用户名: 密码: 验证码:
杯芳烃希夫碱的光致变色性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着信息技术的迅速发展,使得用于存储数据的材料的小型化成为不可阻挡的趋势,尤其是单分子水平的信息存储材料是人们追求的目标。分子开关能够感应外界的刺激(如光、电或化学反应),同时发生分子结构的互变。正像宏观开关一样,一个分子开关就能调控材料或器件的大量功能和性质。因此,分子开关在计算机芯片和生物医药等领域具有广泛的应用前景。本论文将具有良好的光调控功能的光致变色染料和具有分子识别能力的杯芳烃共价键连接后,得到既有识别能力又有光调控功能的主体化合物,并对其在分子识别和分子开关等方面的性能进行了研究,得到了如下一系列的结果:
     1.设计合成了带有两个光致变色希夫碱基团的杯[4]芳烃衍生物(双硝基取代主体化合物-HN;双氢原子取代主体化合物-HH;双甲氧基取代主体化合物-HM),并通过IR, 1H NMR, 13C NMR, MALDI-TOF MS和元素分析等手段证实了其结构,1H NMR的数据表明杯[4]芳烃衍生物以锥式构象存在。
     2.系统研究了三种双臂主体化合物在二氯甲烷和乙腈溶液中的光致变色性能,得到以下的结果:(i)二氯甲烷溶液中化合物能够和溶剂形成CH(二氯)???O(化合物酚羟基)氢键,有利于光致变色反应的发生;而在乙腈溶液中,化合物是以醇式-两性离子的二聚体形式存在的,此形式阻碍了光致变色反应的发生;(ii)杯芳烃大环结构的引入能够有效地降低共平面造成的π-π堆积作用,从而有效地改善希夫碱的光致变色性能;(iii)推电子取代基能使化合物以烯醇式结构存在,从而有利于光致变色反应的发生;(iv)虽然双臂主体化合物具有两个质子转移活性中心,但是光致变色的发生只涉及到单质子转移机制。
     3.主体化合物对17种金属离子的识别实验表明,主体化合物HN和HH对镧系金属-镝离子具有特异的选择性识别性能(吸收光谱发生红移),而对碱金属离子、碱土金属离子、过渡金属离子和其他镧系金属离子(La3+, Pr3+, Eu3+, Gd3+, Er3+, Yb3+)几乎没有明显的选择性。无水二氯甲烷溶液中,HN和HH对镝离子的识别具有明显的颜色变化,从无色变为亮黄色。有趣的是,主体化合物HM不但可以通过溶液颜色变化识别镝离子(无色到粉红色),还可以识别铒离子(无色变为黄色)。因此,主体化合物对镝离子具有肉眼识别的能力。
     4.通过比较主体化合物-镧系金属离子络合物和模型化合物-镧系金属离子络合物的紫外吸收谱图,我们认为三种主体化合物(Schiff base-calix[4]arene衍生物)能够选择性识别镝离子的主要原因可能是引入的杯芳烃空腔和镝离子之间的尺寸匹配效应。杯芳烃大环空腔的引入不仅增加了化合物的选择性,也增加了络合物的稳定性。对于铒混合溶液缓慢现色的原因可能是由主体化合物(HM)对铒络合速率较低造成的。
     5.通过荧光光谱络合滴定实验计算出主体化合物和镧系金属离子的络合比和络合常数分别为:HN: Dy3+络合比是1:1,络合常数为log K=5.41±0.2;HH: Dy3+络合比是1:1,络合常数为log K=5.61±0.4;HM: Dy3+络合比是1:1,络合常数为log K=5.65±0.14;HM: Er3+络合比是1:1,络合常数为log K=5.77±0.06。
     6.通过实验发现,主体化合物HN能够有效的识别二价过渡金属离子-铜(实验现象是主体化合物HN荧光猝灭),同时计算得到该络合物的络合常数为log K = 5.2±0.2,络合比是1:1。
     7.超分子体系HN-Cu2+的弱荧光在紫外光的作用下,荧光信号增强且和单独的HN荧光信号相近,而可见光照后荧光又恢复到未作用的强度;该体系光谱变化的可能机制涉及到分子内电荷转移(ICT),主体化合物(HN)的互变异构以及对铜离子的络合和释放。有趣的是,超分子体系HH-Dy3+经过紫外光和可见光的作用所得到的现象和超分子体系HN-Cu2+的相反。该体系光谱变化的可能机制涉及到不同光照条件下由于体系中络合物(HH-Dy3+)和自由配体(HH)间再吸收和共吸收所产生的荧光共振能量转移机制。这两种体系的变化都是可逆的,是可以重复进行的。这说明,两种超分子体系的荧光强度具有光调控的功能。因此,两种体系都可以组成具有逻辑门功能的分子开关。
Information technology has revolutionized daily life in the last decades and the continuously increasing amount of data to be stored and manipulated strongly stimulated the search for switching and memory elements as tiny as a single molecule. Molecular switches can be converted from one state to another by an external stimulus such as light, electricity and a chemical reaction. Like with their macroscopic counterparts, one is able to control numerous functions and properties of materials and devices. Molecular switches will be potentially applied in the fields of computer chips, biomedicine and so on. In this paper, we synthesized three host compounds by linking two photochromic groups-imine with good photoswitchable properties and calixarene cavities which are able to recognize molecules and ions. Our mainly work includes synthesis of target molecules and some research on molecular recognition and molecular switches. The detailed results are listed as follows:
     1. Three double arms-host compounds were synthesized by incorporating two photochromic imine groups into the upper rims of calix[4]arene framework. These compounds were identified by IR, 1H NMR, 13C NMR, MALDI-TOF MS and Element analysis. The 1H NMR data reveal that these host compounds are in the cone conformation.
     2. Photochromic properties were systemically studied in dichloromethane by UV/Vis spectra. (i) The series of Schiff base-calix[4]arenes showed favorable photochromic property in dichloromethane. (ii) The calixarene which was incorporated into the Schiff bases can weaken the effects ofπ-πstacking and effectively improve the photochromic properties of Schiff bases. (iii) The strong withdrawing electron function of nitro group could change the characteristic of intramolecular hydrogen bonding from the neutral hydrogen bonding ([O-H…N]) to the ionic hydrogen bonding ([-δO…H-N+δ]), thus decrease the photochromic ability of Schiff base. (iv)The intermolecular hydrogen bonding of the tautomer-O…H-solvent helps the equilibrium shift towards the quinone form in dichloromethane; however, the enol-zwitterion mixed dimmers prevented the equilibrium from shifting to the quinone form in CH3CN. (v) These compounds show favorable photochromic properties with only one internal H-bond transfer mechanism.
     3. The host compounds HN and HH can selectively recognize lanthanide ions- Dy3+ over alkali metal ions, alkali earth metal ions, transition metal ions or other lanthanide ions (such as La3+, Pr3+, Eu3+, Gd3+, Er3+, Yb3+). Upon adding the lanthanide ion-Dy3+ to the host solutions, the both solutions changed the color from colorless to yellow. It is interesting that the double methoxyl arms-host (HM) compound (HM) can not only selectively recognize lanthanide ions-Dy3+ with the color of the solution changed form colorless to pink, but also recognize Er3+ with the color changed to pale yellow after stood up for 24 hours in the dark condition. Therefore, the double arms-host (H) can selectively recognize Dy3+ by naked eyes. And the reason of the Er3+ mixed solution changed color after 24 hours could be that the binding for Er3+ is a slow process.
     4. It suggests that the model 7 showed poor selectivity for the lanthanide ions. And the host compounds 4 can selectively recognize Dy3+ with naked eyes implies that the recognition process is relative to the size-fit effect. The introduction of calix[4]arene blocks increase the selectivity of compounds 4, and it enhances the coordination ability simultaneously for the calix[4]arene cavity playing an important role for the stability of the complexes.
     5. A nonlinear least-squares analysis provided the stoichiometry of the complex formed by double nitro arms-host compound (HN) and Dy(NO3)3 was 1:1 (HN: Dy3+) and the stability constant log K=5.41±0.2 with correlation coefficient 0.9857; the stability constant log K=5.61±0.4 with correlation coefficient 0.9884 whose stoichiometry was 1:1 (HH: Dy3+) for double H arms-host compound (HN). The analysis provided the stoichiometry of the complex formed from the double methoxyl arms-host compound (HM) and Dy(NO3)3 was 1:1 (HM: Dy3+) and the stability constant log K=5.65±0.14 with correlation coefficient 0.9899; the stability constant log K=5.77±0.06 with correlation coefficient 0.9804 whose stoichiometry was 1:1 (HM: Er3+) for double methoxyl arms-host compound (HM) and Er(NO3)3.
     6. The host compound (HN) can selectively recognize the ion-Copper (II) over other transition metal ions (Pb2+, Zn2+, Co2+, Ni2+, Fe3+) and alkali earth metal ions (Ca2+, Mg2+). The stoichiometry of the complex formed from the double nitro arms-host compound and Cu(NO3)2 was 1:1 (HN: Cu2+) and the stability constant log K = 5.2±0.2 with correlation coefficient 0.9957.
     7. After irradiation of ultraviolet light, fluorescence intensity of the superamolecular system HN-Cu2+ was increased, and it was decreased by irradiation of visible light. The mechanism of photoswitching fluorescent intensity may involve internal charge transfer (ICT), tautomerization of the host HN (between enol-form and keto-form) and the coordinate-release of metal ions. However, after irradiation of ultraviolet light, fluorescence intensity of the superamolecular system HH-Dy3+ was decreased; it was increased by irradiation of visible light. The mechanism of photoswitching fluorescent intensity may be relative to fluorescence resonance energy transfer (FRET) induced by Co-absorption and Re-absorption between the free ligands and HH-Dy3+ complexes. These processes are reversible. It suggests that the fluorescence intensity of two complexes may be switched by light.
引文
1. Pedersen, C. J. Angew. Chem., Int. Ed. Engl. 1988, 27, 1021.
    2. Cram, D. J. Angew. Chem., Int. Ed. Engl. 1988, 27, 1009.
    3. (a) Lehn, J.-M. Angew. Chem., Int. Ed. Engl. 1988, 27, 89; (b) Lehn, J.-M. Angew. Chem., Int. Ed. Engl. 1990, 29, 1304.
    4. (a) Lehn, J.-M. Science 1985, 227, 849; (b) Lehn, J.-M. Pure Appl. Chem. 1980, 52, 2441.
    5. Zinke, A.; Ziegler, E. Ber. 1944, 77, 264.
    6. Gutsche, C. D. Top. Curr. Chem. 1984, 1, 123.
    7. Gutsche, C. D. Calixarenes, The Royal Society of Chemistry, Cambridge, England, 1989.
    8. Vicens, J.; B?hmer, V. Ed. Calixarenes, A Versatile Class of Macrocyclic Compounds, Kluwer, Academic Press, Dordrecht, 1991.
    9. Mckervey, M. A.; B?hmer, V. Chem. Brit. 1992, 28, 724.
    10. Shinkai, S. Tetrahedron 1993, 48, 8933.
    11. Perrin, R.; Lamartine, R.; Perrin, M. Pure Appl. Chem. 1993, 65, 1549.
    12. B?hmer, V. Angew. Chem., Int. Ed. Engl. 1995, 34, 713.
    13. Diamond, D.; Mckervey, M. A. Chem. Soc. Rev. 1996, 25, 15.
    14. Ikeda, A.; Shinkai, S. Chem. Rev. 1997, 97, 1713.
    15. Danil de Namor, A. F.; Cleverley, R. M.; Zapata-Ormachea, M. L. Chem. Rev. 1998, 98, 2495.
    16. Molenveld, P.; Engbersen, J. F. J.; Reinhout, D. N. Chem. Soc. Rev. 2000, 29, 75.
    17. 黄枢,袁立华 化学研究与应用 1990, 2, 8.
    18. 胡昌明,卿凤翎,申存 化学通报 1993, 2, 17.
    19. 黄志镗,杨联明 化学进展 1994,6,173.
    20. 林琳,吴采樱 化学分析 1997,25,850.
    21. 郑企雨,黄志镗 化学进展 1997,9,151.
    22. 陈淑华,李东红,赵华明 有机化学 1999,19,339.
    23. 郑言松 化学进展 1999,11,275.
    24. 陈朗星,徐华,李一峻,何锡文 分析化学 2000,28,232.
    25. 郭兵,冯亚青,周立山,洪学传 合成化学 2000,8,395.
    26. Gutsche, C. D.; Iqbal, M. Org. Synth. 1990, 68, 234.
    27. Gutsche, C. D.; Dhawan, B.; No, K. H.; Muthukrishnan, R. J. Am. Chem. Soc. 1981, 103, 3782.
    28. Coruzzi, M.; Andreetti, G. D.; Bocchi, W.; Pochini, A.; Ungaro, R. J. Chem. Soc., Perkin Trans. 2 1982, 1133.
    29. Andreetti, G. D.; Ungaro, R.; Pochini, A. J. Chem. Soc., Chem. Commun. 1979, 1005.
    30. Ninagawa, A.; Matsuda, H. Makromol. Chem. Rapid Commun. 1982, 3, 65.
    31. Lu, T.-B.; Li, X.-Y.; Ji, L.-N.; Han, B.-H.; Liu, K.-B. Chem. Res. Chinese. Univ. 1999, 15,1.
    32. Nakamoto, Y.; Ishida, S. Makromol. Chem. Rapid Commun. 1982, 3, 705.
    33. Rizzoli, C.; Andreetti, G. D.; Ungaro, R.; Pochini, A. J. Mol. Struct. 1982, 82, 133.
    34. Ungaro, R.; Pochini, A.; Andreetti, G. D.; Sangermano, V. J. Chem. Soc., Perkin Trans. 2 1984, 1979.
    35. Andreetti, G. D.; Ori, O.; Ugozzoli, F.; Alfieri, C.; Pochini, A.; Ungaro, R. J. Inclusion Phenom. 1988, 6, 523.
    36. Ungaro, R.; Pochini, A.; Andreetti, G. D.; Domiano, P. J. Chem. Soc., Perkin Trans. 2 1985, 197.
    37. Paci, B.; Deleuze, M. S.; Caciuffo, R.; Tomkinson, J.; Ugozzoli, F.; Zerbetto, F. J. Phys. Chem. A 1998, 102, 6910.
    38. Gutsche, C. D.; Iqbal, M.; Alam, I. J. Am. Chem. Soc. 1987, 109, 4314.
    39. Arduini, A.; Secchi, A.; Pochini, A. J. Org. Chem. 2000, 65, 9085.
    40. Arduini, A.; McGregor, W. M.; Paganuzzi, D.; Pochini, A.; Secchi, A.; Ugozzoli, F.; Ungaro, R. J. Chem. Soc., Perkin Trans. 2 1996, 839.
    41. Nijenhuis, W. F.; van Doorn, A. R.; Reichwein, A. M.; de, Jong, F.; Wilma, F.; van Staaten-Nijenhuis, A. J. Org. Chem. 1993, 58, 2265.
    42. Chawla, H. M.; Srinivas, K.; Meena, K. Tetrahedron 1995, 51, 2709. 36
    43. Zhang, L.; Godinnez, L. A.; Lu, T.; Gokel, G. W.; Kaifer, A. E. Angew. Chem., Int. Ed. Engl. 1995, 34, 235.
    44. Timerman, P.; Brinks, E. A.; Verboom, W.; Reinhoudt, D. N. J. Chem. Soc., Chem. Commun. 1995, 417.
    45. Higler, I.; Timerman, P.; Verboom, W.; Reinhoudt, D. N. J. Org. Chem. 1996, 61, 5920.
    46. Aoyama, Y.; Tanaka, Y.; Toi, H.; Ogoshi, H. J. Am. Chem. Soc. 1988, 110, 634.
    47. Atwood, J. L.; Kontsantonis, G. A.; Raston, C. L. Nature 1994, 368, 229.
    48. Wang, J.; Gutsche, C. D. J. Am. Chem. Soc. 1998, 120, 12226.
    49. Atwood, J. L.; Barbour, L. J.; Raston, C. L.; Sudria, I. B. N. Angew. Chem., Int. Ed. Engl. 1998, 37, 981.
    50. Haino, T.; Yanase, M.; Fukazawa, Y. Angew. Chem., Int. Ed. Engl. 1998, 37, 997.
    51. Suzuki, T.; Nakashima, K.; Shinkai, S. Chem. Lett. 1994, 669.
    52. Bauer, L. J.; Gutsche, C. D. J. Am. Chem. Soc. 1985, 107, 6063.
    53. Beer, P. D.; Chen, Z.; Gale, P. A.; Heath, J. Aa; Knubley, R. J.; Ogden, M. I.; Drew, M. G. B. J. Inclusion Phenom. Mol. Recognit. Chem. 1994, 19, 343.
    54. Shinkai, S.; Mori, S.; Koreishi, H.; Tsubaki, T.; Manabe, O. J. Am. Chem. Soc. 1986, 108, 2409.
    55. Shinkai, S.; Araki, K.; Matsuda, T.; Nishiyama, N.; Ikeda, H.; Takasu, L.; Iwamoto, M. J. Am. Chem. Soc. 1990, 112, 9053.
    56. Nagasaki, T.; Tajari, Y.; Shinkai, S. Recl. Trav. Chim. Pays Bas 1993, 112, 407.
    57. Masci, B.; Finelli, M.; Varrone, M. Chem. Eur. J. 1998, 4, 2018.
    58. Arduini, A.; Pochini, A.; Secchi, A. Eur. J. Org. Chem. 2000, 2000, 2325.
    59. Arnaud-Neu, F.; Fuangswasdi, S.; Notti, A.; Pappalardo, S.; Parisi, M. F. Angew. Chem., Int. Ed. Engl. 1998, 37, 112.
    60. Liu, Y.; Han, B.-H.; Chen, Y.-T. J. Org. Chem. 2000, 65, 6227.
    61. Izatt, R.M.; Lamb, J. D.; Hawkins, R. T.; Browm, P. R.; Izatt, S. R.; Christensen, J. J. J. Am. Chem. Soc. 1983, 105, 1782.
    62. Izatt, S. R.; Hawkins, R. T.; Christensen, J. J.; Izatt, R.M. J. Am. Chem. Soc. 1985, 107, 63.
    63. Goldmann, H.; Vogt, W.; Paulus, E.; B?hmer, V. J. Am. Chem. Soc. 1988, 110, 6811.
    64. Bocchi, V.; Foina, D.; Pochini, A.; Ungaro, R. Tetrahedron 1982, 38, 373.
    65. Ungaro, R.; Pochini, A.; Andreetti, G. D.; Domiano, P. J. Inclusion Phenom. 1985, 3, 35.
    66. McKervey, M. A.; Seward, E. M.; Ferguson, G.; Guhl, B.; Harris, S. J. J. Chem. Soc., Chem. Commun. 1985, 388.
    67. Ferguson, G.; Kaitner, B.; McKervey, M. A.; Seward, E. M. J. Chem. Soc., Chem. Commun. 1987, 584.
    68. Beel, S. E. J.; Browen, L. K.; McKee, V.; McKervey, M. A.; Malone, J. F.; O’Leary, M.; Walker, A. J. Org. Chem. 1998, 63, 489.
    69. Kim, J. S.; Lee. W. K.; Sim. W.; Ko, J. W.; Cho, M. H.; Ra, D. Y.; Kim, J. W. J. Inclusion Phenom. Mol. Recognit. Chem. 2000, 37, 359.
    70. Kim, J. S.; Lee. W. K.; Suh, I.-H.; Kim, J.-G.; Yoon, J.H. J. Org. Chem. 2000, 65, 7215.
    71. Arduini, A.; Pochini, A.; Secchio, A.; Ungaro, R. J. Chem. Soc., Chem. Commun. 1995, 879.
    72. Schmitt, P.; Beer, P. D.; Drew, M. G. B.; Sheen, P. D. Angew. Chem., Int. Ed. Engl. 1997, 36, 1840.
    73. Olmstead, M. M.; Sigel, G.; Hope, H.; Xu, X.; Power, P. J. Am. Chem. Soc. 1985, 107, 8087.
    74. Bott, S. G.; Coleman, A. W.; Atwood, J. L. J. Chem. Soc., Chem. Commun. 1986, 610.
    75. Beer, P. D.; Drew, M. G. B.; Lesson, P. B.; Ogden, M. I. J. Chem. Soc., Dalton Trans. 1995, 1273.
    76. Esposito, V.; Solari, E.; Floriani, C.; Re, N.; Rizzoli, C.; Chiesi-Villa, A. Iorg. Chem. 2000, 39, 2604.
    77. Corazza, F.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Chem. Soc., Chem. Commun. 1990, 640.
    78. Chisholm, M. H.; Folting, K.; Streib, W. E.; Wu, D.-D. Chem. Commun. 1998,379.
    79. Xu, B.; Swager, T. M. J. Am. Chem. Soc. 1993, 115, 1159.
    80. Coraza, F.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. Iorg. Chem. 1991, 30, 4465.
    81. Xu, B.; Carroll, P. J.; Swager, T. M. Angew. Chem., Int. Ed. Engl. 1996, 35, 2094.
    82. Zheng, Y.-S.; Huang, Z.-T. Chin. Chem. Lett. 1997, 8, 685.
    83. Cameron, b. R.; Loeb, S. J. Chem. Commun. 1996, 2003.
    84. Cameron, b. R.; Loeb, S. J.; Yap, G. P. A. Iorg. Chem. 1997, 36, 5498.
    85. Nagasaki, T.; Shinkai, S. Bull. Chem. Soc. Jpn. 1992, 65, 471.
    86. Chawla, H. M.; Srinivas, K. Tetrahedron Lett. 1994, 35, 2925.
    87. 袁立华,黄枢,冯文,李小武,罗光荣,赵华明 合成化学 1995, 3, 194.
    88. Bodenant, B.; Weil, T.; Businelli-Pourcel, M.; Fages, F.; Barbe, B.; Pianet, I.; Laguerre, M. J. Org. Chem. 1999, 64, 7034.
    89. Sabatini, M.; Guardigli, M.; Mecati, A.; Balzani, C.; Ungaro, R.; Ghidini, E.; Casnati, A.; Pochini, A. J. Chem. Soc., Chem. Commun. 1990, 878.
    90. Asfari, Z.; Harrowfield, J. M.; Ogden, M. I.; Wicens, J.; White, A. H. Angew. Chem., Int. Ed. Engl. 1991, 30, 854.
    91. Steed, J.W.; Johnson, C. P.; Barnes, C. L.; Juneja, R. K.; Atwood, J. L.; Reily, S.; Hollis, R. L.; Smith, P. H.; Clark, D. L. J. Am. Chem. Soc. 1995, 117, 11426.
    92. Froidevaux, P.; Harrowfield, J. M.; Sobolev, A. N. Iorg. Chem. 2000, 39, 4678.
    93. Matsumoto, H.; Shinkai, S. Chem. Lett. 1994, 901.
    94. Arnaud-Neu, F.; Cremin, S.; Harris, S.; McKervey, A.; Schwing-Weill, M.-J.; Schwinte, P.; Walker, A. J. Chem. Soc., Dalton Trans. 1997, 329.
    95. Beer, P. D.; Drew, M. G. B.; Kan, M.; Lesson, P. B.; Ogden, M. I.; Williams, G. Iorg. Chem. 1996, 35, 2202.
    96. Lambert, B.; Jacques, V.; Shivanyuk, A.; Matthews, S. E.; Tunayar, A.; Baaden, M.; Wippff, G.; B?hmer, V.; Desreux, J. F. Iorg. Chem. 2000, 39, 2033.
    97. Delmau, L. H.; Simon, N.; Schwing-Weill, M.-J.; Arnaud-Neu, F.; Dozol, J. F.; Eymard, S.; Tournois, B.; B?hmer, V.; Grüttner, C.; Musigmann, C.; Tunayar, A. J. Chem. Soc., Chem. Commun. 1998, 1627.
    98. Rudkevich, D. M.; Verboom, W.; van der Tol, E. B.; van Staveren, C. J.;Kaspersen, F. M.; Verhoeven, J. W.; Reinhoudt, D. N. J. Chem. Soc., Perkin Trans. 2 1995, 131.
    99. Steemers, F. J.; Meuris, H. G.; Verboom, W.; van der Tol, E. B.; Verhoeven, J. W. J. Org. Chem. 1997, 62, 4229.
    100.Liu, Y.; Li, S.; Bai, X-P.; Wada, T.; Inoue, Y. Supramol. Chem. 2001, 13, 529.
    101.Shinkai, S.; Koreishi, H.; Ueda, K.; Manabe, O. J. Chem. Soc., Chem. Commun. 1986, 233.
    102.Shinkai, S.; Koreishi, H.; Ueda, K.; Arimura, T.; Manabe, O. J. Am. Chem. Soc. 1987, 109, 6371.
    103.Shinkai, S.; Shiramama, Y.; Satoh, H.; Manabe, O. J. Chem. Soc., Perkin Trans. 2 1989, 1167.
    104.Beer, P. D.; Chen, Z.; Goulden, A. J.; Graydon, A.; Stokes, S.E.; Wear, T. J. Chem. Soc., Chem. Commun. 1993, 1834.
    105.Gale, P. A.; Chen, Z.; Drew, M. G. B.; Heath, J. A.; Beer, P. D. Polyhedron 1998, 17, 405.
    106.Staffilani, M.; Hancock, K. S. B.; Steed, J. W.; Holman, K. T.; Atwood, J. L.; Juneja, R. K.; Burkhalter, R. S. J. Am. Chem. Soc. 1997, 119, 6324.
    107.Nam, K. C.; Kang, S. O.; Jeong, H. S.; Joen, S. Tetrahedron Lett. 1999, 40, 7343.
    108.Rudkevich, D. M.; Verboom, W.; Reinhoudt, D. N. J. Org. Chem. 1994, 59, 3683.
    109.Rudkevich, D. M.; Mercer-Chalmers, J. D.; Verboom, W.; Ungaro, R.; de Jong, F.; Reinhoudt, D. N. J. Am. Chem. Soc. 1995, 117, 6124.
    110.Arimaur, T.; Nagasaki, S.; Shinkai, S.; Matsuda, T. J. Org. Chem. 1989, 54, 3766.
    111.Shinkai, S.; Kawabata, H.; Matsuda, T.; Kawaguchi, H.; Manabe, O. Bull. Chem. Soc. Jpn. 1990, 63, 1272.
    112.Shinkai, S.; Shirahama, Y.; Tsubaki, T.; Manabe, O. J. Chem. Soc., Perkin Trans. 1 1989, 1859.
    113.Shi, Y.; Zhang, Z. H. J. Chem. Soc., Chem. Commun. 1994, 375.
    114.van dienst, E.; Snellink, B. H. M.; von, Piekartz, I.; Engbersen, J. F. J.; Reinhoudt, D. N. J. Chem. Soc., Chem. Commun. 1995, 1151.
    115.Bügler, J.; Engbersen, J. F. J.; Reinhoudt, D. N. J. Org. Chem. 1998, 63, 5339.
    116.Liu, Y.; Chen, Y.; Huang, G.; You, C.-C; Zhang, H.-Y; Wada, T.; Inoue, Y. Submitted for Publication.
    117.Cohen, M. D.; Schmidt, G. M. T. J. Phys. Chem. 1962, 66, 2442.
    118.Meer, E. Annalen 1876, 1, 181.
    119.Marckwald, W. Z. Phys. Chem. Cleipzing 1899, 30, 140.
    120.Hirshberg, Y. Compt. Rend. 1950, 231, 903.
    121.Cohen, M. D.; Hirshberg, Y.; Schmidt, G. M. T. J. Chem. Soc. 1964, 2051.
    122.樊美公 化学进展 1997, 9, 170.
    123.Cohen, M. D.; Schmidt, G. M. T.; Flavin, S. J. Chem. Soc. 1964, 2041.
    124.Cohen, M. D.; Hirshberg, Y.; Schmidt, G. M. T. J. Chem. Soc. 1964, 2051.
    125.Cohen, M. D.; Hirshberg, Y.; Schmidt, G. M. T. J. Chem. Soc. 1964, 2060.
    126.Cohen, M. D.; Flavin, S. J. Chem. Soc. B. 1967, 317.
    127.Cohen, M. D.; Flavin, S. J. Chem. Soc. B. 1967, 321.
    128.Cohen, M. D.; Flavin, S.; Leiserowitz, L. J. Chem. Soc. B. 1967, 329.
    129.Cohen, M. D.; Flavin, S. J. Chem. Soc. B. 1967, 334.
    130.Hrllrt, H. G. Chemistry and Industry 1978, 18, 193.
    131.Durr, H. Angew. Chem., Int. Ed. Engl. 1989, 28, 413.
    132.Andes, R. H.; Manakoviski, D. M. Appl. Opt. 1968, 7, 1179.
    133.Senier, A.; Shepheard, F. G. J. Chem. Soc. 1909, 95, 441.
    134.Hadjoudis, E.; Argyroglou, J. J. Mol. Struct. 1984, 114, 41.
    135.Hadjoudis, E.; Vitiorakis, M.; Moustakali-Mavridis, I. Tetrahedron 1987, 43, 1345.
    136.Richey, W. F.; Becker, R. S. J. Chem. Phys. 1968, 49, 2092.
    137.Potashinik, R.; Ottolenghi, M.; Meyer, A. Y. Mol. Photochem. 1973, 5, 39.
    138.Leiws, J. W.; Sandorfy, C. Can. J. Chem. 1982, 60, 1738.
    139.Leiws, J. W.; Sandorfy, C. Can. J. Chem. 1982, 60, 1727.
    140.Bexker, R. S.; Lenoble, C.; Zein, A. J. Phys. Chem. 1987, 91, 3509.
    141.Bexker, R. S.; Lenoble, C.; Zein, A. J. Phys. Chem. 1987, 91, 3517.
    142.Nakagaki, R.; Kobayashi, T.; Nakamura, J.; Nagakura, S. Bull. Chem. Soc. Jpn. 1977, 50, 1909.
    143.Cescon, L. A.; Coroar, G. R.; Dessauer, R.; Silversmith, E. F.; Urban, E. J. J. Org.Chem. 1971, 36, 2262.
    144.Cohen, R. L. J. Org. Chem. 1971, 36, 2280.
    145.Mac Lachlan, A.; Riem, R. H. J. Org. Chem. 1971, 36, 2275.
    146.Chaude, O.; Rumpf, P. C. R. Acad. Sci. 1953, 236, 697.
    147.Kolc, J.; Becker, R. S. J. Phys. Chem. 1967, 71, 4045.
    148.Brown, C. H. Photochromism, Wiley-Interscience, New York, 1971.
    149.Gegiou, D.; Muszkat, K. A.; Fischer, E. J. Am. Chem. Soc. 1968, 90, 3907.
    150.Mallory, F. B.; Mallory, C. W.; Senloeb, S. E. Tetrahedron Lett. 1985, 26, 3733.
    151.Mallory, F. B.; Mallory, C. W. Organic Reactions (New York), 1984, 30, 48.
    152.Ball, P.; Nicholls, C. H. Dyes Pigm. 1985, 6,13.
    153.Shinkai, S.; Okawa, T.; Kusano, Y.; Manabe, O.; Kikukawa, K.; Goto, T. J. Am. Chem. Soc. 1982, 104, 1960.
    154.Labsky, J.; Mikes, F.; Kalal, J. Polym. Bull. 1981, 4, 771.
    155.Birge, R. R. Ann. Rev. Biophys. Bioeng. 1981, 10, 315.
    156.Fiebert, F. Spectroscopy of Biological Molecules (C. Sandorfy and T. Thiophanides eds.), D. Reidel Publishing Co., Dordrecht, Holland, 1984, 347.
    157.樊美公,周亚林,刘小云,感光科学和光化学 1983, 1, 658.
    158.Schmidzu, R.; Iyoda, T.; Honda, K. Pure and Appl. Chem. 1988, 68, 1025.
    159.Liu, Z. F.; Hanshimoto, K.; Fujishima, A. Nature, 1990, 347, 658.
    160.Irie, M.; Mohri, M. J. Org. Chem. 1988, 53, 803.
    161.Irie, M.; Sayo, K. J. Phys. Chem. 1992, 96, 7671.
    162.Irie, M.; Miyatake, O.; Uchida, K. J. Am. Chem. Soc. 1992, 114, 8715.
    163.Irie, M.; Miyatake, O.; Uchida, K.; Eriguchi, T. J. Am. Chem. Soc. 1994, 116, 9894.
    164.Lukas, A. S.; Miller, S. E.; Wasielewski, M. R. J. Phys. Chem. A 2000, 104, 6545.
    165.Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 1993, 26, 198.
    166.Wasielewski, M. R. Chem. Rev. 1992, 92, 435.
    167.Steinberg-Yfrach, G.; Liddle, R. A.; Hung, S.-C.; Moore, A. L.; Moore, T. A. Nature, 1997, 385, 239.
    168.Seth, J.; Palaniappan, V.; Johnson, T. E.; Prathapan, S.; Lindsey, J. S.; Bocisn, D.F. J. Am. Chem. Soc. 1994, 116, 10578.
    169.Wagner, R. W.; Johnson, T. E.; Lindsey, J. S. J. Am. Chem. Soc. 1996, 118, 11166.
    170.van Patten, P. G.; Shreve, A. P.; Lindsey, J. S.; Donohoe, R. J. J. Phys. Chem. B 1998, 102, 4209
    171.Wagner, R. W.; Seth, J.A; Yang, S. I.; Kim, D.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Phys. Chem. B 1998, 102, 9426.
    172.Yang, S. I.; Lammi, R. K.; Seth, J.A; Arai, T.; Kim, D.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Org. Chem. 1998, 63, 5042.
    173.Kuciauskas, D.; Liddle, P. A.; Lin, S.; Johnson, T. E.; Weghorn, S. J.; Lindsey, J. S.; Moore, A. L.; Moore, T. A.; Gust, D. J. Am. Chem. Soc. 1999, 121, 8604.
    174.Brodard, P.; Matzinger, S.; Vauthey, E. O. C.; Mongin, P.; Gossauer, A. J. Phys. Chem. A 1999, 103, 5858.
    175.Wagner, R. W.; Lindsey, J. S.; Seth, J.; Palaniappan, V.; Bocisn, D. F. J. Am. Chem. Soc. 1996, 118, 3996.
    176.Li, J.; Ambroise, A.; Yang, S. I.; Diers, J. R.; Seth, J.; Wack, C. R.; Bocisn, D. F.; Holten, D.; Lindsey, J. S. J. Am. Chem. Soc. 1999, 121, 8927.
    177.Feirong, L.; Yang, S. I.; Ciringg, Y.; Seth, J.; Martin, C. H,; Singh, D. L.; Kim, D.; Birge, R. R.; Bocisn, D. F.; Holten, D.; Lindsey, J. S. J. Am. Chem. Soc. 1998, 120, 10001.
    178.Sato, T. J.; Jiang, D.-L; Aida, T. J. Am. Chem. Soc. 1999, 121, 10658.
    179.Daub, J.; Kn?chel, T.; Mannschreck, A. Angew. Chem., Int. Ed. Engl. 1984, 23,
    960.
    180.Balzani, V.; Scandola, F. in Comprehensive Supramolecular Chemistry, Vol 5 (Ed. D. N. Reinhoudt), Pergamon-Elsevier, Oxford, 1996, pp. 687-746.
    181.Feringa, B. L.; Jager, W. F.; de Lange, B. Tetrahedron 1993, 49, 8267.
    182.Photochromism, Molecules and Systems (Eds. Dürr, H.; Bouas-Laurent, H.), Elsevier, Amsterdam, 1990.
    183.Organic Photochromic and Thermochromic Compounds (Eds. Carno, J. S.; Guglielmetti, R. J.), Vol. 1 and Vol. 2, Plenum Press, New York, 1999.
    184.Gr?tzel, M. Coord. Chem. Rev. 1998, 171, 245.
    185.Sekkat, Z.; Knoll, W. Proc. SPIE-Int. Soc. Opt. Eng. 1997, 2998,164.
    186.Raymo, F. M.; Giordani, S. J. Am. Chem. Soc. 2001, 123, 4651.
    187.Raymo, F. M.; Giordani, S. Org. Lett. 2001, 3, 1833.
    188.Raymo, F. M.; Giordani, S. Org. Lett. 2001, 3, 3475.
    189.Raymo, F. M.; Alvarado, R. J.; Giordani, S.; Cejas, M. A. J. Am. Chem. Soc. 2003, 125, 2361.
    190.Giordani, S.; Raymo, F. M. Org. Lett. 2003, 5, 3559.
    191.Guo, X.-F.; Zhang, D.-Q.; Zhou, Y.-C.; Zhu, D.-B. Chem. Phys. Lett. 2003, 375, 484.
    192.Guo, X.-F.; Zhang, D.-Q.; Zhou, Y.-C.; Zhu, D.-B. J. Org. Chem. 2003, 68, 5681.
    193.Guo, X.-F.; Zhang, D.-Q.; Zhu, D.-B. J. Phys. Chem. B 2004, 108, 212.
    194.Whittal, J. in Photochromism, Molecules and Systems (Eds. Dürr, H.; Bouas-Laurent, H.), Elsevier, Amsterdam, 1990, pp. 467-492.
    195.Liang, Y. C.; Dvornikov, A. S.; Rentzepis, P. M. Res. Chem. Intermed. 1998, 24, 905.
    196.Darcy, P. J.; Heller, H. G.; Strydom, P. J.; Whittal, J. J. Chem. Soc., Perkin Trans. 1 1981, 202.
    197.Irie, M.; Uchida, K. Bull. Chem. Soc. Jpn. 1998, 71, 985.
    198.Bens, A. T.; Frewert, D.; Kodatis, K.; Kryschi, C.; Martin, H.-D.; Trommsdorff, H. P. Eur. J. Org. Chem. 1998, 2333.
    199.Liu, Z. L.; Jiang, L.; Liang, Z; Gao, Y. H. Tetrahedron Lett., 2005, 46, 885.
    200.Malvino, A. P.; Brown, J. A. Digital Computer Electronics, 3rd ed.,Glencoe, Lake Forest, 1993.
    201. Mitchell, R. J. Microprocessor Systems: An introduction, Macmillan, London, 1995.
    202.Ben-Ari, M. Mathematical Logic for Computer Science, Prentice-Hall, Hemel Hempstead, 1993.
    203.de Silva, A. P.; Gunaratne, H. Q. N.; McCoy, C. P. Nature 1993, 364, 42.
    204.Birge, R. R. in Nanotechnology; Research and Perspectives (Eds.:B. C. Crandall, B. C. Lewis), MIT Press, Cambridge, MA, 1992, pp. 149 -170.
    1. Zinke, A.; Ziegler, E. Ber. 1944, 77, 264.
    2. Gutsche, C. D.; Levine, J. A.; Sujeeth, P. K. J. Org. Chem. 1985, 50, 5802.
    3. Iwamoto, K.; Araki, K.; Shinkai, S. J. Org. Chem. 1991, 56, 4955.
    4. (a). Kelderman, E.; Derhaeg, L.; Hessink, G. J. T.; Verboom, W.; Engbersen, J. F. J.; Huslt van, N. F.; Persoons, A.; Reinhoudt, D. N. Angew. Chem. 1992, 104. 1107; (b). Struck, O.; Chrisstoffels, L. A. J.; Lugtenberg, R. J. W.; Verboom, W.; Hummel van, G. J.; Harkema, S.; Reinhoudt, D. N. J. Org. Chem. 1997, 62, 2487.
    5. Wageningen van, A. W. A.; Snip, E.; Verboom, W.; Reinhoudt, D. N. Liebigs Ann./Recueil. 1997, 2235.
    6. Alemi, A. A.; Shaabani, B.; Dilmaghani, K. A.; Ganjali, S. T. Molecules, 2001, 6, 417.
    1. Y?ld?z, M.; K?l??, Z.; H?kelek, T. J. Mol. Struct. 1998, 441, 1.
    2. Sekikawa, T.; Kobayashi, T.; Inabe, T. J. Phys. Chem. B 1997, 101, 10645
    3. Alarcon, S. H.; Pagani, D.; Bacigalupo, J.; Olivieri, A. C. J. Mol. Struct. 1999, 475, 233.
    4. Amimoto, K.; Kawato, T. J. Photochem. Photobio. C: Photochem. Rev. 2006, 6, 207 and references therein.
    5. Dminiak, P. M.; Grech, E.; Barr, G.; Teat, S.; Mallinson, P.; Wo?niak, K. Chem. Eur. J. 2003, 9, 963.
    6. Majerz, I.; Pawlukoj?, A.; Sobczyk, L.; Dziembowska, T.; Grech, E.; Che?mieniecka, S. A. J. Mol. Struct. 2000, 552, 243.
    7. Becker, R. S.; Lenoble, C.; Zein, A. J. Phys. Chem. 1987, 91, 3517.
    8. Antonov, L.; Fabian, W. M. F.; Nedelcheva, D.; Kamounah, F. S. J. Chem. Soc. Perkin Trans. 2. 2000, 1173.
    9. Gu, V.; Kar, T.; Scheiner, S. J. Am. Chem. Soc. 1999, 121, 9411.
    10. Mikami, M.; Nakamura, S. Phys. Rev. B. 2004, 69, 134205.
    11. Elmali, A.; Kabak, M.; Kavalkoglu, E.; Elerman, Y.; Durlu, T. N. J. Mol. Struct. 1999, 510, 207 and references therein.
    12. Popovic, Z.; Roje, V.; Pavlovic, G.; Calogovic, D. M.; Giester, G. J. Mol. Struct. 2001, 597, 39 and references therein.
    13. Mogck, O.; B?hemr, V.; Ferguson, G.; Vogt, W. J.Chem.Soc.,Perkin Trans, 1 1996, 1711.
    14. Alarcon, S. H.; Pagani, D.; Bacigalupo, J.; Olivieri, A. C.; J. Mol. Struct. 1999, 475, 233.
    15. Joshi, H.; Kamounah, F. S.; Gooijer, C.; Zwan, G.; Antonov, L. J. Photochem. Photobiol. A: Chem. 2002, 152, 183.
    16. Ohshima, A.; Momotake, A.; Arai, T. J. Photochem. Photobiol. A: Chem 2004, 162, 473 and references therein.
    17. Alarcon, S. H.; Pagani, D.; Bacigalupo, J.; Olivieri, A. C. J. Mol. Struct. 1999, 475, 233。
    18. Vargas, V. C. J. Phys. Chem. A. 2004, 108, 281。
    19. Xu, B.; Holdcroft, S. Macromolecules 1993, 26, 4457.
    1. S.-F. Pang, Y.-Q. Liang, Spectrochim. Acta Part A 57 (2001) 435.
    2. Y. Liu, N. Zhang, B.-T. Zhao, H.-Y. Zhang, Spectrochim. Acta Part A 58 (2002) 2889.
    3. J. Y. Kim, G. Kim, C. R. Kim, S. H. Lee, J. H. Lee, J. S. Kim, J. Org. Chem. 68 (2003) 1933.
    4. S. H. Lee, J. Y. Kim, J. Ko, J. Y. Lee, J. S. Kim, J. Org. Chem. 69 (2004) 2902.
    5. Liu, H.; Li, B.; Liu, D.; Xu, Z. Chem. Phys. Lett. 2001, 350, 441.
    6. Davies, D. E. J.; Ripmeester, J. A. In Comprehensive Superamolecular Chemistry, Vol. 8, Pergamon, New York, 1996, p.442
    7. Valeur, B.; Pouget, J.; Bourson, J.; Kaschke, M.; Ernsting, N. P. J. Phys. Chem. 1992, 96, 6545.
    8. Alarcon, S. H.; Pagani, D.; Bacigalupo, J.; Olivieri, A. C. J. Mol. Struct. 1999, 475, 233。
    9. Vargas, V. C. J. Phys. Chem. A. 2004, 108, 281。
    10. Joshi, H.; Kamounah, F. S.; Gooijer, C.; Zwan, G.; Antonov, L. J. Photochem. Photobiol. A: Chem. 2002, 152, 183。
    11. Ohshima, A.; Momotake, A.; Arai, T. J. Photochem. Photobiol. A: Chem 2004, 162, 473。
    12. Kunlely, H.; Vogler, A. J. Photochem. Photobiol. A: Chem. 2002, 138, 51.
    13. Ci, Y. X.; Zhou, T. Z. The Coordinated Complexes in Analytical Chemistry, Peking University Press, Beijing, 1984, p. 236.
    1. Valeur, B.; Leray, I. Coord. Chem. Rev., 2000, 205, 3.
    2. Callan, J. F.; de Silva, A. P.; Magri, D. C. Tetrahedron 2005, 61, 8551.
    3. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T. A.; Huxley, T. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515.
    4. Fabbrizzi, L.; Licchelli, M.; Pallavicini, P.; Perrotti, P.; Tagletti, A.; Sacchi, D. Chem. Eur. J. 1996, 2, 75.
    5. Alarcon, S. H.; Pagani, D.; Bacigalupo, J.; Olivieri, A. C. J. Mol. Struct. 1999, 475, 233.
    6. Vargas, V. C. J. Phys. Chem. A. 2004, 108, 281.
    7. Joshi, H.; Kamounah, F. S.; Gooijer, C.; Zwan, G.; Antonov, L. J. Photochem. Photobiol. A: Chem. 2002, 152, 183.
    8. Ohshima, A.; Momotake, A.; Arai, T. J. Photochem. Photobiol. A: Chem 2004, 162, 473.
    9. Kunlely, H.; Vogler, A. J. Photochem. Photobiol. A: Chem. 2002, 138, 51.
    10. Lee, S. H.; Kim, S. K.; Bok, J. H.; Lee, S. H.; Yoon, J.; Lee, K.; Kim, J. S. Tetrahedron, Lett. 2005, 46, 8163.
    11. Guo, X.-F.; Zhang, D.-Q.; Zhou, Y.-C.; Zhu, D.-B. Chem. Phys. Lett. 2003, 375, 484.
    12. Guo, X.-F.; Zhang, D.-Q.; Zhou, Y.-C.; Zhu, D.-B. J. Org. Chem. 2003, 68, 5681.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700