.; Samios, D. Novel Bowl-shaped Morphology of Crew-Cut Aggregates from Amphiphilic Block Copolymers of Styrene and
    5-(N,N-Diethylamino)isoprene. Langmuir, 2002, 18, 3358.
    87. Otsuka, H.; Nagasaki, Y.; Kataoka, K. Self-Assembly of Poly(ethylene glycol)-based Block Copolymers for Biomedical Applications. Curr. Opin Coll. Int. Sci. 2001, 6, 3.
    88. R?sler, A.; Vandermeulen, G. W. M.; Klok, H.-A. Advanced Drug Delivery Devices via Self-Assembly of Amphiphilic Block Copolymers. Adv. Drug Deliv. Rev. 2001, 53, 95.
    89. Antonietti, M.; F?rster, S. Vesicles and Liposomes: A Self-Assembly Principle Beyond Lipids. Adv. Mater. 2003, 15, 1323.
    90. Klok, H.-A.; Lecommandoux, S. Supramolecular Materials via Block Copolymer Self-Assembly. Adv. Mater. 2001, 13, 1217.
    91. Shefelbine, T. A.; Vigild, M. E.; Matsen, M. W.; Hajduk, D. A.; Hillmyer, M. A.; Cussler, E. L.; Bates, F. S. Core-Shell Gyroid Morphology in a Poly(isoprene-block-styrene-block -dimethylsiloxane) Triblock Copolymer. J. Am. Chem. Soc. 1999, 121, 8457.
    92. Goldacker, T.; Abetz, V.; Stadler, R.; Erukhimovich, I.; Leibler, L. Non-centrosymmetric Superlattices in Block Copolymer Blends. Nature 1999, 398, 137.
    93. Lee, M.; Cho, B.-K.; Zin, W.-C. Supramolecular Structures from Rod-Coil Block Copolymers. Chem. Rev. 2001, 101, 3869.
    94. Cornelissen, J. J. L. M.; Donners, J. J. J. M.; Gelder, R.; Graswinckel, W. S.; Metselaar, G. A.; Rowan, A. E.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. β-Helical Polymers from Isocyanopeptides. Science 2001, 293, 676.
    95. Cornelissen, J. J. L. M.; Fischer, M.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Helical Superstructures from Charged Poly(styrene)-Poly(isocyanodipeptide) Block Copolymers. Science 1998, 280, 1427.
    96. Vriezema, D. M.; Hoogboom, J.; Velonia, K.; Takazawa, K.; Christianen, P. C. M.; Maan, J. C.; Rowan, A. E.; Nolte, R. J. M. Vesicles and Polymerized Vesicles from Thiophene-containing Rod-Coil Block Copolymers. Angew. Chem. Int. Ed. 2003, 42, 772.
    97. Chen, J. T.; Thomas, E. L.; Ober, C. K.; Mao, G.-P. Self-assembled Smectic Phases in Rod-Coil Block Copolymers. Science 1996, 273, 343.
    98. Discher, B. M.; Won, Y.-Y.; Ege, D.; Lee, J. C.-M.; Bates, F. S.; Discher, D. E.; Hammer, D. A.Polymersomes: Tough Vesicles Made from Diblock Copolymers. Science 1999, 284, 1143.
    99. Yu, S. M.; Soto, C. M.; Tirrell, D. A. Nanometer-Scale Smectic Ordering of Genetically Engineered Rodlike Polymers: Synthesis and Characterization of Monodisperse Derivatives of Poly(γ-benzyl α, L-glutamate). J. Am. Chem. Soc. 2000, 122, 6552.
    100. Lee, M.; Cho, B.-K.; Ihn, K. J.; Lee, W.-K.; Oh, N.-K.; Zin, W.-C. Supramolecular Honeycomb by Self-Assembly of Molecular Rods in Rod-Coil Molecule. J. Am. Chem. Soc. 2001, 123, 4647.
    101. Jenekhe, S. A.; Chen, X. L. Self-assembled Aggregates of Rod-Coil Block Copolymers and Their Solubilization and Encapsulation of Fullerenes. Science 1998, 279, 1903.
    102. Jenekhe, S. A.; Chen, X. L. Self-Assembly of Ordered Microporous Materials from Rod-Coil Block Copolymers. Science 1999, 283, 372.
    103. Jenekhe, S. A.; Chen, X. L. Supramolecular Photophysics of Self-assembled Block Copolymers Containing Luminescent Conjugated Polymers. J. Phys. Chem. B 2000, 104, 6332.
    104. Kong, X.; Jenekhe, S. A. Block Copolymers Containing Conjugated Polymer and Polypeptide Sequences: Synthesis and Self-Assembly of Electroactive and Photoactive Nanostructures. Macromolecules 2004, 37, 8180.
    105. Ludwigs, S.; B?ker, A.; Voronov, A.; Rehse, N.; Magerle, R.; Krausch, G. Self-Assembly of Functional Nanostructures from ABC Triblock Copolymers. Nat. Mater. 2003, 2, 744.
    106. Liu, F.; Eisenberg, A. Synthesis of Poly(tert-butyl acrylate)-block-Polystyrene- block-Poly(4-vinylpyridine) by Living Anionic Polymerization. Angew. Chem. Int. Ed. 2003, 42, 1404.
    107. Erhardt, R.; Zhang, M.; Boker, A.; Zettl, H.; Abetz, C.; Frederik, P.; Krausch, G.; Abetz, V.; Müller, A. H. E. Amphiphilic Janus Micelles with Polystyrene and Poly(methacrylic acid) Hemispheres. J. Am. Chem. Soc. 2003, 125, 3260.
    108. Abetz, V. In Encyclopedia of Polymer Science and Technology, 3rd ed.; Kroschwitz, J. I., Ed.; John Wiley & Sons: New York 2003, Vol. 1.
    109. Zhu, J.; Jiang, W. Self-Assembly of ABC Triblock Copolymer into Giant Segmented Wormlike Micelles in Dilute Solution. Macromolecules 2005, 38, 9315.
    110. Fukunaga, K.; Hashimoto, T.; Elbs, H.; Krausch, G. Self-Assembly of a Lamellar ABC Triblock Copolymer Thin Film. Macromolecules 2002, 35, 4406.
    111. Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L.; Huggins, K. E.; Keser, M.; Amstutz, A. Supramolecular Materials: Self-organized Nanostructures. Science 1997, 276, 384.
    112. Zubarev, E. R.; Pralle, M. U.; Li, L.; Stupp, S. I. Conversion of Supramolecular Clusters to Macromolecular Objects. Science 1999, 283, 523.
    113. Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers. Science 2001, 294, 1684.
    114. Silva, G. A.; Czeisler, C.; Niece, K. L.; Beniash, E.; Harrington, D. A.; Kessler, J. A.; Stupp, S. I. Selective Differentiation of Neural Progenitor Cells by High-Epitope Density Nanofibers. Science 2004, 303, 1352.
    115. Kukula, H.; Schlaad, H.; Antonietti, M.; F?rster, S. The Formation of Polymer Vesicles or “Peptosomes” by Polybutadiene-block-Poly(L-glutamate)s in Dilute Aqueous Solution. J. Am. Chem. Soc. 2002, 124, 1658.
    116. Tezuka, Y.; Oile, H. Topological Polymer Chemistry. Prog. Polym, Sci. 2002, 27, 1069.
    117. Ishizu, K.; Uchida, S. Synthesis and Microphase-separated Structures Star-Block Copolymers.Prog. Polym. Sci. 1999, 24, 1439.
    118. ?t?pánek, M.; Podhájecká, K.; Procházka, K.; Tuzar, Z.; Brown, W. Polystyrene/Poly(2-vinylpyridine) Heteroarm Star Copolymer Micelles in Aqueous Media and Onion Type Micelles Stabilized by Diblock Copolymers. Langmuir 2000, 16, 6868.
    119. Voulgaris, D.; Tsitsilianis, C.; Esselink, F. J.; Hadziioannou, G. Polystyrene/Poly(2-vivyl pyridine) Heteroarm Star Copolymer Micelles in Toluene: Morphology and Thermodynamics. Polymer 1998, 39, 6429.
    120. Mountrichas, G.; Mpiri, M.; Pispas, S. Micelles of Star Block (PSPI)8 and PSPI Diblock Copolymers (PS =Polystyrene, PI = Polyisoprene): Structure and Kinetics of Micellization. Macromolecules 2005, 38, 940.
    121. Heise, A.; Hedrick, J. L.; Frank, C. W.; Miller, R. D. Star-like Block Copolymers with Amphiphilic Arms as Models for Unimolecular Micelles. J. Am. Chem. Soc. 1999, 121, 8647.
    122. Yoo, M.; Heise, A.; Hedrick, J. L.; Miller, R. D.; Frank, C. W. Photophysical Characterization of Conformational Rearrangements for Amphiphilic 6-Arm Star Block Copolymers in Selective Solvent Mixtures. Macromolecules 2003, 36, 268.
    123. Huh, J.; Kim, K. H.; Ahn, C.-H.; Joa, W. H. Micellization Behavior of Star-Block Copolymers in a Selective Solvent: A Brownian Dynamics Simulation Approach, J. Chem. Phys. 2004, 121, 4998.
    124. Bosman, A. W.; Janssen, H. M.; Meijer, E. W. About Dendrimers: Structure, Physical Properties, and Applications. Chem. Rev. 1999, 99, 1665.
    125. Grayson, S. M.; Fréchet, J. M. J. Convergent Dendrons and Dendrimers: From Synthesis to Applications. Chem. Rev. 2001, 101, 3819.
    126. Hudson, S. D.; Jung, H.-T.; Percec, V.; Cho, W.-D.; Johansson, G.; Ungar, G.; Balagurusamy, V. S. K. Direct Visualization of Individual Cylindrical and Spherical Supramolecular Dendrimers. Science 1997, 278, 449.
    127. Percec, V.; Ahn, C.-H.; Barboiu, B. Self-Encapsulation, Acceleration and Control in the Radical Polymerization of Monodendritic Monomers via Self-Assembly. J. Am. Chem. Soc. 1997, 119, 12978.
    128. Percec, V.; Ahn, C.-H.; Ungar, G.; Yeardley, D. J. P.; M?ller, M.; Sheiko, S. S. Controlling Polymer Shape through the Self-Assembly of Dendritic Side-Groups. Nature 1998, 398, 161.
    129. Percec, V.; Cho, W.-D.; Ungar, G. Increasing the Diameter of Cylindrical and Spherical Supramolecular Dendrimers by Decreasing the Solid Angle of Their Monodendrons via Periphery Functionalization. J. Am. Chem. Soc. 2000, 122, 10273.
    130. Zeng, X.; Ungar, G.; Liu, Y.; Percec, V.; Dulcey, A. E.; Hobbs, J. K. Supramolecular Dendritic Liquid Quasicrystals. Nature 2004, 428, 157.
    131. Kawa, M.; Fréchet, J. M. J. Self-assembled Lanthanide-cored Dendrimer Complexes: Enhancement of the Luminescence Properties of Lanthanide Ions through Site-isolation and Antenna Effects. Chem. Mater. 1998, 10, 286.
    132. Freeman, A. W.; Vreekamp, R.; Fréchet, J. M. J. The Self-Assembly of Convergent Dendrimers Based on the Melamine Cyanuric Acid Lattice. Polym. Mater. Sci. Eng. 1997, 77, 138.
    133. Schenning, A. P. H. J.; Elissen-Román, C.; Weener, J.-W.; Baars, M. W. P. L.; van der Gaast, S. J.; Meijer, E. W. Amphiphilic Dendrimers as Building Blocks in Supramolecular Assemblies. J. Am. Chem. Soc. 1998, 120, 8199.
    134. Román, C.; Fischer, H. R.; Meijer, E. W. Microphase Separation of Diblock CopolymersConsisting of Polystyrene and Acid-functionalized Poly(propylene imine) Dendrimers. Macromolecules 1999, 32, 5525.
    135. Tsuda, K.; Dol, G. C.; Gensch, T.; Hofkens, J.; Latterini, L.; Weener, J. W.; Meijer, E. W.; De Schryver, F. C. Fluorescence from Azobenzene Functionalized Poly(propylene imine) Dendrimers in Self-assembled Supramolecular Structures. J. Am. Chem. Soc. 2000, 122, 3445.
    136. Weener, J.-W.; Meijer, E. W. Photoresponsive Dendritic Monolayers. Adv. Mater. 2000, 12, 741.
    137. Wang, B.; Zhang, X.; Jia, X.; Li, Z.; Ji, Y.; Yang, L.; Wei, Y. Fluorescence and Aggregation Behavior of Poly(amidoamine) Dendrimers Peripherally Modified with Aromatic Chromophores: the Effect of Dendritic Architectures. J. Am. Chem. Soc. 2004, 126, 15180.
    138. Wang, B.; Zhang, X.; Jia, X.; Luo, Y.; Sun, Z.; Yang, L.; Ji, Y.; Wei, Y. Poly(amidoamine) Dendrimers with Phenyl Shells: Fluorescence and Aggregation Behavior. Polymer 2004, 45, 8395.
    139. Zeng, F.; Zimmerman, S. C. Dendrimers in Supramolecular Chemistry: From Molecular Recognition to Self-Assembly. Chem. Rev. 1997, 97, 1681.
    140. Emrick, T.; Fréchet, J. M. J. Self-Assembly of Dendritic Structures. Curr. Opin. Colloid Interface Sci. 1999, 4, 15.
    141. Choi, J. S.; Joo, D. K.; Kim, C. H.; Kim, K.; Park, J. S. Synthesis of a Barbell-like Triblock Copolymer, Poly(L-lysine) Dendrimer-block-Poly(ethylene glycol)-block-Poly(L-lysine) Dendrimer, and Its Self-Assembly with Plasmid DNA. J. Am. Chem. Soc. 2000, 122, 474.
    142. Jang, C.-J.; Ryu, J.-H.; Lee, J.-D.; Sohn, D.; Lee, M. Synthesis and Supramolecular Nanostructure of Amphiphilic Rigid Aromatic-flexible Dendritic Block Molecules. Chem. Mater. 2004, 16, 4226.
    143. Hager, K.; Franz, A.; Hirsch, A. Self-Assembly of Chiral Depsipeptide Dendrimers. Chem. Eur. J. 2006, 12, 2663.
    144. Yan, D.; Zhou, Y.; Hou, J. Supramolecular Self-Assembly of Macroscopic Tubes. Science 2004,
    303, 65.
    145. Zhou, Y.; Yan, D. Supramolecular Self-Assembly of Giant Polymer Vesicles with Controlled Sizes. Angew. Chem. Int. Ed. 2004, 43, 4896.
    146. Zhou, Y.; Yan, D. Real-Time Membrane Fission of Giant Polymer Vesicles. Angew. Chem. Int. Ed. 2005, 44, 3223.
    147. Zhou, Y.; Yan, D. Real-Time Membrane Fusion of Giant Polymer Vesicles. J. Am. Chem. Soc. 2005, 127, 10468.
    148. Jia, Z.; Zhou, Y.; Yan, D. Amphiphilic Star-Block Copolymers Based on a Hyperbranched Core: Synthesis and Supramolecular Self-Assembly. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 6534.
    149. Ornatska, M.; Bergman, K. N.; Rybak, B.; Peleshanko, S.; Tsukruk, V. V. Nanofibers from Functionalized Dendritic Molecules. Angew. Chem. Int. Ed. 2004, 43, 5246.
    150. Ornatska, M.; Peleshanko, S.; Genson, K. L.; Rybak, B.; Bergman, K. N.; Tsukruk, V. V. Assembling of Amphiphilic Highly Branched Molecules in Supramolecular Nanofibers. J. Am. Chem. Soc. 2004, 126, 9675.
    151. Jesberger, M.; Barner, L.; Stenzel, M. H.; Malmstr?m, E.; Davis, T. P.; Barner-Kowollik, C. Hyperbranched Polymers as Scaffolds for Multifunctional Reversible Addition-Fragmentation Chain-Transfer Agents: a Route to Polystyrene-core-Polyesters and Polystyrene-block-Poly(butyl acrylate)-core-Polyesters. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 3847.
    152. Tian, H.; Deng, C.; Lin, H.; Sun, J.; Deng, M.; Chen, X.; Jing, X. Biodegradable CationicPEG–PEI–PBLG Hyperbranched Block Copolymer: Synthesis and Micelle Characterization. Biomaterials 2005, 26, 4209.
    153. Jiang, G.; Wang, L.; Chen, T.; Yu, H.; Wang, C.; Chen, C. Synthesis and Macroscopic Self-Assembly of Multiarm Hyperbranched Polyethers with Benzoyl-terminated Groups. Polymer 2005, 46, 5351.
    154. 侯健,超支化聚合物地制备和功能化[博士学位论文],上海:上海交通大学,2000.
    155. Mai, Y.; Zhou, Y.; Yan, D.; Hou, J. Quantitative Dependence of Crystallinity on Degree of Branching for Hyperbranched Poly[3-ethyl-3-(hydroxymethyl)oxetane]. New J. Phys. 2005, 7, 42.
    156. Mai, Y.; Zhou, Y.; Yan, D; Lu, H. Effect of Reaction Temperature on Degree of Branching in Cationic Polymerization of 3-Ethyl-3-(hydroxymethyl)oxetane. Macromolecules 2003, 36, 9667.
    157. Parris, J. M.; Marchessault, R. H.; Vandenberg, E. J.; Mullis, J. C. Isomorphism in the Poly(3,3-bis-hydroxymethyloxetane) Family and Copolymers: Poly (3,3-bis-hydroxymethyloxetane-co-3-methyl-3-hydroxymethyloxetane). J. Polym. Sci., Part B: Polym. Phys. 1994, 32, 749.
    158. Mai, Y.; Zhou, Y.; Yan, D. Effect of Degree of Branching on Glass Transition Temperature for Hyperbranched Polyether. Chem. J. Chinese U. 2004, 25, 1373.
    159. Gong, W.; Mai, Y.; Zhou, Y.; Qi, N.; Wang, B.; Yan, D. Effect of the Degree of Branching on Atomic-Scale Free Volume in Hyperbranched Poly[3-ethyl-3-(hydroxymethyl)oxetane]. A Positron Study. Macromolecules 2005, 38, 9644.
    160. Jean, Y. C. Positron Annihilation Spectroscopy for Chemical Analysis: A Novel Probe for Microstructual Analysis of Polymers. Microchem. J. 1990, 42, 72.
    161. Schiff, L. I. Quantum Mechanics. 3rd. ed. Cgraw-Hill, New York 1961.
    162. Kirkegaard, P.; Eldrup, M.; Mogensen, O. E.; Pedersen, N. J. Program System for Analysing Positron Lifetime Spectra and Angular Correlation Curves. Comput. Phys. Commun. 1981, 23, 307.
    163. Shukla, A.; Peter, M.; Hoffmann, L. Analysis of Positron Lifetime Spectra Using Quantified Maximum Entropy and a General Linear Filter. Nucl. Instr. and Meth. A 1993, 335, 310.
    164. Tao, S. J. Positronium Annihilation in Molecular Substances. J. Chem. Phys. 1972, 56, 5499.
    165. Nakanishi, H.; Ujihira, Y. Application of Positron Annihilation to the Characterization of Zeolites. J. Phys. Chem. 1982, 86, 4446.
    166. Flory, P. J. On the Morphology of the Crystalline State in Polymers. J. Am. Chem. Soc. 1962, 84, 2857.
    167. Flory, P. J.; Yoon, D. Y. Molecular Morphology in Semicrystalline Polymers. Nature 1978, 272, 226.
    168. 何曼君; 陈维孝; 董西侠. 高分子物理. 上海:复旦大学出版社,1990.
    169. Wang, Y.; Nakanishi, H.; Jean, Y. C.; Sandreczki, T. C. Positron Annihilation in Amine-cured Epoxy Polymers: Pressure Dependence. J. Polym. Sci., Part B: Polym. Phys. 1990, 28, 1431.
    170. Lin, D.; Wang, S. J. Structural Transitions of Polyethylene Studied by Positron Annihilation. J. Phys. Condens. Matter 1992, 4, 3331.
    171. Kobayshi, Y.; Zheng, W.; Meyer, E. F. Free Volume and Physical Aging of Poly(vinyl acetate) Studied by Positron Annihilation. Macromolecules 1989, 22, 2302.
    172. Cangialosi, D.; Schut, H.; Vanveen, A.; Pickem, S. J. Positron Annihilation Lifetime Spectroscopy for Measuring Free Volume during Physical Aging of Polycarbonate. Macromolecules 2003, 36, 142.
    173. Kluin, J. E.; Yu, Z.; Vleeshouwers, S.; McGervey, J. D. Temperature and Time Dependence of Free Volume in Bisphenol: A Polycarbonate Studied by Positron Lifetime Spectroscopy. Macromolecules 1992, 25, 5089.
    174. Consolati, G.; Kansy, J. Positron Annihilation Study of Free Volume in Cross-linked Amorphous Polyurethanes through the Glass Transition Temperature. Polymer 1998, 39, 3491.
    175. Barto?, J.; Kir?tiaková, K.; ?au?a, O. Free Volume Microstructure of Tetramethylpolycarbonate at Low Temperatures Studied by Positron Annihilation Lifetime Spectroscopy: A Comparison with Polycarbonate. Polymer 1996, 15, 3397.
    176. W?stlund, C.; Maurer, F. H. J. Positron Lifetime Distributions and Free Volume Parameters of PEO/PMMA Blends Determined with the Maximum Entropy Method. Macromolecules 1997, 30, 5870.
    177. Serna, J.; Abbe, J. Ch.; Duplatre, G. Size of Voids in Polyethylene. Phys. Stat. Sol. A 1989, 115, 389.
    178. Reiter, G.; Kindl, P. Positron Lifetime Investigations on Linear Polyethylene Compared to Branched Polyethylene. Phys. Stat. Sol. A 1990, 118, 161.
    179. Dlubek, G.; Saarinen, K.; Fretwell, H. M. Positron States in Polyethylene and Polytetrafluoroethylene: A Positron Lifetime and Doppler-broadening Study. Nucl. Instr. and Meth. B 1998, 142, 139.
    180. Ito, K.; Ujihira, Y.; Yamashita, T.; Horie, K. Change in Free Volume during Volume Phase Transition of Poly(N-isopropylacrylamide) Gel as Studied by Positron Annihilation Lifetimes: Temperature Dependence. Polymer 1999, 40, 4315.
    181. Wang, S. J.; Jean, Y. C. Positron and Positronium Chemistry, Schrader, D. M.; Jean, Y. C.; Eds. Studies in Physical and Theoretical Chemistry 57. Elsevier: Amsterdam 1988, p255.
    182. 宁超峰;何春清;张明;胡春圃;王波;王少阶. 用正电子湮没谱研究聚酯型聚氨酯的微观结构和自由体积特性. 高分子学报 2001, 299.
    183. F?rster, S.; Antonietti, M. Amphiphilic Block Copolymers in Structure-controlled Nanomaterial Hybrids. Adv. Mater. 1998, 10, 195.
    184. Mai, Y.; Zhou, Y.; Yan, D. Synthesis and Size-Controllable Self-Assembly of a Novel Amphiphilic Hyperbranched Multiarm Copolyether. Macromolecules 2005, 38, 8679.
    185. Tu, Y.; Wang, X.; Zhang, H.; Fan, X.; Chen, X.; Zhou, Q.; Chau, K. Self-Assembled Nanostructures of Rod-Coil Diblock Copolymers with Different Rod Lengths. Macromolecules 2003, 36, 6565.
    186. Wang, C.; Ravi, P.; Tam, K. C.; Gan, L. H. Self-Assembly Behavior of Poly(methacrylic acid-block-ethyl acrylate) Polymer in Aqueous Medium: Potentiometric Titration and Laser Light Scattering Studies. J. Phys. Chem. B 2004, 108, 1621.
    187. Schilli, C. M.; Zhang, M.; Rizzardo, E.; Thang, S. H.; Chong, Y. K.; Edwards, K.; Karlsson, G.; Müller, A. H. E. A New Double-Responsive Block Copolymer Synthesized via RAFT Polymerization: Poly(N-isopropylacrylamide)-block-poly(acrylic acid). Macromolecules 2004, 37, 7861.
    188. Yuan, J.; Li, Y.; Li, X.; Cheng, S.; Jiang, L.; Feng, L.; Fan, Z. The ‘‘Crew-Cut’’ Aggregates of Polystyrene-b-poly(ethylene oxide)-b-polystyrene Triblock Copolymers in Aqueous Media. Eur. Polym. J. 2003, 39, 767.
    189. Zhu, R.; Wang, Y.; He, W. Multiple Morphological Micelles Formed from the Self-Assembly ofPoly(styrene)-b-poly(4-vinylpyridine) Containing Cobalt Dodecyl Benzene Sulfonate. Eur. Polym. J. 2005, 41, 2088.
    190. Liu, L.; Gao, X.; Cong, Y.; Li, B.; Han, Y. Multiple Morphologies and Their Transformation of a Polystyrene-block-poly(4-vinylpyridine) Block Copolymer. Macromol. Rapid Commun. 2006, 27, 260.
    191. Provencher, S. W. Constrained Regularization Method for Inverting Data Represented by Linear Algebraic or Integral Equations. Comput. Phys. Commun. 1982, 27, 213.
    192. Roovers, J.; Zhou, L.; Toporowski, P. M.; Zwan, M.; Iatrou, H.; Hadjichristidis, N. Regular Star Polymers with 64 and 128 Arms. Models for Polymeric Micelles. Macromolecules 1993, 26, 4324.
    193. Sunder, A.; Kr?mer, M.; Hanselmann, R.; Mülhaupt, R.; Frey, H. Molecular Nanocapsules Based on Amphiphilic Hyperbranched Polyglycerols. Angew. Chem., Int. Ed. 1999, 38, 3552.
    194. Sunder, A.; Mülhaupt, R.; Haag, R.; Frey, H. Hyperbranched Polyether Polyols: A Modular Approach to Complex Polymer Architectures. Adv. Mater. 2000, 12, 235.
    195. Sunder, A.; Mülhaupt, R.; Frey, H. Hyperbranched Polyether-Polyols Based on Polyglycerol: Polarity Design by Block Copolymerization with Propylene Oxide. Macromolecules 2000, 33, 309.
    196. Knischka, R.; Lutz, P. J.; Sunder, A.; Mülhaupt, R.; Frey, H. Functional Poly(ethylene oxide) Multiarm Star Polymers: Core-First Synthesis Using Hyperbranched Polyglycerol Initiators. Macromolecules 2000, 33, 315.
    197. He, X.; Yan, D.; Mai, Y. Synthesis of Novel Multi-arm Star Azobenzene Side-Chain Liquid Crystalline Copolymers with a Hyperbranched Core. Eur. Polym. J. 2004, 40, 1759.
    198. Schmalz, H.; Knoll, A.; Müller, A. J.; Abetz, V. Synthesis and Characterization of ABC Triblock Copolymers with Two Different Crystalline End Blocks: Influence of Confinement on Crystallization Behavior and Morphology. Macromolecules 2002, 35, 10004.
    199. Erhardt, R.; B?ker, A.; Zettl, H.; Kaya, H.; Pyckhout-Hintzen, W.; Krausch, G.; Abetz, V.; Müller, A. H. E. Janus Micelles. Macromolecules 2001, 34, 1069.
    200. Yuan, X.; Jiang, M.; Zhao, H.; Wang, M.; Zhao, Y.; Wu, C. Noncovalently Connected Polymeric Micelles in Aqueous Medium. Langmuir 2001, 17, 6122.
    201. Chu, B. Laser Light Scattering, 2nd ed. Academic Press: New York, 1991.
    202. Gu, Y.; Kar, T.; Scheiner, S. Fundamental Properties of the CH···O Interaction: Is It a True Hydrogen Bond? J. Am. Chem. Soc. 1999, 121, 9411.
    203. Dou, H.; Jiang, M.; Peng, H.; Chen, D.; Hong, Y. pH-Dependent Self-Assembly: Micellization and Micelle–Hollow-Sphere Transition of Cellulose-based Copolymers. Angew. Chem. Int. Ed. 2003, 42, 1516.
    204. Mortensen, K. Structural Properties of Self-assembled Polymeric Aggregates in Aqueous Solutions. Polym. Adv. Technol. 2001, 12, 2.
    205. Lehn, J. M. Supramolecular Chemistry: Concepts and Perspectives. Weinheim: Wiley-VCH, 1995.
    206. Service, R. F. How Far Can We Push Chemical Self-Assembly? Science 2005, 309, 95.
    207. Prockop, D. J.; Fertala, A. The Collagen Fibril: The Almost Crystalline Structure. J. Struct. Biol. 1998, 122, 111.
    208. Choi, I. S.; Bowden, N.; Whitesides, G. M. Macroscopic, Hierarchical, Two-Dimensional Self-Assembly. Angew. Chem., Int. Ed. 1999, 38, 3078.
    209. Elemans, J. A. A. W.; Rowan, A. E.; Nolte, R. J. M. Mastering Molecular Matter. Supramolecular Architectures by Hierarchical Self-assembly. J. Mater. Chem. 2003, 13, 2661.
    210. Liang, Y.; Li, Z.; Li, F. Multiple Morphologies of Molecular Assemblies Formed by Polystyrene-block-poly[2-(b-D-glucopyranosyloxy)ethyl acrylate] in Water. New J. Chem. 2000, 24, 323.
    211. Du, J.; Chen, Y. Organic-Inorganic Hybrid Nanoparticles with a Complex Hollow Structure. Angew. Chem. Int. Ed. 2004, 43, 5084.
    212. Xiong, X. Y.; Tam, K. C. Hydrolytic Degradation of Pluronic F127/Poly(lactic acid) Block Copolymer Nanoparticles. Macromolecules 2004, 37, 3425.
    213. Zhang, J.; Yu, Z.; Wan, X.; Chen, X.; Zhou, Q. Synthesis and Characterization of Helix-Coil Diblock Copolymers with Controlled Supramolecular Architectures in Aqueous Solution. Macromol. Rapid Commun. 2005, 26, 1241.
    214. Nomura, F.; Inaba, T.; Ishikawa, S.; Nagata, M.; Takahashi, S.; Hotani, H.; Takiguchi, K. Microscopic Observations Reveal that Fusogenic Peptides Induce Liposome Shrinkage Prior to Membrane Fusion. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 3420.
    215. Menger, F. M.; Gabrielson, K. D. Cytomimetic Organic Chemistry: Early Developments. Angew. Chem. Int. Ed. Engl. 1995, 34, 2091.
    216. Menger, F. M.; Angelova, M. I. Giant Vesicles: Imitating the Cytological Processes of Cell Membranes. Acc. Chem. Res. 1998, 31, 789.
    217. Siegel, D. P.; Epand, R. M. The Mechanism of Lamellar-to-inverted Hexagonal Phase Transitions in Phosphatidylethanolamine: Implications for Membrane Fusion Mechanisms. Biophys. J. 1997,
    73, 3089.
    218. Menger, F. M.; Peresypkin, A. V. Strings of Vesicles: Flow Behavior in an Unusual Type of Aqueous Gel. J. Am. Chem. Soc. 2003, 125, 5340.
    219. Rettig, W.; Strehmel, B.; Schrader, S.; Seifert, H. Applied Fluorescence in Chemistry, Biology and Medicine. Springer-Verlag: Berlin 1999.
    220. Keeling-Tucker, T.; Brennan, J. D. Fluorescent Probes as Reporters on the Local Structure and Dynamics in Sol-Gel-Derived Nanocomposite Materials. Chem. Mater. 2001, 13, 3331.
    221. Bowden, N. B.; Willets, K. A.; Moerner, W. E.; Waymouth, R. M. Synthesis of Fluorescently Labeled Polymers and Their Use in Single-Molecule Imaging. Macromolecules 2002, 35, 8122.
    222. Gao, C.; Donath, E.; M?hwald, H.; Shen, J. Spontaneous Deposition of Water-soluble Substances into Microcapsules: Phenomenon, Mechanism, and Application. Angew. Chem. Int. Ed. 2002, 41, 3789.
    223. Dai, Z.; M?hwald, H.; Tiersch, B.; D?hne, L. Nanoengineering of Polymeric Capsules with a Shell-in-Shell Structure. Langmuir 2002, 18, 9533.
    224. Savic, R.; Luo, L.; Eisenberg, A.; Maysinger, D. Micellar Nanocontainers Distribute to Defined Cytoplasmic Organelles. Science 2003, 300, 615.
    225. Breitenkamp, K.; Emrick, T. Novel Polymer Capsules from Amphiphilic Graft Copolymers and Cross-Metathesis. J. Am. Chem. Soc. 2003, 125, 12070.
    226. Khopade, A. J.; Arulsudar, N.; Khopade, S. A.; Knocke, R.; Hartmann, J.; M?hwald, H. From Ultrathin Capsules to Biaqueous Vesicles. Biomacromolecules 2005, 6, 3433.
    227. Ghoroghchian, P. P.; Li, G.; Levine, D. H.; Davis, K. P.; Bates, F. S.; Hammer, D. A.; Therien. M. J. Bioresorbable Vesicles Formed through Spontaneous Self-Assembly of Amphiphilic Poly(ethylene oxide)-block-polycaprolactone. Macromolecules 2006, 39, 1673.
    228. V?gtle, F.; Gestermann, S.; Kauffmann, C.; Ceroni, P.; Vicinelli, V.; de Cola, L.; Balzani, V.Poly(Propylene Amine) Dendrimers with Peripheral Dansyl Units: Protonation, Absorption Spectra, Photophysical Properties, Intradendrimer Quenching, and Sensitization Processes. J. Am. Chem. Soc. 1999, 121, 12161.
    229. V?gtle, F.; Gestermann, S.; Kauffmann, C.; Ceroni, P.; Vicinelli, V.; Balzani, V. Coordination of Co2+ Ions in the Interior of Poly(propylene amine) Dendrimers Containing Fluorescent Dansyl Units in the Periphery. J. Am. Chem. Soc. 2000, 122, 10398.
    230. Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W. Structural Changes Accompanying Intramolecular Electron Transfer: Focus on Twisted Intramolecular Charge-Transfer States and Structures. Chem. Rev. 2003, 103, 3899.
    231. Capek, I. Fate of Excited Probes in Micellar Systems. Adv. Colloid Interface Sci. 2002, 97, 91.
    232. Shen, H.; Eisenberg, A. Morphological Phase Diagram for a Ternary System of Block Copolymer PS310-b-PAA52/ Dioxane/H2O. J. Phys. Chem. B 1999, 103, 9473.
    233. Hu, Z.; Jonas, A. M.; Varshney, S. K.; Gohy, J.-F. Dilution-Induced Spheres-to-Vesicles Morphological Transition in Micelles from Block Copolymer/Surfactant Complexes. J. Am. Chem. Soc. 2005, 127, 6526.
    234. Battaglia, G.; Ryan, A. J. Effect of Amphiphile Size on the Transformation from a Lyotropic Gel to a Vesicular Dispersion. Macromolecules 2006, 39, 798.
    235. Yang, J.; Pi?ol, R.; Gubellini, F.; Lévy, D.; Albouy, P.; Keller, P.; Li, M. Formation of Polymer Vesicles by Liquid Crystal Amphiphilic Block Copolymers. Langmuir 2006, 22, 7907.
    236. Li, J.; Kao, W. J. Synthesis of Polyethylene Glycol (PEG) Derivatives and PEGylated-Peptide Biopolymer Conjugates. Biomacromolecules 2003, 4, 1055.
    237. Bartzatt, R. Dansylation of Hydroxyl and Carboxylic Acid Functional Groups. J. Biochem. Biophys. Methods 2001, 47, 189.
    238. Ikeda, H.; Nakamura, M.; Ise, N.; Toda, F.; Ueno, A. NMR Studies of Conformations of N-Dansyl-L-leucine-Appended and N-Dansyl-D-leucine-Appended β-Cyclodextrin as Fluorescent Indicators for Molecular Recognition. J. Org. Chem. 1997, 62, 1411.
    239. Miao, R.; Zheng, Q.; Chen, C.; Huang, Z. A C-linked Peptidocalix[4]arene Bearing Four Dansyl Groups: a Highly Selective Fluorescence Chemosensor for Fluoride Ions. Tetrahedron Letters 2004, 45, 4959.
    240. de la Maza, A.; Coderch, L.; Lopez, O.; Parra, J. L. Transmission Electron Microscopy and Light Scattering Studies on the Interaction of a Nonionic/Anionic Surfactant Mixture With Phosphatidylcholine Liposomes. Microsc. Res. Tech. 1998, 40, 63.
    241. Burchard, W. in Cantow, H.-J. et al., Eds. Light Scattering from Polymers. Berlin: Springer-Verlag 1983.
    242. Santos, N. C.; Prieto, M. J. E.; Morna-Gomes, A.; Betbeder, D.; Castanho, M. A. R. B. Structural Characterization (Shape and Dimensions) and Stability of Polysaccharide/Lipid Nanoparticles. Biopolymers 1997, 41, 511.
    243. 周永丰,两亲性超支化多臂共聚物的分子自组装及其在生物膜仿生研究中的应用[博士学位论文],上海:上海交通大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700