用户名: 密码: 验证码:
铜(Ⅱ)镉(Ⅱ)、几种小分子同血清白蛋白的相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质是细胞内的功能分子,在所有的生命过程中起着关键的作用,具有运载和储存功能,其特定结构与其生物功能密切相关。血清白蛋白是血浆中最丰富的蛋白质,它由一条单独的氨基酸多肽链构成,其三级结构主要为α-螺旋结构,其中包含3个结构域,即domainⅠ、domainⅡ和domainⅢ。每个结构域包含A、B两个亚区,以槽口相对的方式形成一种圆筒状结构。其中位于domainⅡ和domainⅢ的SiteⅠ和SiteⅡ两个结合位点与许多小分子化合物具有较强结合能力,能够与许多内源性物质和外源性物质结合,起到存储和转运的作用。血清白蛋白具有许多重要的生理功能,可与许多化学物质(如金属离子、脂肪酸、氨基酸、激素、药物及污染毒物等)以不同方式结合,并携带着这些物质通过血液在体内进行转运、运输、分配和代谢。通过研究化学物质与血清白蛋白相互作用,可获取化学物质在体内被转运、分配和代谢过程的重要信息。在金属离子、药物药理和毒理研究、污染毒物的危害机理及基因变异研究等方面具有重要意义。该领域已经成为从事生命科学、化学、临床医学科研工作者共同关注的课题之一。本论文基于开展小分子与蛋白质相互作用的重要意义及国内外研究趋势,在前人工作的基础上,综合利用荧光光谱、紫外一可见吸收光谱、傅里叶变换红外光谱((FTIR)、同步荧光光谱和三维荧光光谱,从以下几方面进行了研究:
     在第一章的绪论中介绍了五个方面的内容:1.概述;2.小分子与蛋白质相互作用的研究方法;3.小分子与蛋白质相互作用获取的信息;4.小分子与蛋白质相互作用的研究现状;5.立题依据和研究内容。重点介绍了小分子与蛋白质相互作用的研究方法和手段及能够获取的信息。阐述了本论文的目的和意义,并对该方面未来的发展进行了预测和展望。
     在第二章中在模拟生理条件下利用紫外光谱法和荧光光谱法研究了Cu(Ⅱ)与牛血清白蛋白的相互作用。利用荧光光谱法研究了不同温度下Cu(Ⅱ)对牛血清白蛋白的猝灭情况,采用Stern-Volmer方程和Lineweaver-Burk双倒数方程对数据进行处理,并利用热力学公式推导了两者之间的相互作用力。研究中发现,Cu(Ⅱ)对牛血清白蛋白BSA的内源荧光猝灭以静态猝灭为主,二者之间生成了不发荧光的复合物是导致荧光猝灭的主要原因。Cu(Ⅱ)—牛血清蛋白相互作用过程是一个熵增加、吉布斯自由能降低的自发超分子作用过程,二者之间的作用力以疏水作用力为主。Cu(Ⅱ)会导致血清蛋白色氨酸残基和酪氨酸残基附近微环境极性增加,疏水性略有降低,使得牛血清白蛋白的肽链伸展,α-螺旋含量减少。紫外光谱法进一步验证了Cu(Ⅱ)与牛血清白蛋白之间的相互作用。通过改变激发波长,采用荧光光谱法研究了Cu(Ⅱ)和Cd(Ⅱ)对人血清白蛋白和牛血清白蛋白上的2种荧光基团的猝灭情况及结合位点,紫外光谱法研究了二者共存时与血清白蛋白共有的结合位点的竞争。研究中发现,Cu(Ⅱ)和Cd(Ⅱ)对血清白蛋白的色氨酸残基和酪氨酸残基均具有猝灭作用,Cu(Ⅱ)的猝灭程度远远强于Cd(Ⅱ)。Cu(Ⅱ)只与血清蛋白中214位色氨酸残基发生作用,而Cd(Ⅱ)除了与血清白蛋白的214位发生作用外,还和牛血清蛋白独有的135位色氨酸残基发生作用。Cu(Ⅱ)与Cd(Ⅱ)同时存在时Cu(Ⅱ)与牛血清白蛋白的结合占主导作用。
     在第三章中在模拟生理条件下利用紫外光谱法和荧光光谱法研究了杂多酸盐K_7[PTi_2W_(10)O_(40)]·6H_2O(PM-19)与牛血清白蛋白和人血清白蛋白的相互作用。利用荧光光谱法研究了不同温度下PM-19对两种血清蛋白的猝灭情况,采用Stern-Volmer方程和Lineweaver-Burk双倒数方程和双对数方程对数据进行处理,获取了结合常数和结合位点数。并利用热力学公式研究了PM-19与蛋白作用的热力学参数及主要作用力类型。采用F(?)rster非辐射能量转移理论计算了PM-19与牛血清白蛋白和人血清白蛋白结合时结合位置与蛋白质分子中荧光发射基团之间的距离。采用同步荧光光谱法探讨了PM-19对血清蛋白构象的影响。研究中发现PM-19对血清蛋白的内源荧光具有强烈的猝灭作用,静态猝灭和非辐射能量转移是导致血清蛋白的内源荧光猝灭的主要原因。PM-19和血清蛋白形成的复合物的结合常数在10~4-10~6L·mol~(-1),表明两者的结合较稳定,说明PM-19可被血清蛋白存储和运输。与牛血清白蛋白和人血清白蛋白的结合位点数分别为0.89和0.85。PM-19与牛血清白蛋白之间的主要作用力为静电作用力;PM-19与人血清白蛋白之间的主要作用力为氢键和范德华力。PM-19与牛血清蛋白的结合距离为为4.14nm;PM-19与人血清白蛋白中色氨酸残基结合位置距离为4.21nm。PM-19与血清蛋白的作用点位靠近色氨酸残基,二者结合并不影响血清蛋白中荧光基团色氨酸残基和酪氨酸残基附近的微环境,并不改变血清蛋白的构象。
     在第四章中,采用紫外、荧光、同步荧光和三维荧光光谱法研究了4-硝基苯胺与血清白蛋白的相互作用。利用荧光光谱法研究了不同温度下4-硝基苯胺对牛血清白蛋白和人血清白蛋白的猝灭情况,采用Stern-Volmer方程和双对数方程对数据进行处理,并利用热力学公式研究了4-硝基苯胺与蛋白作用的热力学参数及主要作用力的类型。采用F(?)rster非辐射能量转移理论计算了4硝基苯胺与牛血清白蛋白和人血清白蛋白结合时结合位置与蛋白质分子中荧光发射基团之间的距离。采用紫外光谱法探讨了4-硝基苯胺对血清蛋白构象的影响。采用同步荧光光谱法和三维荧光光谱法探讨了4-硝基苯胺对血清蛋白构象的影响。研究中发现4-硝基苯胺与血清蛋白发生作用生成了新的复合物。其猝灭机理为静态猝灭,同时伴随非辐射能量转移。确定4-硝基苯胺与血清蛋白有一个结合位点,其结合常数数量级为10~4L·mol~(-1)。4-硝基苯胺与血清蛋白相互作用过程是一个熵增加、吉布斯自由能降低的自发超分子作用过程,二者之间主要靠静电作用力和疏水作用力结合。4-硝基苯胺与牛血清蛋白的结合距离为3.87nm;4-硝基苯胺与人血清白蛋白中色氨酸残基结合位置距离为3.76nm。4-硝基苯胺对血清蛋白中的色氨酸和酪氨酸残基均具有猝灭作用,并使得色氨酸残基附近极性降低,疏水环境增强。4-硝基苯胺与血清蛋白的结合位点更接近于色氨酸残基。三维荧光光谱进一步证明了4-硝基苯胺的加入使血清白蛋白的色氨酸残基所处的微环境极性减弱,破坏了血清白蛋白的有序结构,使得整个大分子更趋向于折叠态。
     第五章中采用紫外、荧光、同步荧光和三维荧光光谱法研究了2,4-二硝基苯胺与牛血清白蛋白的相互作用。采用荧光方法中常用的Stern-Volmer方程和双对数方程对数据进行处理。采用F(?)rster非辐射能量转移理论计算了2,4-二硝基苯胺与牛血清白蛋白结合时结合位置与蛋白质分子中荧光发射基团之间的距离。采用紫外光谱法研究了不同浓度的2,4-二硝基苯胺对血清蛋白紫外吸收光谱的影响。采用同步荧光光谱法和三维荧光光谱法探讨了2,4-二硝基苯胺对血清蛋白构象的影响。研究中发现2,4-二硝基苯胺与血清蛋白发生作用生成了新的复合物。其猝灭机理为静态猝灭,同时伴随非辐射能量转移。确定2,4-二硝基苯胺与BSA的结合位点数为1.17,2,4-二硝基苯胺与牛血清蛋白的结合距离为为3.13nm。2,4-二硝基苯胺对牛血清蛋白中的色氨酸和酪氨酸残基均具有猝灭作用,并使得酪氨酸残基附近极性降低,疏水环境增强。三维荧光光谱进一步证明了4-硝基苯胺的加入破坏了血清白蛋白的有序结构,使得整个大分子更趋向于折叠态。
     第六章中,采用荧光光谱法分别研究了不同温度下十六烷基三甲基溴化铵CTAB及十二烷基苯磺酸钠SDBS与牛血清白蛋白的作用。采用红外光谱法研究了十六烷基三甲基溴化铵对牛血清白蛋白构象的影响。研究中发现CTAB和SDBS均对BSA内源荧光具有荧光猝灭作用。但两者对蛋白的猝灭程度有所不同,SDBS对蛋白的内源荧光猝灭作用较强。两者均与蛋白有两类结合部位。基于荧光猝灭理论得出第一类结合部位的荧光猝灭为静态猝灭。表面活性剂和牛血清蛋白相互作用以氢键和范德华作用力为主,其作用过程一个熵减、吉布斯自由能降低的自发超分子作用过程。并使得色氨酸残基附近极性降低,疏水环境增强。采用红外光谱法进一步证实了加入表面活性剂后引起了蛋白质二级结构的变化,导致了牛血清白蛋白中α-螺旋含量的降低。
     第七章为总结论。
Protein as the essential biological material in the cells has been playing many vital roles for all kinds of biological phenomena. It has many important functions such as transportation and distribution, whose biological function is dependent on its special structure. Serum Albumin (SA) is the most abundant carrier protein in blood. Serum Albumin (SA) is a small protein with a single polypeptide chain, which is largely α-helical. It consists of three structurally homologous domains: domain I 、 domain II and domain III. Each domain is composed of two sub-domains (A and B), which forms a columnar cavity with grooves towards each other. Site I and Site II located in domain II and domain III are known as locations of high affinity binding ability for many small molecules such as endogenous and exogenous ligands. Serum albumin has many important physiological functions. For example, by binding to chemicals such as metallic ions, fatty acids, steroids, amino acids, drugs, serum albumin realize their transportation, distribution and metabolism in the body. As a result, investigation of the interaction of serum albumin with chemicals noted previously can offer us very important information for understanding the absorption, transportation, distribution and metabolism of the chemicals in vitro.
    It is important to study the interaction of small molecules and metallic ion with the protein because protein-drug binding plays an important role in pharmacology, pharmacodynamics, toxicology and gene mutation. Therefore, it has been an interesting research field of life sciences, chemistry and clinical medicine. In this dissertation, on the basis of the previous research, the fluorescence spectroscopy including synchronous fluorescence and three-dimensional fluorescence combined with U-visible absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy were used to investigate the interaction of Cu(II), Cd(II) and several small molecules with serum albumin. The following major works were carried out:
    In the first chapter, there are five parts are introduced. First of all, a brief introduction of knowledge of protein and characteristics of serum albumin is offered. Secondly, common methods and instruments are elaborately introduced in this research field. Thirdly, information obtained by spectroscopy was exhibited, including binding constants K, binding sites n and major force etc. In the fourth part, current research situation was discussed. Eventually, our research contents, its innovation, purpose and theoretical significance were stated. Among them, emphasis was placed upon research methods and obtained information. In addition, future was predicted and prospected.
    In the second chapter, the binding of Cu(II) to bovine serum albumin (BSA) was investigated by spectroscopic (fluorescence spectroscopy, synchronous fluorescence and ultraviolet spectrum) techniques under simulative physiological conditions. Quenching for intrinsic fluorescence of serum albumin by Cu(II) was investigated in different temperatures by fluorescence spectroscopy. Data were handled by using Stern-Volmer and Lineweaver-Burk double reciprocal equations. The major force between them was obtained by thermodynamic parameters. It was found that non-fluorescence complex formed between Cu(II) and bovine serum albumin resulted in the decrease of intrinsic fluorescence of BSA. Thus static quenching predominated in the binding process. Their interaction is a spontaneous super-molecule formation (ΔS >0, ΔG <0). The hydrophobic force played a major role in the binding BSA to Cu(II). The spectral results observed showed that the binding of Cu(II) to BSA induced conformational changes in BSA. That is to say, polarity around tryptophan residues was increased and the hydrophobicity was decreased. Moreover, the interaction of Cu(II) and Cd(II) with serum albumin was investigated by fluorescence spectroscopy and the competition between Cu(II) and Cd(II) was analyzed by absorption spectra. Results showed that fluorescence emitted by tyrosyl and tryptophanyl residue could be quenched by Cu(II) and Cd(II).The quenching produced by Cu(II)was much stronger than that produced by Cd(II). Cu(II) only bound the Trp 214 in II A subdomain, but Cd(II) interacted with both Trp 214 in IIA subdomain and Trp 135 in I B subdomain of bovine serum albumin. The binding of Cu(II) with bovine serum albumin predominated in the presence of Cu(II) and Cd(II) together. In the third chapter, under the imitated physiological condition of animal body, the interactions of heteropoly salt (PM-19) with bovine serum albumin (BSA) were investigated by fluorescence spectrum and absorption spectroscopy. Quenching for intrinsic fluorescence of serum albumin by PM-19 was investigated in various temperatures by fluorescence spectroscopy. Data were handled by some equations. Thermodynamic parameters ΔH, ΔG, ΔS were calculated and their interaction forces were revealed. The distance r between donor (serum albumin SA) and acceptor (PM-19) was obtained according to fluorescence resonance energy transfer (FRET). The effect of PM-19 on the conformation of serum albumin has been analyzed by synchronous fluorescence spectroscopy. It was proved that the fluorescence quenching of SA by PM-19 is mainly a result of static quenching and non-radiation energy transfer. The binding constants of the complex formed by PM-19 and SA is 10~4-10~6L·mol~(-1), which illustrated that the complex is more stable. It indicated that PM-19 can be stored and transported by SA. Electrostatic force played an important role in the binding reaction; hydrogen bonds and van der waals interactions play a major role in stabilizing the complex. In addition, the binding instance r is 4.14nm (BSA-PM-19) and 4.21nm (HSA-PM-19) respectively. Furthermore synchronous fluorescence spectra showed that the binding sites for PM-19 is close to tryptophan residue (Trp 212) of BSA and Trp 214 of HSA. The microenvironment of the tyrosine and tryptophan residue has not obvious changed, which indicated that the interaction of PM-19 with SA does not affect the conformation of serum albumin.
    In the fourth chapter, the interaction between 4-nitroaniline and serum albumin (SA) has been studied by fluorescence spectroscopy, absorption spectra, synchronous fluorescence and three dimensional fluorescence spectra. Quenching of intrinsic fluorescence of SA was investigated at different temperature. Stern-Volmer and double logarithm equations were used to study various binding parameters. The thermodynamic parameters had also been calculated. The binding average distance, r between the donor (SA) and acceptor (4-nitroaniline) was determined based on the F(o|¨)rster's theory. The effect of 4-nitroaniline on the conformation of serum albumin has been analyzed by means of synchronous and three dimensional fluorescence spectroscopy. A strong fluorescence quenching reaction of 4-nitroaniline to SA was observed and the quenching mechanism was suggested as static quenching and non-radiation energy transfer. In addition, for BSA, at higher ligand concentration, the Stern-Volmer plot exhibits an upward curvature, concave towards the y-axis. It illustrated both dynamic and static quenching was involved. There is about one class binding sites for binding of 4-nitroaniline to SA. Thermodynamic analysis showed that electrostatic and hydrophobic interactions were the mainly binding force Negative gibbs free energy (ΔG), positive entropy (ΔS) and negative enthalpy (ΔH) values indicated the interaction between 4-nitroaniline and SA is spontaneous. The binding instance r is 3.87nm for BSA and 3.76nm for HSA respectively. Furthermore synchronous fluorescence spectra showed that the binding sites for 4-nitroaniline is close to tryptophan residue of SA. It is also indicated that the polarity around the tryptophan residues were decreased and the hydrophobicity was increased. The three dimensional fluorescence spectra proved that 4-Nitroaniline destroyed ordered structure of SA, resulting in formation of more folding of SA.
    In the fifth chapter, absorption, fluorescence, synchronous fluorescence and three dimensional fluorescence spectra were used to investigate the interaction of 2,4-dinitroaniline with BSA. Data was treated by several equations. The distance r between acceptor and donor was calculated using F(o|¨)rster's theory. In addition, the impact of ligand on conformation of BSA was studied. Results revealed that static quenching occurs together with non-radiation energy transfer. As a result, 2,4-dinitroaniline caused the fluorescence quenching of BSA by the formation of complex. The number of binding sites is 1.17 and the distance r is 3.13 nm. Fluorescence originating from tryptophan residues and tyrosine residues can be quenched. It indicated that the polarity around the tyrosine residues was decreased and the hydrophobicity was increased. The three dimensional fluorescence spectra proved that 2,4-dinitroaniline destroyed ordered structure of SA, resulting in formation of more folding in SA.
    In the sixth chapter, the interaction of hexadecyl trimethyl ammonium bromide (CTAB) and sodium dodecyl benzene sulfonate (SDBS) with Bovine serum albumin was investigated by fluorescence spectroscopy at different temperature respectively. The effect of SDBS and CTAB on conformation of protein was discussed. It was found that the intrinsic fluorescence can be quenched by either CTAB or SDBS. Quenching by SDBS is stronger than that by CTAB. There are two types of sites in the binding of surfactant to BSA. The fluorescence quenching for the first type binding site was proved that Static quenching is predominant. Hydrogen bonds and van der waals interactions play a major role in stabilizing the complex. Negative entropy (ΔS) and negative enthalpy (ΔH) indicated that the interaction of CTAB or SDBS is spontaneous process. Polarity around tryptophan residue was decreased and hydrophobicity was increased by addition to CTAB or SDBS. Infrared spectral results revealed that the binding of CTAB or SDBS induced conformational changes in BSA, resulting in the decrease of a-helical.
    Total conclusions were given in the seventh chapter.
引文
[1] 杨频,高飞编著.生物无机化学原理[M].北京:科学出版社,2002
    [2] 商志才,易平贵,俞庆森等.环丙沙星与牛血清白蛋白的结合反应[J].物理化学学报,2001,17(1):48-52
    [3] Kandagal P B, Ashoka S, Seetharamappa J, et al. Study of the interaction between doxepin and human serum albumin by spectroscopic methods [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 179:161-166
    [4] 何华,于俊生,徐珊瓶等.环丙沙星与牛血清白蛋白的相互作用[J].药学学报,2001,36(7):549-551
    [5] 赵长春,郑维发,李梦秋.小檗碱与牛血清白蛋白相互作用的光谱研究分析[J].分析科学学报,2004,20(3):275-277
    [6] Wang Y Q, Zhang H M, Zhang G C, et al. Interaction of the flavonoid hesperidin with bovine serum albumin: A fluorescence quenching study[J]. Journal of Luminescence, 2006, 121:1-8
    [7] Li Y, He W Y, Dong Y M, et al. Human serum albumin interaction with formononet studied using fluorescence anisotropy, FT-IR spectroscopy, and molecular modeling methods[J]. Bioorganic & Medicinal Chemistry, 2006, 14:1431-1436
    [8] Hu Y J, Liu Y, Jiang W, et al. Fluorometric investigation of the interaction of bovine serum albumin with surfactants and 6-mercaptopurine[J]. Journal of Photochemistry and Photobiology B:biology,2005,80:235-242
    [9] Wei Y L, Li J Q, Dong Ch, et al. Investigation of the association behaviors between biliverdin and bovine serum albumin by fluorescence spectroscopy[J]. Talanta, 2006, 70(2): 377-382
    [10] 常希俊,杨芳,张莉等.牛血红蛋白与镝(Ⅲ)钛(Ⅳ)的相互作用[J].兰州大学学报(自然科学版),2004,40(2):62-66
    [11] 王彦卿,张红梅,张根成.硅钨杂多酸与牛血红蛋白相互作用的研究[J].无机化学学报,2006,22(5):895-899
    [12] 杨培慧,郑志雯,刘凌波.金属离子协同效应对血红蛋白分子荧光光谱的影响[J].分析科学学报,2005,21(3):268-270
    [13] 常希俊,黄艳,贺群.铱(Ⅳ)离子与人血丙种球蛋白的作用研究[J].化学学报,2005.63(3):223-228
    [14] 常希俊,黄艳,王邃.钯(Ⅱ)离子与人血丙种球蛋白的作用研究[J].分析化学,2005,33(1):60-62
    [15] 谢安建,姚成立,沈玉华.Hg~(2+)与胆汁蛋白质相互作用研究[J].无机化学学报,2005,21(3):413-416
    [16] 周大勇,戚晓玉,陈舜胜等.诺氟沙星与牛血清白蛋白及卵清蛋白结合物的合成[J].上海水产大学学报,2002,11(4):363-366
    [17] 唐江宏.博士论文:有机小分子与人血清白蛋白的相互作用研究,兰州大学
    [18] Carter D C, He X M, Munson S H, et al. Three-dimensional structure of human serum albumin [J]. Science, 1989, 244:1195-1198
    [19] He X M, Carter D C. Atomic structure and chemistry of human serum albumin [J]. Nature, 1993, 364:362-363
    [20] Carter D C, Ho J X. Structure of serum albumin[J]. Advances in Protein Chemistry, 1994, 45:153-203
    [21] Peter T. Structure of bovine serum albumin[J], Advances in Protein Chemistry, 1985,37:161
    [22] Sulkowska A. Interaction of drugs with bovine and human serum albumin [J]. Journal of Molecular Structure, 2002, 614:227-232
    [23] John C C, David D J, Robert R L. Fluorescence spectroscopy in biochemistry: teaching basic principles with visual demonstrations[J]. Biochemistry Molecule Biology Education, 2001, 29:60-65
    [24] Brown M P, Royer C. Fluorescence spectroscopy as a tool to investigate protein Interactions[J]. Current Opinion in Biotechnology, 1997,8:45-9
    [25] 郭小君.荧光实验技术及其在生物化学中的应用[M].北京:科学出版社,1979:123-124
    [26] 王宝俊,陈亮,鲁岚等.蛋白质与金属离子相互作用的荧光研究[J].山西大学学报(自然科学版),1993,16(2):188-192
    [27] Sutkowska J A, Rownicka J, Bojko B, et al. Interaction of anticancer drugs with human and bovine serum albumin[J]. Journal of Molecular Structure, 2003, 651-653: 133-140
    [28] Il'ichev Y V, Perry J L, Rüker F, et al. Interaction of ochratoxin A with human serum albumin. Binding sites localized by competitive interactions with the native protein and its recombinant fragments[J]. Chemico-Biological Interactions, 2002, 141 (3): 275-293
    [29] Moreno F, González-Jiménez J. Binding of the Promen fluorescent probe to human serum albumin: A fluorescence spectroscopic study[J]. Chemico-Biological Interactions, 1999, 12(3): 237-252
    [30] 唐世华.同步荧光光谱法研究明胶蛋白质与铜(Ⅱ)的相互作用[J].感光科学与光化学,2005,23(2):102-106
    [31] 秦身钧,申金山,李艳廷等.稀土金属离子及pH诱导牛血清白蛋白构象变化的同步荧光光谱研究[J].中国稀土学报,2004,22(3):393-397
    [32] Zhao B Z, Song L, Liu X, et al. Spectroscopic studies of the interaction between hypocrellin B and human serum albumin[J]. Bioorganic & Medicinal Chemistry, 2006, 14(7): 2428-2432
    [33] 吴根华,汪春华.荧光法研究Pb2+与牛血清白蛋白的相互作用[J].光谱学与光谱分析,2005,25(2):246-248
    [34] 杨频,高飞.生物无机化学原理[M].北京:科学出版社,2002
    [35] 陈国珍,黄贤智,郑朱梓等.荧光分析法[M].第二版,北京科学出版社,1990,
    [36] Lakowicz J R. Principles of Fluorescence Spectroscopy(2nd ed )[M]. New York: Plenum Press, 1999, 239-240
    [37] Liu W H, Tang J H, Wang Y, et al. Optosensing of hydrochloric acid based on the fluorescence quenching of a flavone copolymer[J]. Fresenius Journal of Analytical Chemistry, 1998, 362:387-390
    [38] Surs S, Rabbani L D, Libman L. Fluorescence studies of native and modified neurophysins.Effect of piptides and and pH[J]. Biochemistry, 1979, 18:1026-1035
    [39] Berry B, Rodney W K, Miriam R W. Correction for light absorption in fluorecence studies of protein ligand interactions[J]. Analytical Biochemistry, 1983,132:353-361
    [40] 马贵斌,杨频.能量转移技术及其在溶液分子的微区结构分析中的应用[J].化学通报,1993,29-32,64
    [41] Hazra P, Chakrabarty D, Chakraborty A, et al. Probing protein-surfactant interaction by steady state and time-resolved fluorescence spectroscopy[J]. Biochemical and Biophysical Research Communications, 2004, 314:543-549
    [42] Johnson D K. A fluorescence polarization immunoassay for cadmium (Ⅱ) [J]. Analytica Chimica Acta, 1999, 399:161-172
    [43] Arbelaez L F, Jensen P E, Shanbhag V P, et al. Probing different conformationalstates of pregnancy-zone protein. Fluorescence studies utilizing the binding of 4,4'-bis(8-anilino-I-naphthalenesulphonate)[J]. European Journal of Biochemistry, 1993, 218:651-656
    [44] Lloyd J B F. Synchronized excitation of fluorescence emission spectra[J]. Nature Physics Science, 1971, 231: 64-65.
    [45] 何立芳,林丹丽,李耀群.同步荧光分析法的应用及其新进展[J].化学进展,2004,16(6):879-884
    [46] Trynda-Lemiesz L, Karaczyn A, Kepple B K, et al. Studies on the interactions between human serum albumin and trans-indazolium (bisindazole) tetrachlororuthenate(Ⅲ) Journal Inorganic Biochemistry, 2000, 78:341-346
    [47] 潘祖亭,马勇,王巍.荧光光谱法研究克仑特罗与蛋白质的结合作用[J].分析试验室,2004,23(1):5-9
    [48] 朱铿,童沈阳.荧光黄与蛋白质相互作用的研究[J].高等学校化学学报,1996,17(4):539-542
    [49] 姚武,高峰,王伦.依诺沙星与牛血清白蛋白相互作用的荧光法研究[J].分析测试学报,2005,24(1):76-79
    [50] 何华,于俊生,徐珊萍等.环丙沙星与牛血清白蛋白的相互作用[J].药学学报,2001,36(7):549-551
    [51] Burstein E A, Vedenkina N S, Irkova M N. Fluorescence and the location of tryptophanresidues in protein molecules[J]. Photochemistry and Photobiology, 1973, 18: 263-279
    [52] 王守业,徐小龙,刘清亮等.荧光光谱在蛋白质分子构象研究中的应用[J].化学进展,2001,13(4):257-260
    [53] Baeyens W R G, Keukeleire D D, Korkidis K. Luminescence Techniques in Chemical and Biochemical Analysis, New York: MarcelDekker, 1991, 381-419
    [54] 鄢远,许金钩,陈国珍.三维荧光光谱法研究蛋白质溶液构象[J].中国科学(B辑),1997,27(1):16-22
    [55] 李晓晶,王志强,陈继等.稀土离子(Ⅲ)与牛血清白蛋白作用的紫外光谱[J].应用化学,1998,15(1):5-8
    [56] 林燕,赖晓琦,李蕾.稀土离子(Ⅲ)与牛血清白蛋白结合作用的荧光光谱分析[J].赣南师范学院学报,2001,(6):45-46
    [57] 冯志祥,张树功,刘启民等.Tb~(3+)和La~(3+)与牛血清白蛋白作用的光谱研究[J].应用化学,1995,12(3):70-72
    [58] 黄瑾,袁余洲,梁宏.紫外光谱、荧光光谱及平衡透析研究磷钨杂多酸与HSA或BSA的结合平衡[J].中国科学(B)辑,2001,31(6):530-535
    [59] 王亚俐,王海芳.光谱法研究苯甲酸钠与牛血清白蛋白的作用[J].北京大学学报(自然科学版),2002,38(2):159-163
    [60] Sulkowska A, Bojko B, Rownicka J, et al. Paracetamol and cytarabine binding competition in high affinity binding sitesof transporting protein[J]. Journal of Molecular Structure, 2006, 792:249-256
    [61] 沈星灿,梁宏,何锡文等.圆二色光谱分析蛋白质构象的方法及研究进展[J].分析化学,2004,32(3):388-394
    [62] 张朝红.博士论文:不同形态的有机锡与生物大分子的相互作用研究,华东师范大学
    [63] Moriyama Y, Takeda K. Protective effects of small amounts of Bis(2-ethylhexyl) sulfosuccinate on the helical structure of human and bovine serum albumins in their thermal denaturations[J]. Langmuir, 2005, 21(12): 5524-5528
    [64] Sun C X, Yang J H, Wu X, et al. Soil persistence of Bacillus thuringiensis (Bt) toxin from transgenic Bt cotton tissues and its effect on soil enzyme activities[J]. Fresenius Journal of Biophysics, 2005, 88(5): 3518-3525
    [68] Parvez I H, Feride S. FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media[J]. Journal of Molecular Catalysis B: Enzymatic, 1999, 7(1-4): 207-221
    [69] 谢孟峡,刘嫒.红外光谱酰胺Ⅲ带用于蛋白质二级结构的测定研究[J].高等学校化学学报,2003,24(2):226-231
    [70] Fu F N, Deoliveira D B, Trumble W R, et al. Secondary structure estimation of proteins using the amide Ⅲ region of Fourier transform infrared spectroscopy: application to analyze calcium-binding-induced structural changes in calsequestrin[J]. Applied Spectroscopy, 1994, 48:1432-1441
    [71] 张猛,杨频.核磁共振研究蛋白二级结构的方法[J].化学通报,2000,63(12):26-33
    [72] 纪竹生,刘买利,胡继明.药物配体与生物大分子受体相互作用核磁共振的研究进展[J].分析化学,2004,32(11):1421-1425
    [73] 庞雪冰,傅官铭,左明达等.青心酮与孕妇血清蛋白结合率的实验研究[J].中药新药与临床药理,2003,14(1):34-36
    [74] 谭毓治,伍爱婵,谭炳炎等.小檗碱竞争血浆蛋白结合部位所致药物相互作用的 研究[J].中国药理学通报,2002,18(5):576-578
    [75] Liu J Q , Tian J N, He W Y et al. Spectrofluorimetric study of the binding of daphnetin to bovine serum albumin[J], Journal of Pharmaceutical. Biomedicine, 2004, 35: 671-677.
    [76] 汪尔康.21世纪的分析化学[M],北京:科学出版社,2001
    [77] 周波,孙润光,王丽华等.蛋白质直接电化学研究及其应用[J].化学进展,2006,18(7-8):1010-1013
    [78] 赵燕燕,杨更亮,李海鹰等.高效前沿分析的发展及在药物-蛋白结合研究中的应用[J].化学通报,2003,66(5):327-332
    [79] Gelamo E L, Silva C H T P, Tmasato H, et al. Interaction of bovine serum albumins (BSA) and and human (HSA) with ionic surfactants[J]. Spectroscopy and modeling[J]. Biochimica et Biophysica Acta, 2002, 1594:84-99
    [80] Tang J H, Wang W P, Luan F, et al. Binding of the bioactive compound 5,7,4'-trihydroxy-6,3',5'-trimethoxyflavone to human serum albumi[J]. International Journal of Biological Macromolecules, 2005, 37:85-91
    [81] Tang J H, Qi S D, Chen X G. Spectroscopic studies of the interaction of anti-coagulant rodenticide diphacinone with human serum albumin[J]. Journal of Molecular Structure, 2005, 779:87-95
    [82] Tang J H, Luan F, Chen X G. Binding Analysis of Glycyrrhetinic Acid to Human Serum Albumin: Fluorescence Spectroscopy, FTIR and Molecular Modeling [J]. Bioorganic & Medicinal Chemistry, 2006, 14:3210-3217
    [83] lehrer s s. Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion [J], Biochemistry 1971,10:3254-3263
    [84] Hu Y J, Liu Y, Zhao R M, et al. Spectroscopic studies on the interaction between methylene blue and bovine serum albumin [J]. Journal of Photochemistry & Photobiology A: Chemistry, 2006, 179:324-329
    [85] Hu Y J, Liu Y, Zhao R M, et al. Interaction of colchicine with human serum albumin investigated by spectroscopic methods[J]. International Journal of Biological Macromolecules, 2005, 37:122-126
    [86] Cheng F Q, Wang Y P, Li Z P, et al. Fluorescence stud y on the interaction of human serum albumin with bromsulphalein[J]. Spectrochimica Acta. Part A, 2006, 65:1144-1147
    [87] Cui F L, Wang J L, Cui Y R, et al. Fluorescent investigation of the interactions between N-(p-chlorophenyl)-N-(1-naphthyl) thiourea and serum albumin:Synchronous fluorescence determination of serum albumin [J]. Analytica Chimica Acta, 2006, 571: 175-183
    [88] Jiang C Q, Gao M X, He J X. Study of the interaction between terazosin and serum albumin Synchronous fluorescence determination of terazosin [J]. Analytica Chimica Acta, 2002, 452:185-189
    [89] Zhao H W, Ge M, Zhang Z X, et al. Spectroscopic studies on the interaction between riboflavin and albumins[J]. Spectrochimica Acta, Part A, 2006, 65:811-817
    [90] Kandagal P B, Seetharamappa J, Shaikn S M T et al. Binding of razodone hydrochloride with human serum albumin: spectroscopic study [J]. Journal of Photochemisry and Photobiology A: Chemistry 2007, 185:239-244
    [91] Bi S Y, Song D Q, Tian Y et al. Molecular spectroscopic study on the interaction of tetracyclines with serum albumins[J]. Spectrochimica Acta Part A 2005,61: 629-636
    [92] Bi S Y, Ding L, Tian Y et al. Investigation of the interaction between flavonoids and human serum albumin [J]. Journal of Molecular Structure, 2004, 703:37-45
    [93] Li Y, Yao X J, Jin J, et al. Interaction of rhein with human serum albumin investigation by optical spectroscopic technique and modeling studies [J]. Biochimica et Biophysica Acta, 2007, 1774:51-58
    [94] 杨曼曼,席小莉,杨频.变温下荧光猝灭和加强理论公式合理性比较[J].化学学报,2006,64(14):1437-1445
    [95] 杨曼曼,席小莉,杨频.用荧光猝灭和荧光加强两种理论研究喹诺酮类新药与白蛋白的作用[J].高等化学学报,2006,27(4):687-691
    [96] Yang P, Yang M M,Yang B S. Fluorescence enhancement effect and the interaction between donor and acceptor [J]. Chinese Journal of Chemistry [J], 1996,14(2): 109-113
    [97] Forster T. Intermolecular energy migration and fluorescence [J]. Annals of Physics, 1948, 2:55-57
    [98] Shaikh S M T, Seetharampappa J, Ashoka S, et al. A study of the interaction between bromopyrogallol red and bovine serum albumin by spectroscopic [J]. Dyes and pigments, 2007, 73:211-216
    [99] Klotz I M, Urquhart J M. T'he thermodynamics of metallo-protein combination copper with Bovine serum alburmin [J]. Journal of the American Chemical Society, 1949, 71:847-852
    [100] Tanford C. Physical Chemistry of Macromolecules [M], New York: John Wiley and Sons, 1952
    [101] Tanford C. The Hydrophobic Effect: Formation of Micciies and biological Membranes [M], New York: John Wiley and Sons
    [102] Ross P D, Subramanian S. Thermodynamic of protein association reactions: forces contributing to stability [J]. Biochemistry, 1981, 20:3096-3102
    [103] Tian J N, Liu J Q, Tian X, et al. Study of the interaction of kaempferol with bovine serum albumin [J]. Journal of Molecular Structure, 2004, 691: 197-202
    [104] Ji Z S, Yuan H Z, Liu M L, et al. 'H NMR Study of the effect of acetonitrile on the interaction of ibuprofen with human serum albumin [J]. Journal of Pharmaceutical and Biomedical Analysis, 2002, 30:151-159
    [105] Tayyab S, Ahmad B, Kumar Y, et al. Salt-induced refolding in different domains of partially folded bovine serum albumin [J]. International Journal of Biological Macromolecules, 2002, 30:17-22
    [106] Fehske K J, Schlafer U, Wollert U, et al. Characterisation of n important drug binding area on human serum albumin including the high affinity bingding sites of warfarin and azapropazone [J]. Molec Pharmac, 1982, 21:387-393
    [107] Ilichev Y V, Perry J L, Simon J D. Interaction of ochratoxin A with human serum albumin: A common binding site of ochratoxin A and warfarin in subdomain Ⅱ A [J]. Journal of Physical Chemistry, 2002, 106:452-465
    [108] Uddin S J, Shilpi J A, Murshid G M M, et al. Determination of the binding sites of arsenic on bovine serum albumin using warfarin (site-Ⅰ specific probe) and diazepam (site-Ⅱ specific probe) [J]. Journal of Biological Sciences, 2004, 4 (5): 609-612
    [109] Otagiri M, Masuda K, Imai T, et al. Binding of pirprofen to human serum albumin studied by dialysis and spectroscopy technique s[J]. Biochemical Pharmacology, 1989, 38: 1-7
    [110] Li Y, He W Y, Tian J N, et al. The effect of berberine on the secondary structure of human serum albumin[J]. Journal of Molecular Structure, 2005, 743:79-84
    [111] Zhong W Y, Wang Y C, Yu J S, et al. The Interaction of human serum albumin with a Novel Antidiabetic Agent-SU-118[J]. Journal of Pharmaceutical Sciences, 2004, 93: 1039-1046
    [112] Klotz I M, Curme H G. The thermodynamics of metallo-protein combination copper with Bovine serum albumin [J]. Journal of the American Chemical Society, 1948, 70:939
    [113] Tanford C. The effect of pH on the combination of serum albumin with metals [J]. Journal of the American Chemical Society, 1952, 74:211
    [114] Rao M S N, Lal H. Metal-protein interaction in buffer solutions.Interction of Cu~(2+),Zn~(2+),Cd~(2+)(and Ni~(2+))ions with native and modified bovine serum albumins[J]. Journal of the American Chemical Society, 1958, 80:3222
    [115] Goumakos W, Laussac J P, Sarkar B. Binding of cadmium(Ⅱ)and zinc(Ⅱ)to human and dog serum albums.A.n equilibrum dialysis and ~(113)Cd-NMR study[J] Biochemistry & Cell Biology, 1991, 69:809-814
    [116] Sadler P J, Viles J H. ~1H and ~(113)Cd NMR Investigation of Cd and Zn binding sites on serum albumin: competition with Ca~(2+), Ni~(2+),Cu~(2+) Zn~(2+)[J]. Inorganic Chemistry, 1996, 35:4490-4496
    [117] Ohyshi E, Hamada Y, Nakata K, et al. The interaction between human and bovine serum albumin and zinc studied by a competitive spectrophotometry[J]. Journal of Inorganic Biochemistry, 1999, 75:213-218
    [118] 杨频,杨斌盛.人血清白蛋白与金属离子作用的荧光光谱研究[J].生物化学与生物物理进展,1992,19(2):110-114
    [119] 杨频,杨斌盛.人血清白蛋白与一些二从阳离子的作用[J].生物化学与生物物理进展,1989,21(3):245
    [120] 杨频,杨斌盛.稀土离子与人血清白蛋白的作用[J].生物化学与生物物理学报,1988,20(5):499
    [121] 周永洽,梁宏,郝韵琴等.金属—血清白蛋白的结构研究——Ⅵ.等离子点附近HSA和BSA中Cu(Ⅱ)和Ni(Ⅱ)金属中心的结构[J].无机化学学报,1992,8(04):382-386
    [122] 周永洽,张喜全,贺进田等.金属-血清白蛋白的结构研究(Ⅷ)——HSA和BSA中锌离子中心的荧光EXAFS研究[J].高等学校化学学报,1997,18(6):851-853
    [123] 梁宏,周永洽,申泮文.Mn(Ⅱ)-HSA和Mn(Ⅱ)-BSA金属中心的结构研究[J].科学通报,1994,39(11):994-997
    [124] 涂楚桥,张宏志,梁宏等.Cd(Ⅱ)与HSA或BSA的结合平衡研究[J].化学学报,2000,58(02):229-234
    [125] 张宏志,涂楚桥,沈星灿等.Mn(Ⅱ)与HSA或BSA的结合平衡研究[J].化学通报,2000,64(10):44-45
    [126] 梁宏,邢本刚,王修建等.Cu(Ⅱ)与HSA或BSA相互作用的平衡透析研究[J].科学通报,1997,42(22):2395-2399
    [127] Liang H, Shen X C, Jiang Z L, et al. The photochemical study of HSA or BSA with Resonance Light-Scattering and fluorescence spectra[J].Chinese Chemsitry Letter, 2000, 11 (3): 251-255
    [128] 康玉专,沈鹤柏,罗衍庆等.稀土金属离子和牛血清白蛋白作用的光谱研究 稀土,2002,23(5):23-25
    [129] 宋玉民,吴锦绣,郑秀荣等.稀土金属离子与人血清白蛋白的相互作用[J].无机化学学报,2006,22(9):1615-1622
    [130] 宋(王争),梁宏.荧光猝灭法研究Cu(Ⅱ)和zn(Ⅱ)离子与牛血清白蛋白结合竞争[J].光谱学与光谱分析,2003,10(5):892-894
    [131] 郭明,孔亮,毛希琴等.微透析取样法研究金属离子与蛋白质的竞争结合作用[J].中国科学(B)辑,2001,31(6):499-503
    [132] Sulkowska A, wnicka J R, Bojko B, et al. Interaction of anticancer drags with human and bovine serum albumin [J]. Journal of Molecular Structure, 2003, 651-653: 133-140
    [133] Borissevitch I E, Tominaga T T, Imasato H, et al. Resonance light scattering study of aggregation of two water soluble porphyrins due to their interaction with bovine serum albumin [J]. Analytica Chimica Acta, 1997, 343:281-286
    [134] Borissevitch I E, Tominaga T T, Schxnitt C C. Photophysical studies on the interaction of two water-soluble porphyrins with bovine serum albumin. Effects upon the porphrin triplet state characteristics [J]. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 114:201-207
    [135] 胡艳军,刘义,候安新等.稀土杂多酸盐与BSA的相互作用研究[J].化学学报,2004,62(16):1519~1523
    [136] Long Y M, Chen J H, Zhang Z H, et al. Real-time investigation of the interaction between primaquine phosphate and bovine serum albumin (BSA) by piezoelectric quartz crystal impedance analysis [J]. Journal of Biotechnology, 2003, 105:105-116
    [137] Jung C Q, Gao M X, Meng X Z. Study of the interaction between daunorubicin and human serum albumin, and the determination of daunorubicin in blood serum samples [J]. Spectrochimica Acta Part A, 2003, 59:1605-1610
    [138] Cui F L, Fan J, Li W, et al. Fluorescence spectroscopy studies on 5-atninosalicyfic acid and zinc 5-aminosalylicylate interaction with human serum albumin [J]. Journal of Pharmaceutical and Biomedical Analysis, 2004, 34:189-197
    [139] Ji Z S, Yuan H Z, Liu M L, et al. 'H NMR Study of the effect of acetonitrile on the interaction of ibuprofen with human serum albumin[J]. Journal of Pharmaceutical and Biomedical Analysis, 2002, 30:151-159
    [140] 易平贵,俞庆森,商志才等.牛血清白蛋白与金霉素结合反应的机制研究[J].化学物理学报,2003,16(5):420-424
    [141] Channu B C, Kalpana H N, Eregowda G B, et al. Interaction of substituted phenoxazine chemosensitizers with bovine serum albumin[J]. Journal of Pharmaceutical and Biomedical Analysis, 1999, 21:775-785
    [142] Sulkowska A. Interaction of drugs with bovine and human serum albumin [J]. Journal of Molecular Structure, 2002, 614:227-232
    [143] Shobini J, Mishra A K, Sandhya K, et al. Interaction of coumarin derivatives with human serum investigation by fluoescence spectroscopic technique and modeling studies[J]. Spectrochimica Acta Part A, 2001, 57:1133-1147
    [144] André C, Guillaume Y-C. Anti-coagulant rodenticide binding properties of human serum albumin: a biochromatographic approach[J]. Journal of Chromatography B, 2004, 801:221-227
    [145] Shrivastava H Y, Kanthimathi M, Nair B U. Copper(Ⅱ) complex of a tridentate ligand: an artificial metalloprotease for bovine serum albumin[J]. Biochimica et Biophysica Acta, 2002, 1573:149-155
    [146] Shrivastava H Y, Kanthimathi M, Nair B U. Interaction of Schiff Base with bovine serum albumin: site-specific photocleavage[J]. Biochemical and Biophysical Research Communications, 1999, 265:311-314
    [147] Metefitsa D I, Eremin A N. Changes in the antioxidant properties of substituted phenolpolydisulfides during interaction with human serum albumin [J]. Applied Biochemistry and Microbiology, 2002, 38(3): 269-276
    [148] 刘雪锋,夏咏梅,方云等.中药黄连有效成分盐酸小果碱与牛血清白蛋白的相互作用[J].高等学校化学学报,2004,25(11):2099-2103
    [149] 刘媛,谢孟峡,康娟.三七总皂苷对牛血清白蛋白溶液构象的影响[[J].化学学报,2003,61(8):1305-1310
    [150] Wang Y Q, Zhang H M, Zhang G C et al. Binding of brucine to human serum albumin[J], Journal of Molecular Structure ,2007, 830:40-45
    [151] 谢孟峡,徐晓云,王英电等.4,5,7-三羟基二氢黄酮与人血清白蛋白相互作用的光谱学研究[J].化学学报,2005,63(22):2055-2062
    [152] 易平贵,商志才,俞庆森等.丝裂霉素C与牛血清白蛋白结合作用的研究[J].化学学报,2000,58(12):1649-1653
    [152] Fainerman V B, Miller R, Lucassen-Reynders E H. Adsorption of surfactants and proteins at fluid interfaces [J]. Colloids and Surfaces A, 1998, 143:141-165
    [153] Gelamo E L, Tabak M. Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants[J].Spectrochimica Acta Part A 2000,56:2255-2271
    [154] 宫景渠,李济生.表面活性剂在环境生物中的降解[J].环境科学,1994,15(2):1-4
    [155] 蒋伟川,王琪全.水溶液中十二烷苯磺酸钠的半导体光催化降解的反应[J].环境科学,1994,15(6):81-83
    [156] 吴丹,徐桂英.光谱法研究蛋白质与表面活性剂的相互作用[J].物理化学学报,2006,22(2):254-260
    [157] 刘静,徐桂英,刘军等.Tween-20与牛血清白蛋白的相互作用[J].物理化学学报,2005,21(8):862-866
    [158] 陈晓翔,杨培慧,蔡继业.表面活性剂引起的血红蛋白构象变化[J].环境与健康杂志,2005,22(1):25-27
    [159] 魏晓芳,刘会洲.Triton X-100与牛血清白蛋白的相互作用[J].分析化学,2000,28(6):699-701
    [160] Lissi E, Abuin E, Lanio M E, et al. A new and simple procedure for the evaluation of the association of surfactants to proteins[J]. Journal of Biochemical and Biophysical Methods, 2002, 50:261-268
    [161] 奉萍,黄承志,舒为群.长链烷基化物与牛血清白蛋白相互作用的共振散射光研究[J].环境化学,2001,20(5):499-502
    [162] 于兵川,吴洪特,周培疆.染料、药物和环境化学污染物与血清白蛋白的相互作用[J].化学通报,2005,68:1-6
    [163] Wei Y J, Li K A, Tong S Y. The interaction of Bromophenol Blue with proteins in acidic solution[J]. Talanta, 1996, 43: 1-10.
    [164] 马春琪,李克安,赵凤林等.牛血清白蛋白与铬天青S作用机理的研究化学学报[J],1999,57(4):389-395.
    [165] Birla L, Cristion A M, Hillebrand M. Absorption and steady state fluorescence study of interaction between eosinand bovine serum albumin[J]. Spectrochimica Acta, Part A, Molecular and Biomolecular Spectroscopy, 2004, 60: 551-556
    [166] 邵敬华,乔振,刘伟等.百草枯合成新工艺[J].农药,1999,38(8):9-11
    [167] 夏敏.33例百草枯中毒的临床分析[J].中国工业医学杂志,1995,8(5):278-279
    [168] 颜承农,张华新,刘义等.百草枯与牛血清白蛋白结合作用的荧光光谱[J].化学学报,2005,63(18):1727-1732
    [169] Zhang G C, Wang Y Q, Zhang H M, et al. Human serum albumin interaction with paraquat studied using spectroscopic methods [J]. Pesticide Biochemistry and Physiology, 2007, 87:23-29
    [170] 王月,肖尚友,陈华等.硝基苯胺同牛血清白蛋白的相互作用及其毒性[J]。环境化学,2004,23(5):529-532
    [171] 张朝红,臧树良,耿兵等.三苯基锡化合物与牛血清白蛋白作用光谱[J].应用化学,2005,22(5):489-493
    [172] 于兵川,吴洪特,周培疆等.联苯胺对牛血清白蛋白的荧光猝灭作用研究[J],中国环境科学,2005,25(6):714-718
    [173] Purcell M, Neault J F, Maionga H, et al. Interaction of atrazine and 2,4-D with human serum albumin studied by gel and capillary electrophoresis, and FTIR spectroscopy [J]. Biochimica Biophysics Acta, 2001, 1548: 129-138.
    [174] Brown M P, Royer C. Fluorescence spectroscopy as a tool to investigate protein interactions [J]. Current Opinion in Biotechnology, 1997, 8: 45-49.
    [175] Silva D, Cortez C M, Cunha-Bastos J, et al. Methyl parathion interaction with human and bovine serum albumin [J]. Toxicology Letters,2004, 147:53-61
    [1] Ulrich K H. Molecular aspects of ligand binding to serum albumin[J]. Pharmacological reviews, 1981, 33(1): 17-23
    [2] Klotz I M, Curme H G. The thermodynamics of metallo-protein combination copper with Bovine serum albumin[J]. Journal of the American Chemical Society, 1948, 70: 939-945
    [3] 张宏志,涂楚桥,沈星灿等.Mn(Ⅱ)与HSA或BSA的结合平衡研究[J].化学通报,2000,10:44-45
    [4] 梁宏,邢本刚,王修建等.Cu(Ⅱ)与HSA或BSA相互作用的平衡透析研究[J].科学通报,1997,42(22):2395-2399
    [5] 李晓晶,张善荣,张树功等.稀土离子(Ⅲ)与牛血清白蛋白结合作用的研究[J].高等学校化学学报,1999,20(1):127-131
    [6] 宋玉民,吴锦绣,郑秀荣等.稀土金属离子与人血清白蛋白的相互作用[J].无机化学学报,2006,22(9):1615-1622
    [7] 梁宏,邢本刚,吴庆轩等.Cu(Ⅱ),Fe(Ⅲ)与人血清白蛋白相互作用的荧光光谱研究[J].化学学报,1999,57(2):161-165
    [8] 常希俊,黄艳,贺群.铱(Ⅳ)离子与人血丙种球蛋白的作用研究[J].化学学报,2005,63(3):223-228
    [9] 杨斌盛,杨频.人血清白蛋白与金属离子作用的荧光光谱研究[J].生物化学与生物物理进展,1992,19(2):110-114
    [10] Ohyoshi E, Hamada Y, Nakata K, et al. The interaction between human and bovine serum albumin and zinc studied by a competitive spectrophotometry [J]. Journal of Inorganic Biochemistry, 1999, 75:213-218
    [11] André C, Guillaume Y C. Zinc-human serum albumin association testimony of two binding sites [J]. Talanta, 2004, 63:503-508
    [12] 涂楚桥,张宏志,梁宏等.Cd(Ⅱ)与HSA或BSA的结合平衡研究[J].化学学报,2000,58(2):229-234
    [13] 周永洽,太俊哲,梁宏等.金属-血清白蛋白的结构研(Ⅸ)—Ni(Ⅱ)-HSA和Ni(Ⅱ)-BSA的新型减色效应[J].高等学校化学学报,1996,17(09):1331-1335
    [14] 周永洽,张喜全,贺进田等.金属-血清白蛋白的结构研究(Ⅷ)-HSA和BSA中锌 离子中心的荧光EXAFS研究[J].高等学校化学学报,1997,18(06):851-853
    [15] 常希俊,黄艳,王邃.钯(Ⅱ)离子与人血丙种球蛋白的作用研究[J].分析化学,2005,33(1):60~62
    [16] 吴根华,汪春华.荧光法研究Pb~(2+)与牛血清白蛋白的相互作用[J].光谱学与光谱分析,2005,25(2):246-248
    [17] 宋玲,梁宏.荧光猝灭法研究Cu(Ⅱ)和Zn(Ⅱ)离子与牛血清白蛋白结合竞争[J].光谱学与光谱分析,2003,10(5):892-894
    [18] 常希俊,杨芳,张莉等.牛血红蛋白与镝(Ⅲ)钛(Ⅳ)的相互作用[J].兰州大学学报(自然科学版),2004,40(2):62-66.
    [19] 杨培慧,郑志雯,刘凌波等.金属离子协同效应对血红蛋白分子荧光光谱的影响[J].分析科学学报,2005,21(3):268-270
    [20] 郭明,孔亮,毛希琴等.微透析取样法研究金属离子与蛋白质的竞争结合作用[J].中国科学(B)辑,2001,31(6):499-503
    [21] Sadler P J, Viles J H. ~1H and ~(113)Cd NMR Investigation of Cd and Zn binding sites on serumal bumin: competition with Ca~(2+), Ni~(2+),Cu~(2+) Zn~(2+)[J]. Inorganic Chemistry, 1996, 35: 4490-4496
    [22] 王守业,徐小龙,刘清亮等.荧光光谱在蛋白质分子构象研究中应用[J].化学进展,2001,13(4):257-260
    [23] Sulkowska A, Bojko B, Rownicka J, et al. Paracetamol and cytarabine binding competition in high afflmity binding sites of transporting protein [J]. Journal of Molecular Structure, 2006, 792-793:249-256
    [24] 陶慰,孙李惟,姜涌明等.蛋白质分子基础[M](第1版),北京:人民教育出版社,1981年.
    [25] 刘媛,谢孟峡,康娟.三七总皂甙对牛血清白蛋白溶液构象的影响[J].化学学报,2003,61(8):1305-1310
    [26] 李晓晶,王志强,陈继等.稀土离子(Ⅲ)与牛血清白蛋白作用的紫外光谱[J].应用化学,1998,15(1):5-8
    [27] 康玉专,沈鹤柏,罗衍庆等.稀土金属离子和牛血清白蛋白作用的光谱研究[J].稀土,2002,23(5):22-25
    [28] 杨频,高飞编著.生物无机化学原理 北京:科学出版社,2002
    [29] Zhao H W, Ge M, Zhang Z X, et al. Spectroscopic studies on the interaction between riboflavin and albumins [J]. Specrochimica Acta Part A, 2006, 65:811-817
    [30] 陈国珍,黄贤智,郑朱梓等.荧光分析法[M].第二版,北京科学出版社,1990
    [31] Jung C Q, Gao M X, Meng X Z. Study of the interaction between daunorubicin and human serum albumin and the determination of daunorubicin in blood serum samples [J]. Spectrochimica Acta Part A, 2003, 59:1605-1610
    [32] 张晓威,赵凤林,李克安.环丙沙星与牛血清白蛋白相互作用的研究[J].高等学校化学学报,1999,20(7):1063-1067
    [33] 俞天智,陶祖贻.水杨酸与人血清白蛋白相互作用的荧光光谱[J].光谱学与光谱分析,1999,19(3):453-455
    [34] Wei Y L, Li J Q, Dong C, et al. Investigation of the association between biliverdin and bovine serum albumin by fluorescence spectroscopy[J]. Talanta, 2006,70:377-382
    [35] Cheng F Q, Wang Y P, Li Z P, et al. Fluorescence study on the interaction of human serum albumin with bromsulphalein [J]. Spectrochimica Acta, Part A, 2006, 65:1144-1147
    [36] Ross P D, Subramanian S. Thermodynamic of protein association reactions: forces contributing to stability[J]. Biochemistry, 1981, 20:3096-3102
    [37] Tanford C. Physical Chemistry of Macromolecules[M]. New York: John Wiley and Sons, 1996
    [38] Trynda-Lemiesz L, Karaczyn A, Keppler B K, et al. Studies on the interactions between human serum albumin and trans-indazolium tetrachlororuthenate(Ⅲ)[J], Journal of Inorganic Biochemistry, 2000, 78:341-346
    [39] Wang Y Q, Zhang H M, Zhang G C, et al. Binding of brucine to human serum albumin [J]. Journal of Molecular Structure, 2006, 830:40-45
    [40] Burstein E A, Vedenkina N S, Irkova M N. Fluorescence and the location of tryptophanresidues in protein molecules[J]. Photochemistry and Photobiology, 1973, 18: 263-279
    [41] 朱铿,童沈阳.荧光黄与蛋白质相互作用的研究[J].高等学校化学学报,1996,17(4):539-542
    [42] 黄波,邹国林,杨天鸣.阿霉素与牛血清白蛋白结合作用的研究[J].化学学报,2002,60(10):1867-1871
    [43] Royer C A. Probing Protein Folding and Conformational Transitions with Fluorescence [J]. Chemical Reviews, 2006, 106:1769-1784
    [44] Kragh-Hansen U. Molecular aspects of ligand binding to serum albumin, Pharmacological reviews, 1987, 33: 17-53
    
    [45]Carter D C, Ho J H. Structure of serum albumin [J]. Advances in Protein Chemistry, 1994,45:153-203
    
    [46]Verma M P. The binding reaction of Cadmium to bovine serum albumin [J], Biological Trace Element Research [J], 1982,4:35-40
    
    [47]Goumakos W, Laussac J P, Sarkar B. Binding of cadmium(II) and zinc(II) to human and dog serum albums in equilibrum dialysis and ~(113)Cd-NMR study[J] Biochemistry & Cell Biology ,1991, 69: 809-814
    [1] Sulkowska J A, Rownicka J, Bojko B, et al. Interaction of anticancer drugs with human and bovine serum albumin[J]. Journal of Molecular Structure, 2003, 651-653: 133-140
    [2] Tang J T, Wang W P, Feng L, et al. Binding of the bioactive compound 5,7,4'-trihydroxy-6,3',5'-trimethoxyflavone to human serurn albumin[J]. International Journal of Biological Macromolecules[J]. 2005, 37:85-91
    [3] Haapala D, Jasmin C, Sinoussi F. In vitro research on antiviral activity of polyoxometalates[J], Biomedicine, 1973, 19-24
    [4] Moskovitz B L. Potent inhibition of respiratory syncytial vires by polyoxometalates of several structural classes [J], Antimicrobe Agents Chemother, 1988, 32(9): 1300-1303
    [5] 刘杰,王恩波.多金属氧酸盐抗病毒药物研究[J].化学进展,2006,18(1):114-119
    [6] 王恩波,胡长文,许林.杂多酸导论[M].北京:化学工业出版社,1998
    [7] Inouye Y, Tokutake Y, Yoshida T et al. In vitro polyoxomolybdates Mechanism of inhibitory effect of PM-104 (NH_4)_(12)H_2(Eu_4(MoO_4(H_2O)_(16)(Mo_7O_(24))_4)·13H_2O on human immunodeficiency vires type 1 [J], Antiviral research, 1993,20:317-331
    [8] Tomita K, Yamase T, Shishido K. Medical chemistry of polyoxometalates. Part 2. Enzymatic study on binding of heptamolybdate to DNA [J], Inorganic Chimica Acta, 1989,157:167-169
    [9] Fukuma M, Seto Y, Yamase T. In vitro antiviral activity of polyoxotungstate (PM-19) and other polyoxometalates against herpes simplex virus [J], Antiviral Research, 1991,16: 327-339
    [10] 杨美玲,杨培菊,宋玉民.芦丁金属配合物的合成、表征及与血清白蛋白的相互作用[J].无机化学学报,2005,21(4):483-489
    [11] Hu Y J, Liu Y, Jiang W, et al. Fluorometric investigation of the interaction of bovine serum albumin with surfactants and 6-mercaptopurine[J]. Journal of Photochemistry & Photobiology B, 2005, 80:235-242
    [12] Hu Y J, Liu Y, Zhao R M, et al. Interaction of colchicine with human serum albumin investigated by spectroscopic methods[J]. International journal of Biological Macromoleculars, 2005, 37:122-126
    [13] 谢孟峡,徐晓云,王英等.4',5,7-三羟基二氢黄酮与人血清白蛋白相互作用的光谱学研究[J].化学学报,005,63(22):2055-2062
    [14] 李桂芝,永明,虢新运等.荧光法研究盐酸拓扑替康、盐酸依利替康喜树碱类药物和牛血清白蛋白的相互作用[J].化学学报,2006,4(7):679-685
    [15] Sulkowska A, R wnicka J, Bojko B, et al. Interaction of anticancer drugs with human and bovine serum albumin [J]. Journal of Molecular Structure, 2003, 651-653:133-140
    [16] Borissevitch I E, Tominaga T T, Imasato H, et al. Resonance light scattering study of aggregation of two water soluble porphyrins due to their interaction with bovine serum albumin [J]. Analytica Chimica Acta, 1997, 343:281-286
    [17] Borissevitch I E, Tominaga T T, Schxnitt C C. Photophysical studies on the interaction of two water-soluble porphyrins with bovine serum albumin. Effects upon the porphrin triplet state characteristics [J]. Journal of Photochemistry and Photobiology A: Chemistry, 1998,114:201-207
    [18] Channu B C, Kalpana H N, Eregowda G B, et al. Interaction of substituted phenoxazine chemosensitizers with bovine serum albumin[J]. Journal of Pharmaceutical and Biomedical Analysis, 1999, 21: 775-785
    [19] Sulkowska A. Interaction of drugs with bovine and human serum albumin [J]. Journal of Molecular Structure, 2002, 614:227-232
    [20] Kamat B P, Scetharamappa J. In vitro study on the interaction of mechanism of tricyclic compounds with bovine serum albumin [J]. Journal of Pharmaceutical and Biomedical Analysis, 2004, 35:655-664
    [21] Shobini J, Mishra A K, Sandhya K, et al. Interaction of coumarin derivatives with human serum investigation by fluoescence spectroscopic technique and modeling studies [J]. Spectrochimica Acta Part A, 2001, 57:1133-1147
    [22] 黄瑾,袁余洲,梁宏.紫外光谱、荧光光谱及平衡透析研究磷钨杂多酸与HSA或BSA的结合平衡[J].中国科学(B)辑,2001,31(6):530-535
    [23] 胡艳军,刘义,候安新等.稀土杂多酸盐EuHSiMo_(10)W_2O_(40)·25H_2O与BSA相互作用的研究[J].化学学报,2004,62(16):1519-1523
    [24] 王彦卿,张红梅,张根成.硅钨杂多酸与牛血红蛋白相互作用的研究[J].无机化学学报,2006,22(5):895-899
    [25] Wei Y L, Li J Q, Dong C, et al. Investigation of the association behaviors between biliverdin and bovine serum albumin by fluorescence spectroscopy[J]. Talanta, 2006, 70(2): 377-382
    [26] Hu Y J, Liu Y, Jiang W, et al. Fluorometric investigation of the interaction of bovine serum albumin with surfactants and 6-mercaptopurine[J]. Journal of Photochemistry and Photobiology B: biology, 2005, 80:235-242
    [27] Domaillep J, Knoth W H. Ti_2W_(10)PO_(40)~(7-) and [CpFe(CO)_2Sn]_2W_(10)PO_(38)~(5-) Preparation, properties, and structure determination by Tungsten-183 NMR[J]. Inorganic Chemistry. 1983, 22, 818-822
    [28] 杨频,高飞.生物无机化学原理[M].北京:科学出版社,2002
    [29] Zhao H W, Ge M, Zhang Z X, et al. Spectroscopic studies on the interaction between riboflavin and albumins[J]. Specrochimica Acta Part A, 2006, 65:811-817
    [30] 陈国珍,黄贤智,郑朱梓等.荧光分析法[M].第二版.北京:科学出版社,1990
    [31] Jiang C Q, Gao M X, He J X. Study of the interaction between terazosin and serum albumin Synchronous fluorescence determination of terazosin[J]. Analytica Chimica Acta, 2002, 452:185-189
    [32] 常希俊,黄艳,贺群.铱(Ⅳ)离子与人血丙种球蛋白的作用研究[J],化学学报,2005,63(3):223-228
    [33] Ji Z S, Yuan H Z, Liu M L, et al. 'H NMR Study of the effect of acetonitrile on the interaction of ibuprofen with human serum albumin[J]. Journal of Pharmaceutical and Biomedical Analysis, 2002, 30:151-159
    [34] Shaikh S M T, Seetharamappa J, Dandagal P B, et al. Binding to the bioactive component isothipendyl hydrochloride with bovine serum albumin [J]. Journal of Molecular Structure, 2006, 786:46-52
    [35] Sulkowska A. Interaction of drugs with bovine and human serum albumin [J]. Journal of Molecular Structure, 2002, 614:227-232
    [36] Wei Y L, Li J Q, Dong Ch, et al. Investigation of the association behaviors between biliverdin and bovine serum albumin by fluorescence spectroscopy[J]. Talanta, 2006, 70(2): 377-382
    [37] Ross P D, Subramanian S. Thermodynamic of protein association reactions: forces contributing to stability[J]. Biochemistry, 1981, 20:3096-3102.
    [38] Tanford C. Physical Chemistry of Macromolecules[M]. New York: John Wiley and Sons, 1996
    [39] 郭宗儒著.药物分子设计[M].北京:科学出版社,2005
    [40] Forster T. Intermolecular energy migration and fluorescence[J]. Annals of Physics, 1948, 2:55-75
    [41] 颜承农,张华新,刘义等.百草枯与牛血清白蛋白结合作用的荧光光谱[J].化学学报,2005,63(18):1727-1732
    [42] 朱铿,童沈阳.荧光黄与蛋白质相互作用的研究[J].高等化学学报,1996,17(4):539-542
    [43] Wang Y Q, Zhang H M, Zhang G C, et al. Binding of brucine to human serum albumin [J]. Journal of Molecular Structure, 2006,????
    [44] Kamat B P, Scetharamappa J. In vitro study on the interaction of mechanism of tricyclic compounds with bovine serum albumin[J]. Journal of Pharmaceutical and Biomedical Analysis, 2004, 35:655-664
    [45] Royer C A. Probing Protein Folding and Conformational Transitions with Fluorescence [J]. Chemical Review, 2006, 106:1769-1784
    [1] 奚旦立,孙裕生,刘秀英主编.环境监测修订版[M],北京:高等教育出版社,1994年
    [2] 陆光华,袁星,赵元慧.苯酚、苯胺及其衍生物对斜生栅列藻的急性毒性及QSAR研究[J].环境化学,2000,19(3):225-229
    [3] 苏丽敏,孟庆俊,袁星.苯胺和硝基苯胺对大型蚤(Daphnia magna)的联合毒性[J].环境科学研究,2002,15(6):42-44
    [4] 袁星,孟庆俊,苏丽敏.硝基芳烃化合物对大型蚤的联合毒性[J].东北师大学报自然科学版,2003,35(2):106-109
    [5] Aβmann N, Emmrich M, Kampf G et al. Genotoxic activity of important nitrobenzenes and nitroanilines in the Ames test ant their structure-activity relationship [J], Mutation Research, 1997, 395: 139-144.
    [6] Trynda-Lemiesz L, Kozlowski H, Keppler B K, et al. Effect of cis-, trans-diamminedichloroplatinum(Ⅱ) and DBP on human serum albumin[J]. Journal of Inorganic Biochemistry, 1999, 77:141-146
    [7] Qu S S, Liu Y, Wang T Z, et al. Thermodynamics of binding of cadmium to bovine serum albumin[J]. Chemosphere, 2002, 46:1211-1214
    [8] Ulrich K H. Molecular aspects of ligand binding to serum albumin[J]. Pharmacological Reviews, 1981, 33 (1): 17-23
    [9] Jiang C Q, Gao M X, Meng X Z. Study of the interaction between daunorubicin and human serum albumin, and the determination of daunorubicin in blood serum samples[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2003, 59: 1605-1610
    [10] Liu J Q, Tian J N, Tian X, et al. Interaction of isofraxidin with human serum albumin[J]. Bioorganic & Medicinal Chemistry, 2004, 12:469-474
    [11] Guillaume Y C, Guinchard C, Berthelot A. Affinity chromatography study of magnesium and calcium binding to human serum albumin: pH and temperature variations[J]. Talanta, 2000, 53:561-569
    [12] 郜洪文,陈运生.探针体在蛋白质大分子上Langmuir吸附聚集及应用蛋白质/荧光桃红BPB结合反应研究[J].高等学校化学学报,2002,23(5):825-827
    [13] 李桂芝,刘永明,虢新运等.荧光法研究盐酸拓扑替康、盐酸依利替康喜树碱类药 物和牛血清白蛋白的相互作用[J].化学学报,2006,64(7):679-685
    [14] 杨频,高飞.生物无机化学原理[M].北京:科学出版社,2002
    [15] 陈国珍,黄贤智,郑朱梓等.荧光分析法[M].第二版,北京:科学出版社,1990
    [16] 张晓威,赵凤林,李克安.环丙沙星与牛血清白蛋白相互作用的研究[J].高等学校化学学报,1999,20(7):1063-1067
    [17] Jung C Q, Gao M X, Meng X Z. Study of the interaction between daunorubicin and human serum albumin, and the determination of daunorubicin in blood serum samples [J]. Spectrochimica Acta Part A, 2003, 59:1605-1610
    [18] 俞天智,陶祖贻.水杨酸与人血清白蛋白相互作用的荧光光谱[J].光谱学与光谱分析,1999,19(3):453-455
    [19] Lakowicz J R. Principles of Fluorescence Spectroscopy[M](1st,ed) New York: Plenum Press, 1983
    [20] Silva D, Cortez C M, Cunha-Bastos J et al. Methyl parathion interaction with human and bovine serum albumin[J]. Toxicology Letters, 2004, 147:53-59
    [21] 李晓晶,张善荣,张树功等.稀土离子(Ⅲ)与牛血清白蛋白结合作用的研究[J].高等学校化学学报,1999,20(1):127-131
    [22] 陶慰,孙李惟,姜涌明等.蛋白质分子基础[M](第1版),北京:人民教育出版社,1981年
    [23] 常希俊,黄艳,贺群.铱(Ⅳ)离子与人血丙种球蛋白的作用研究[J],化学学报,2005,63(3):223-228
    [24] Bi S Y, Ding L, Tian Y et al. Investigation of the interaction between flavonoids and human serum albumin[J]. Journal of Molecular Structure, 2004, 703:37-45
    [25] He J X, Carter D C. Atomic structure and chemistry of human serum albumin[J]. Nature, 1992, 358:209-215
    [26] Curry S, Mandelkow H, Brick, et al. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites[J]. Natural Structural Biology, 1998, 5:827-835
    [27] Sutkowska J A, Rownicka J, Bojko B, et al. Interaction of anticancer drugs with human and bovine serum albumin[J]. Journal of Molecular Structure, 2003, 651-653: 133-140
    [28] Kandagal P B, Ashoka S, Seetharamapppa J, et al. Study of the interaction between doxepin and human serum albumin by spectroscopic methods[J]. Journal of Photochemistry & PhotobiologyA: Chemistry, 2006, 179, 161-166
    [29] Sulkowska J A. Interaction of drugs with bovine and human serum albumin [J]. Journal of Molecular Structure, 2002, 614:227-232
    [30] Ross P D, Subramanian S. Thermodynamics of protein association reactions: forced contributing to stability[J]. Biochemistry, 1981, 20:3096-3102
    [31] Forster T. Intermolecular energy migration and fluorescence[J]. Annals Physics, 1948, 2:55-75
    [32] Ji Z S, Yuan H Z, Liu M L, et al. 'H NMR Study of the effect of acetonitrile on the interaction of ibuprofen with human serum albumin [J]. Journal of Pharmaceutical and Biomedical Analysis, 2002, 30:151-159
    [33] Hu Y J, Liu Y, Zhao R M, et al. Interaction of colchicine with human serum albumin investigated by spectroscopic methods [J]. International Journal of Biological Macromoleculars, 2005, 37:122-126
    [34] 张晓威,赵凤林,李克安等.环丙沙星与牛血清白蛋白相互作用的研究[J].高等学校化学学报,1999,20(7):1063-1067
    [35] Carter D C, He X M, Munson S H, et al. Three-dimensional structure of human serum albumin [J]. Science, 1989, 244:1195-1198
    [36] He X M, Carter D C. Atomic structure and chemistry of human serum albumin [J]. Nature, 1993, 364:362-363
    [37] Carter D C, Ho J X. Structure of serum albumin [J]. Advances in Protein Chemistry, 1994, 45:153-203
    [38] Hu Y J, Liu Y, Jiang W, et al. Fluorometric investigantion of the interaction of bovine serum albumin with surfactants and 6-mercaptopurine[J]. Journal of Photochemistry and Photobiology B, 2004, 80:235-242
    [39] Lakowicz J R. Principles of Fluorescence Spectroscopy(2nd ed )[M]. New York: Plenum Press, 1999
    [40] Royer C A. Probing Protein Folding and Conformational Transitions with Fluorescence [J]. Chemical Reviews, 2006, 106:1769-1784
    [41] Yan C N, Zhang H X, Mei P et al. Study on Binding Reaction between Flucytosine and Bovine Serum Albumin [J]. Chinese Journal of Chemistry, 2005, 23(9): 1151-1156
    [42] Yan C N, Tong J Q, Xiong D et al. Study on the features of the binding reaction between pefloxacin and bovine serum albumin using fluorescence spectrophotometry [J], 2006, 34(6): 796-800
    [1] 沈洛夫,姜建国,林庆生等.硝基芳烃类物质对盐藻的毒性试验及比较[J],海洋科学,2006,30(5):15-17
    [2] 奚旦立,孙裕生,刘秀英主编.环境监测修订版[M],北京:高等教育出版社,1994年
    [3] 黄小娟,严媛,姜建国等.硝基芳烃类物质对盐藻生长阻碍联合毒性试验及比较[J].广州食品工业科技,2004,20(1):27-29
    [4] Gürten A A, Ucan M, Abdullah M et al. Effect of the temperature and mobile phase composition on the retentionbehavior of nitroanilines on ligand-exchange stationary phase[J]. Journal of Hazardous Materials, 2006, B135:53-57
    [5] 袁星,孟庆俊,苏丽敏.硝基芳烃化合物对大型蚤的联合毒性[J],东北师大学报(自然科学版),2003,35(2):106-109
    [6] 闫秀芬,肖鹤鸣,居学海等.硝基芳烃对梨形四膜虫毒性的QSAR研究[J],化学学报,2006,64(5):375-380
    [7] Lu G H, Yuan X, Zhao Y H. QSAR study on the toxicity of substituted benzenes to the algae(Scenedesmus obliquus) [J], Chemosphere, 2001, 44:437-440
    [8] Ulrich K H. Molecular aspects of ligand binding to serum albumin[J]. Pharmacological Reviews, 1981, 33 (1): 17-23
    [9] Jiang C Q, Gao M X, Meng X Z. Study of the interaction between daunorubicin and human serum albumin, and the determination of daunorubicin in blood serum samples[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2003, 59: 1605-1610
    [10] Liu J Q, Tian J N, Tian X, et al. Interaction of isofraxidin with human serum albumin[J]. Bioorganic & Medicinal Chemistry, 2004, 12:469-474
    [11] Guillaume Y C, Guinchard C, Berthelot A. Affinity chromatography study of magnesium and calcium binding to human serum albumin: pH and temperature variations[J]. Talanta, 2000, 53:561-569
    [12] 郜洪文,陈运生.探针体在蛋白质大分子上Langmuir吸附聚集及应用蛋白质/荧光桃红BPB结合反应研究[J].高等学校化学学报,2002,23(5):825-827
    [13] 王宝俊,陈亮,鲁岚等.蛋白质与金属离子相互作用的荧光研究[J].山西大学学报(自然科学版),1993,16(2):188-192
    [14] 杨频,高飞编著.生物无机化学原理[M].北京:科学出版社,2002
    [15] Xie M X, Long M, Liu Yuan et al. Characterization of the interaction between human serum albumin and morin[J]. Biochimica et Biophysica Acta, 2006,1760:1184-1191
    [16] Lakowiez J R. Principles of Fluorescence spectroscopy, 2nd edition, New York: Kluwer academid/Plenum Publishers, 1999
    [17] 陶慰,孙李惟,姜涌明等.蛋白质分子基础[M](第1版),北京:人民教育出版社,1981年.
    [18] 李晓晶,张善荣,张树功等.稀土离子(Ⅲ)与牛血清白蛋白结合作用的研究[J].高等学校化学学报,1999,20(1):127-131
    [19] Hu Y J, Liu Y, Zhao R M, et al. Spectroscopic studies on the interaction between methylene blue and bovine serum albumin[J]. Journal of Photochemistry & Photobiology A: Chemistry, 2006, 179:324-329
    [20] Cheng F Q, Wang Y P, Li Z-P, et al. Fluorescence stud y on the interaction of human serum albumin with bromsulphalein[J]. Spectrochimica Acta. Part A, 2006, 65,1144-1147
    [21] Bi S Y, Ding L, Tian Y et al. Investigation of the interaction between flavonoids and human serum albumin[J]. Journal of Molecular Structure, 2004, 703:37-45
    [22] Wang Y Q, Zhang H M, Zhang G C et al. Binding of brucine to human serum albumin[J], Journal of Molecular Structure ,2007, 830:40-45
    [23] Forster T. Intermolecular energy migration and fluorescence[J]. Annals of Physics, 1948, 2:55-75
    [24] Wang Y Q, Zhang H M, Zhang G C, et al. Binding of brucine to human serum albumin [J]. Journal of Molecular Structure, 2007, 830:40-45
    [25] 常希俊,黄艳,贺群.铱(Ⅳ)离子与人血丙种球蛋白的作用研究[J],化学学报,2005,63(3):223-228
    [26] Royer C A. Probing Protein Folding and Conformational Transitions with Fluorescence [J]. Chemical Reviews, 2006, 106:1769-1784
    [27] Yan C N, Zhang H X, Mei P et al. Study on Binding reaction between flucytosine and bovine serum albumin [J]. Chinese Journal of Chemistry, 2005, 23(9): 1151-1156
    [28] Yan C N, Tong J Q, Xiong D et al. Study on the features of the binding reaction between pefloxacin and bovine serum albumin using fluorescence spectrophotometry [J], 2006, 34(6): 796-800
    [1] 赵国玺.表面活性剂物理化学[M].北京:北京大学出版社,1991
    [2] 刘静.吐温-20与牛血清白蛋白相互作用的研究.硕士论文 山东大学
    [3] 宫景渠,李济生.表面活性剂在环境生物中的降解[J].环境科学,1994,15(2):1-4
    [4] 蒋伟川,王琪全.水溶液中十二烷苯磺酸钠的半导体光催化降解的反应[J].环境科学,1994,15(6):81-83
    [5] Ulrich K H. Molecular aspects of ligand binding to serum albumin[J]. Pharmacological Reviews, 1981, 33(1): 17-23
    [6] André C, Guillaume Y C. Zinc-human serum albumin association testimony of two binding sites[J], Talanta, 2004,63:503-508
    [7] 张晓威,赵凤林,李克安.环丙沙星与牛血清白蛋白相互作用的研究[J],高等学校化学学报,1999,20(7):1063—1067
    [8] Tian J N,Liu J Q,Tian X et al.Study of the interaction of kaempferol with bovine serum albumin[J].Journal of Molecular Structure,2004,691:197-202
    [9] 刘雪锋,夏咏梅,方云等.中药黄连有效成分盐酸小果碱与牛血清白蛋白的相互作用[J].高等学校化学学报,2004,25(11):2099-2103
    [10] 魏晓芳,刘会洲.Triton X-100与牛血清白蛋白的相互作用.分析化学[J],2000,28(6):699-701
    [11] 吴丹,徐桂英.光谱法研究蛋白质与表面活性剂的相互作用[J].物理化学学报,2006,22(2):254~260
    [12] Gebicka L. Kinetic approach to the interaction of sodium n-dodecyl sulphate with heme enzymes [J], International Journal of Biological Macromolecules, 1999, 24:69-74
    [13] Chorev M, Gurrath M, Behar V et al. Conformation and interactions of bombolitin I analogues with SDS micelles and phospholipids vesicles-CD, Fluorescence, Two-Dimensional NMR and computer simulations [J], Biopolymers, 1995,36:473-484
    [14] Gelamo E L, Silva C H T P, Imasato H et al. Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants and modelling[J]. Biochemistry Biophysics Acta, 2002, 1594:84-9
    [15] Gelamo E L, Tabak M. Spectroscopy studies on theinteraction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2000, 56:2255-2271
    [16] 刘嫒,谢孟峡,康娟.三七总皂苷对牛血清白蛋白溶液构象的影响[J].化学学报,2003,61(8):1305-1310
    [17] Tang J H, Qi S D, Chen X G. Spectroscopic studies of the interaction of anti-coagulantrodenticide diphacinone with human serum albumin[J]. Journal of Molecular Structure, 2005, 779:87-95
    [18] Dong A C, Huang P, Caughey W S et al. Protein secondary structure in water from second-derivative amide I infrared spectra[J], Biochemistry, 1990, 29:3303-3308
    [19] 杨曼曼,席小莉,杨频.用荧光加强和荧光猝灭理论研究喹诺酮类新药与白蛋白的作用[J].高等学校化学学报,2006,27(4):687-691
    [20] De S, Girigoswami A, Das S. Fluorescence probing of albumin-surfactant interaction[J]. Journal of Colloid and Interface Science, 2005, 285:562-573
    [21] 杨频,高飞.生物无机化学原理[M].北京:科学出版社,2002
    [22] Jiang C Q, Gao M X, He J X. Study of the interaction between terazosin and serum albumin Synchronous fluorescence determination of terazosin[J].Analytica Chimica Acta, 2002, 452:185-189
    [23] 常希俊,黄艳,贺群.铱(Ⅳ)离子与人血丙种球蛋白的作用研究[J],化学学报,2005,63(3):223-228
    [24] Ross P D, Subramanian S. Thermodynamic of protein association reactions: forces contributing to stability[J]. Biochemistry, 1981, 20:3096-3102
    [25] Kamat B P, Scetharamappa J. In vitro study on the interaction of mechanism of tricyclic compounds with bovine serum albumin[J]. Journal of Pharmaceutical and Biomedical Analysis, 2004, 35:655-664
    [26] Wang Y Q, Zhang H M, Zhang G C. Studies of the interaction between palmatine hydrochloride and human serum albumin by fluorescence quenching method[J]. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41: 1041-1046
    [27] Jiang M, Xie M X, Zheng D et al. Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin[J], Journal of Molecular Structure 2004, 692:71-80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700