用户名: 密码: 验证码:
特发性高钙尿症VDR基因单核苷酸多态性及其表达调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分遗传性高钙尿大鼠维生素D受体基因SNP与特发性高钙尿症的相关性研究
     目的建立具有人类特发性高钙尿相似特点并且能够稳定遗传的高钙尿大鼠模型,探讨GHS大鼠维生素D受体基因单核苷酸多态性(SNP)与特发性高钙尿症之间有无相关性。
     方法将80只SD大鼠分别单独置于鼠代谢笼,收集连续两次24小时尿并测定尿钙,有最大尿钙值的3只雄鼠和雌鼠被选择繁殖后代,以后同此法选择3~4只雄鼠和4~6只雌鼠继续繁殖。然后提取42例GHS大鼠及24例正常对照大鼠全血标本中基因组DNA,应用聚合酶链反应结合DNA测序方法检测并分析了VDR基因5’-调控区的多态性位点单核苷酸多态性分布。
     结果在实验组中,80%(12/15)的雄鼠和56%(9/16)的雌鼠24h尿钙排泄明显高于对照组(2.98+1.16)和(2.54+1.04)mg/d,无论性别实验组大鼠的尿钙排泄明显高于对照组(P<0.05),检测血中钙,磷两组均无明显区别,1,25(OH)_2D_3水平不高(P>0.05)。GHS大鼠VDR基因5’-调控区共发现6个多态位点,将这些多态位点基因型变化与正常组比较,其中两个位点存在明显统计学差异。
     结论本研究成功地建立的大鼠实验性遗传性高钙尿症模型。遗传高钙尿鼠模型具有和人类该疾病相似的遗传背景,是研究IH在尿结石形成中的作用机制的一种很好的模型。研究还提示GHS大鼠VDR基因5’-调控区的单核苷酸多态性在GHS大鼠特发性高钙尿的发生中可能起到重要作用。
     第二部分
     论文一大鼠VDR组织特异性启动子荧光素酶报告基因载体的构建
     目的为进行VDR基因启动子的活性分析,构建含大鼠VDR基因启动子的荧光素酶报告基因重组表达质粒。
     方法以大鼠VDR基因组DNA为模板,通过PCR方法扩增转录起始位点上游DNA序列。PCR产物定向克隆到含荧光素酶报告基因的载体pGL3-Basic中,并经限制性内切酶消化鉴定。
     结果通过酶切鉴定和基因测序,证明成功地构建了含大鼠VDR基因启动子的荧光素酶报告基因的载体pGL3-GHS-Luc和pGL3-N-Luc。两种质粒仅仅存在两处单核苷酸的差异。
     结论成功构建了含大鼠VDR启动子片段的报告基因载体,为分析VDR基因启动子的活性以及VDR基因的转录调控机制奠定了基础。
     论文二大鼠VDR基因多态性对荧光素酶报告基因表达水平的影响
     目的研究VDR基因5’端启动子序列对荧光素酶在Hela细胞中表达的影响,评价VDR基因启动子对下游基因的转录调节。
     方法将构建的不同大鼠VDR启动子荧光素酶表达载体pGL3-GHS-luc、pGL3-N-luc及空载pGL3-Basic经lipofectin转染Hela细胞,G418抗性筛选得到含各不同质粒的稳定阳性细胞克隆,检测报告基因荧光素酶表达。
     结果所构建的报告基因均能在Hela细胞中表达,pGL3-GHS载体转染的Hela细胞荧光素酶表达水平高于pGL3-N载体。
     结论VDR基因5’-调控区SNP在转录调控水平存在差异,这些差异可能对特发性高钙尿症的发生机制存在一定的影响。
     第三部分大鼠VDR基因5’端非编码区启动子报告基因载体的构建和分析
     目的克隆大鼠VDR基因基因启动子,构建含VDR基因启动子不同片段的报告基因载体,在Hela细胞中分析各种载体中VDR启动子活性。
     方法PCR、报告基因载体构建、瞬时转染和报告基因检测。
     结果通过PCR方法获得VDR启动子的3个不同片段,将它们克隆到萤火虫荧光素酶报告基因载体pGL3-Basic中,构建出3种含VDR启动子不同片段的报告基因载体,将这些报告基因载体瞬时转染至Hela细胞,载体中的启动子具有不同的活性。
     结论成功构建了含大鼠VDR启动子片段的报告基因载体,为以后研究VDR基因表达调控的分子机制提供了实验工具。
Objective To establish a colony of geneticlly hypercalciuria rats model which can stablely descending and explore the pathogenetic role in intestinal calcium hyperabsorption with the rats model, and obtain more information concerning single nucleotide polymorphism (SNP) of Vitamin D receptor gene of GHS rats in Idiopathic hypercalciuria.
    Methods 40 male and 40 female adult Sprague-Dawley rats were screned for hypercalciuria. The rats were placed in individual metabolic cages. Two successsve 24h urine collections were then obtained to measure the urine calcium excretion. The three male and three female rats used to breed the next generation. A similar protocol was used to select the two to three hypercalciuric males and three to four hypercalciuric females for inbreeding of subsequent generations. Then 42 GHS rats and 24 normal control rats took part in this study. Genomic DNA was extracted from peripheral leukocytes isolated from EDTA anticoagulated blood by standard method with phenol and chloroform. All the gene from 5' -regulation region of VDR were amplified by PCR. After purified, the PCR products were sequenced.
    Results Urine calcium excretion in 12/15 males and 9/16 females were significantly above the mean of the controls. The content of serum calcium, phosphorus and l,25(OH)_2D_3 were similar(P>0.05). Six polymorphism sites were found in GHS rats. There were significant differences in two of SNPs between GHS rats and normal controls.
    Conclusion Genetic hypercalciuric rats model were established succesfully and they are similar to human idopathic hypercalciuria , which may be familial and is thought to be genetic in origin. So the model is suitable for the study on the mechanism of idiopathic hypercalciuria. These findings suggest that the single nucleotide polymorphism in 5'-regulation region of the VDR gene may play a significant role in mechanism of Idiopathic hypercalciuria. Objective To evaluate VDR gene promoter on gene transcription, we construct
    luciferase reporter plasmid pGL3-GHS-Luc and pGL3-N-Luc.
    Methods The VDR DNA of GHS rats and normal control rats were used as templates
    in the polymerase chain reaction to amplify their upstream regions from the
    transcription initiation sites. The PCR products were directly cloned into
    the luciferase reporter vector pGL3 - Basic. pGL3-GHS-Luc and pGL3-N-Luc were
    confirmed by constriction analyses.
    Results Restriction enzymes digestion and nucleotide sequencing confirmed
    that the recombinant plasmids were correct without base mutation and deletion.
    There were only two differents of single nucleotide between pGL3-GHS-Luc and
    pGL3-N-Luc.
    Conclusion Rat VDR promoter luciferase reporter gene plasmids were
    successfully constructed. The construction of VDR recombinant plasmid lay a
    foundation of the analysis of promoter activities and make an important basis
    for studying transcrip tional regulation mechanisms of VDR gene. Objective To study the impact of VDR 5' flanking promotor of rats on the
    expression of luciferase in Hela cell, and evaluate in vitro regulation of VDR
    promoter on gene transcription.
    Methods pGL3-GIS、 pGL3-N and pGL3-Basic were transfected into Hela cells by
    lipofectin and selected by G418 respectivly, after amplifiction of the
    positive cell clones, expression of luciferase was detected and
    quantitatively analysised by digital image system.
    Results Reporter gene plasmids under the direction of the VDR 5' flanking
    promotor can be expressed in Hela cells. They had different luciferase
    activities, and the expression of pGL3-GHS was significantly higher than of
    pGL3-N.
    Conclusion These findings suggest that the single nucleotide polymorphism
    in 5'-regulation region of the VDR gene may play a significant role in
    mechanism of Idiopathic hypercalciuria. Objective To clone the promoter of VDR gene and construct luciferase reporter
    gene vectors containing different VDR promoter fragments, and to analyze the
    promoter activity of various constructions using Hela cells.
    Methods PCR, construct luciferase reporter gene vectors, transient
    transfection and luciferase assay were used.
    Results Three different fragments of VDR promoter of rat were gotten. Then
    they were cloned into pGL3-Basic luciferase expression vector. These three
    VDR promoter luciferase reporter gene vectors had different luciferase
    activity after transfection into Hela cells respectively.
    Conclusion Rat VDR promoter luciferase reporter gene plasmids were
    successfully constructed, which will provide a useful tool for study of the
    molecular mechanism of VDR expression in future.
引文
1.Coe FL, Parks JH, Moore Es. Familial idiopathic hypercalciuria. N Engl J Med. 1979,300:337-340
    
    2. Tasca A, Cacciola A, Ferrarese P, et al. Bone alterations in patients with idiopathic hypercalciuria and calcium nephrolithiasis. Urology. 2002, 59(6): 865-869
    
    3. Aladjem M, Barr J, lahat E, et al. Renal and absorptive hypercalciuria:a metabolic disturbance with varying and interchanging modes of expression. Pediatrics. 1996, 97: 216-219
    
    4. Bushinsky DA, Favus MJ. Mechanism of hypercalciuria in genetic hypercalciuric rats. Inherited defect in intestinal calcium transport.J Clin Invest. 1988, 82(5): 1585-1591.
    
    5. Stapleton FB. Idiopathic hypercalciura assocaton with isolated hematuria and risk of urolithiasis in children. Kidney Int, 1990, 37: 807-811
    
    6. IidaK, Shinki T, Yamaguchi A, et al. A possible role of vitamin D receptors in regulating vitamin D activation in the kidney. Proc Natl Acad Sci USA. 1995, 20, 92(13): 6112-6116.
    
    7. Deluca HF, ZieroldC. Mechanisms and Functions of Vitamin D. Nutr Rev. 1998, 56(2): S4-10.
    
    8. Ogata E. The potential use of vitamin D analogs in the treatment of cancer. Calcif Tissue Int. 1997, 60(1): 130-133.
    
    9. Furuya Y, Akakura K, Masai M, et al. Vitamin D receptor gene polymorphism in Japanese patients with prostate cancer. Endocr J. 1999, 46(3): 467-470
    
    10. Wagner KD, Wagner N, Sukhatme VP, et al. Activation of vitamin D receptor by the Wilms' tumor gene product mediates apoptosis of renal cells. J Am Soc Nephrol. 2001, 12(6): 1188-1196.
    
    11. Xiao Qing Li , Tembe V , Bushisky DA , t al . Increased intestinal vitamin D receptor in genetic hypercalciuric rats. A cause of intestinal calcium hyperabsorption. J Clin Invest, 1993, 91: 661-667
    
    12. Zerwekh JE, Hughes MR, Reed BY, et al. Evidence for normal vitamin D receptor messenger ribonucleic acid and genotype in absorptive hypercalciuria. J Clin Endocrinol Metab, 1995, 80(10): 2960-2965
    
    13. Scott P, Ouimet D, Valiquette L, et al . Suggestive evidence for a susceptibility gene near the vitamin D receptor locus in idiopathic calcium stone formation. J Am Soc Nephrol, 1999, 10 (5) : 1007-1013
    
    14. Nishijima S, Sugaya K, Naito A, et al. Association of vitamin D receptor gene polymorphism with urolithiasis. J Urol. 2002, 167(5): 2188-2191.
    1. Aladjem M, Barr J, lahat E, et al. Renal and absorptive hypercalciuria: a metabolic disturbance with varying and interchanging modes of expression. Pediatrics, 1996, 97: 216-219
    
    2. Stapleton FB. Idiopathic hypercalciura assocaton with isolated hematuria and risk of urolithiasis in children. Kidney Int, 1990, 37: 807-811
    
    3. Iida K, Shinki T, Yamaguchi A, et al. A possible role of vitamin D receptors in regulating vitamin D activation in the kidney. Proc Natl Acad Sci USA. 1995, 20; 92(13): 6112-6116.
    
    4. Deluca HF, Zierold C. Mechanisms and Functions of Vitamin D. Nutr Rev. 1998, 56(2): S4-10.
    
    5. Ogata E. The potential use of vitamin D analogs in the treatment of cancer. Calcif Tissue Int. 1997, 60(1): 130-133.
    
    6. Furuya Y, Akakura K, Masai M, et al. Vitamin D receptor gene polymorphism in Japanese patients with prostate cancer. Endocr J. 1999, 46(3): 467-470
    
    7. Wagner KD, Wagner N, Sukhatme VP, et al. Activation of vitamin D receptor by the Wilms' tumor gene product mediates apoptosis of renal cells. J Am Soc Nephrol. 2001, 12(6): 1188-1196.
    
    8. Xiao Qing Li , Tembe V , Bushisky DA , t al . Increased intestinal vitamin D receptor in genetic hypercalciuric rats. A cause of intestinal calcium hyperabsorption. J Clin Invest, 1993, 91: 661-667
    
    9. Zerwekh JE, Hughes MR, Reed BY, et al. Evidence for normal vitamin D receptor messenger ribonucleic acid and genotype in absorptive hypercalciuria. J Clin Endocrinol Metab, 1995, 80(10): 2960-2965
    
    10.Scott P, Ouimet D, Valiquette L, et al . Suggestive evidence for a susceptibility gene near the vitamin D receptor locus in idiopathic calcium stone formation. J Am Soc Nephrol, 1999, 10 (5): 1007-1013
    11.Nishijima S, Sugaya K, Naito A, et al. Association of vitamin D receptor gene polymorphism with urolithiasis. J Urol. 2002, 167(5): 2188-2191
    1. Stapleton FB. Idiopathic hypercalciura assocaton with isolated hematuria and risk of urolithiasis in children. Kidney Int, 1990,37: 807-811
    
    2. Coe FL, Parks JH, Moore Es. Familial idiopathic hypercalciuria. N Engl J Med, 1979,300: 337-340
    
    3. Nishijima S, Sugaya K, Naito A, et al. Association of vitamin D receptor gene polymorphism with urolithiasis. J Urol. 2002,167(5): 2188-2191
    
    4. Elizabeth A. C. Sellers, Atul Sharma, et al. Adaptation of Inuit children to a low-calcium diet. CMAJ . 2003,168 (9): 1141-1143
    
    5. Xu Y, Shibata A, McNeal JE, et al. Vitamin D receptor start codon polymorphism (Fokl) and prostate cancer progression. Cancer Epidemiol Biomarkers Prev. 2003, 2(1): 23-27
    
    6. Uitterlinden GA, Fang Y, Berfink AP, et al. The role of vitamin D receptor gene polymorphisms in bone biology. Molecul Cell Endocrin, 2002, 197: 15-21.
    
    7. Miyamoto K, Kesterson RA , Yamamoto H, et al. Structural organization of human vitamin D receptor chromosomal gene and its promoter. Mol Endocrinol, 1997, 11: 1165-1179
    
    8. Wang SG, Liu JH, Hu SQ,et al. Association of Vitamin D receptor gene polymorphisms with Calcium Oxalate Calculus Disease. Journal of Huazhong University of Science and Technology[Med Sci]. 2003, 23(1):38-41
    
    9. Chen WC, Chen HY, Hsu CD, et al. No association of vitamin D receptor gene BsmI polymorphisms with calcium oxalate stone formation. Mol Urol. 2001, 5(1) :7-10.
    
    
    10. Alam J, Cook JL. Reporter genes: application to the study of mammalian gene transcription. Anal Biochem, 1990, 188(2) : 245 - 254
    
    11. chneiderM, Ow DW, Howell SH. The in vivo pattern of firefly luciferase expression in transgenic plants. Plant Mol Biol, 1990, 14(6): 935-947
    
    12. Luehrsen KR, deWet JR, WalbotV. Transient expression analysis in plants using firefly luciferase reporter gene. Methods Enzymo1, 1992, 216: 397-414
    13. Welsh S, Kay S. Reporter gene expression for monitoring gene transfer. Curt Opin Biotechnol, 1997, 8: 617-622.
    1. Heilberg IP , Teixeira SH , Martini LA , et al. Vitamin D receptor gene polymorphism and bone mineral density in hypercalciuric calcium-stone- forming patients. Nephron, 2002; 90(1):51-57
    
    2. Nishijima S, Sugaya K, Naito A, et al. Association of vitamin D receptor gene polymorphism with urolithiasis. J Urol. 2002,167(5) :2188-2191
    
    3. Yao J, Kathpalia P, Bushinsky DA, et al. Hyperresponsiveness of vitamin D receptor gene expression to 1, 25-dihydroxyvitamin D_3. A new characteristic of genetic hypercalciuric stone-forming rats. J Clin Invest. 1998, 101(10): 2223-2232.
    
    4. Li XQ, Tembe V, Horwitz GM, et al. Increased intestinal vitamin D receptor in genetic hypercalciuric rats. A cause of intestinal calcium hyperabsorption. J Clin Invest. 1993 , 91(2):661-667.
    
    5. Krieger NS, Stathopoulos VM, Bushinsky DA. Increased sensitivity to 1,25(OH)_2D_3 in bone from genetic hypercalciuric rats. Am J Physiol. 1996,271(1 Pt 1): C130-135.
    
    6. Tsuruoka S, Bushinsky DA, Schwartz GJ. Defective renal calcium reabsorption in genetic hypercalciuric rats. Kidney Int. 1997, 51(5): 1540-1547.
    
    7. Ingles SA , Wang J , Coetzee GA , et al. Vitamin D receptor polymorphisms and risk of colorectal adenomas (United States) . Cancer Causes Control, 2001; 12(7): 607-614
    
    8. kirn KS , Kim EK, Choi YM , et al. Association of vitamin D receptor and estrogen receptor gene polymorphisms with bone mass in postmenopausal Korean women. Menopause, 2001; 8(3): 222-228
    
    9. Choi YM , J un J K, Choe J , et al. Association of the vitamin D receptor start codon polymorphism (Fok I) with bone mineral density in postmenopausal Korean women. J Hum Genet, 2000; 45(5): 280-283
    
    10. Chiu KC , Chuang LM , Yoon C. The vitamin D receptor polymorphism in the translation initiation codon is a risk factor for insulin resistance in glucose tolerant Caucasians. BMC Med Genet, 2001, 2(1): 2
    
    11. Lorenz WW, Cormier MJ, 0' Kane DJ, et al. Expression of the Renilla reniformis luciferase gene in mammalian cells. J Biolumin Chemilumin, 1996, 11(1): 31-37
    
    12. Alam J, Cook JL. Reporter genes: application to the study of mammalian gene transcription. Anal Biochem, 1990, 188(2): 245-254
    
    13. Zhuang SH, Schwartz GG, Cameron D, et al. Vitamin D receptor content and transcriptional activity do not fully predict antiproliferative effects of vitamin D in human prostate cancer cell lines. Mol Cell Endocrinol. 1997,126(1): 83-90.
    
    14. Hedlund TE, Moffatt KA, Uskokovic MR, et al. Three synthetic vitamin D analogues induce prostate-specific acid Phosphatase and prostate-specific antigen while inhibiting the growth of human prostate cancer cells in a vitamin D receptor-dependent fashion. Clin Cancer Res. 1997,3(8): 1331-8
    
    15. Maurer U, Jehan F, Englert C, et al. The Wilms' tumor gene product (WT1) modulates the response to 1, 25-dihydroxyvitamin D_3 by induction of the vitamin D receptor. J Biol Chem. 2001, 276(6): 3727-3732.
    
    16. Wagner KD, Wagner N, Sukhatme VP, et al. Activation of vitamin D receptor by the Wilms' tumor gene product mediates apoptosis of renal cells. J Am Soc Nephrol. 2001, 12(6): 1188-1196
    1. Nishijima S, Sugaya K, Naito A, et al. Association of vitamin D receptor gene polymorphism with urolithiasis. J Urol. 2002,167(5):2188-2191
    
    2. Elizabeth A. C. Sellers, Atul Sharma, et al. Adaptation of Inuit children to a low-calcium diet. CMAJ . 2003,168 (9): 1141-1143
    
    3. Baker AR, McDonnell DP, Hughes MR, et al. Molecular cloning and expression of human vitamin D receptor complementary DNA: structural homology with thyroid hormone receptor. Proc Natl Acad Sci USA, 1988, 85: 3294-32984.
    
    4. Burmester, JK, Wiese, RJ, Maeda, N, et al. Structure and regulation of the rat 1, 25-dihydroxyvitamin D3 receptor. Proc. Natl. Acad. Sci. U.S. A. 1988, 85 (24), 9499-9502.
    
    5. Li XQ, Tembe V, Horwitz GM, et al. Increased intestinal vitamin D receptor in genetic hypercalciuric rats. A cause of intestinal calcium hyperabsorption. J Clin Invest. 1993,91(2):661-667.
    
    6. Yao J, Kathpalia P, Bushinsky DA, et al. Hyperresponsiveness of vitamin D receptor gene expression to 1, 25-dihydroxyvitamin D_3. A new characteristic of genetic hypercalciuric stone-forming rats. J Clin Invest. 1998, 101(10): 2223-2232.
    
    7. Miyamoto K, Kesterson RA, Yamamoto H, et al. Structural organization of human vitamin D receptor chromosomal gene and its promoter. Mol Endocrinol, 1997,11: 1165-1179
    
    8. Lorenz WW, Cormier MJ, 0' Kane DJ, et al. Expression of the Renilla reniformis luciferase gene in mammalian cells. J Biolumin Chemilumin, 1996, 11(1): 31-37
    
    9. Alam J, Cook JL. Reporter genes: application to the study of mammalian gene transcription. Anal Biochem, 1990, 188(2): 245-254
    1. Miyamoto K, Kesterson RA, Yamamoto H, et al. Structural organization of human vitamin D receptor chromosomal gene and its promoter. Mol Endocrinol, 1997,11:1165-1179
    
    2. Carlberg C , Polly P. Gene regulation by vitamin D_3. Crit Rev Eukaryot Gene Exp , 1998 ,8 :19-42.
    
    3. Rastinejad F ,Perlmann T , Evans RM, et al . Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature, 1995 , 375: 203- 211.
    
    4 . Strugnell SA , Deluca HF. The vitamin D receptor structure and transcriptional activation. Proc Soc Exp Biol Med ,1997 ,215:223-228.
    
    5. Nakajima S ,Hsieh JC ,Jurutka P , et al . Examination of the potential functional role of conserved cysteine residues in the hormone binding domain of the human 1,25 - dihydroxyvitamin D_3 receptor. J Biol Chem, 1996, 271:5143-5149.
    
    6. Ye WZ, Reis AF, Velho G. Identification of a novel Tyu9 polymorphism in the human Vitamin D receptor gene. J Hum Genet, 2000, 45: 56-7.
    
    7. Yamamoto H, Miyamoto KI, Bailing L, et al. The caudalrelated homeodomain protein Cdx-2 regulates vitamin D receptor gene expression in the small intestine. J Bone Miner Res, 1999, 14: 240-7.
    
    8. Uitterlinden GA, Fang Y, Berfink AP, et al. The role of vitamin D receptor gene polymorphisms in bone biology. Molecul Cell Endocrin, 2002, 197: 15-21.
    
    9. Morroson NA, Yeoman R, Kelly PJ, et al. Contribution oftransacting factor alleles to normal physiological variability: vitaminD receptor gene polymorphism and circulating osteocalcin . ProcNatl Acad Sci USA , 1992, 89 (15) : 6665-6669
    
    10. Sheehan D, Bennett T, Cashhman K. The genetics of osteoporosis: vitamin D receptor gene polymorphisms and circulating osteocalin in healthy Irish adult. Ir J Med Sci , 2000, 170(1): 54-57
    
    11.- Lorentzon M, Lorentzon R, Nordstron P. Vitamin D receptor gene polymorphism is related to bone density, circulating osteocalin, and parathyroid hormone in healthy adolescent girls. J Bone Miner Metab, 2001, 19(5): 302-307
    
    12. Morrison NA , Qi JC, Tokita A, et al. Prediction of bone mineral density from vitamin D receptor alleles. Nature, 1994, 367: 284- 287
    
    13. Marc J, Prezeli J, Komel R, et al. Association of vitamin D receptor gene polymorphism with bone mineral density in Slovenian postmenopausal women. Gynecol Endocrinol, 2000, 14(1): 60-64.
    
    14. Chen H Y, Chen W C, Hsu C D, et al. Relation of BsmI vitamin D receptor gene polymorphism to bone mineral density and occurance of osteoporosis in postmenpausal Chinese women in Taiwan . Osteoporos Int , 2001, 12(12): 1036-1041
    
    15. Tokia A, Matsumoto H, Morrison N A, et al. Vitamin D receptor alleles, bone mineral density and turnover in premenopausal Japanese women. J Bone Miner Res, 1996, 11(7): 1003-1009
    
    16. Harris S S, Eccleshall T R, Gross C, et al. The vitamin D receptor start codon polymorphism (FokI) and bone mineral density in premenopausal American black and white women. J Bone Miner Res ,1997, 12(7): 1043-1048
    
    17. Lucotte G, Mercier G, Burckel A. The vitamin D receptor FokI start codon polymorphism and bone mineral density in osteoporotic postmenopausal French women. Clin Genet , 1999, 56(3): 221-224
    
    18. Fountasl, Moutsatsou P, Kastanias I, et al. The contribution of vitamin D receptor gene polymorphism in osteoporosis and familial osteoporosis. Osteoporos Int, 1999 , 10(5): 392-398
    
    19. Eccleshall T R, Garnero P, Gross C, et al. Lack of correlation between start codon polymorphism of the vitamin D receptor gene and bone mineral density in premenopausal French women: the OFELY study. J Bone Miner Res, 1998, 13(1): 31-35
    20. Jaramillo-Rangel G, Cerda-Flores R M, Cardenas I, Barra L, et al. Vitamin D receptor polymorphism and bone mineral density in Mexican women without osteoporosis. Am J Human Biol, 1999, 11(6): 793-797
    21. Wynne F, Drummond F, O' Sullivan K, et al. Investigation of the genetic influence of the OPG, VDR(FokI), and COLIAI Spl polymorphisms on BMD in the Irish population. Calcif Tissue Int, 2002, 71(1): 26-35
    22. Pollak R D, Blumenfeld A, Bejarano A I, et al. The BsmI vitamin D receptor polymorphism in Israeli populations and in perimenopausal and osteoporotic Ashkenazi women. Am J Nephrol, 2001, 21(3): 185-188
    23. Lim S K, Park Y S, Park J M, et al. Lack of association between vitamin D receptor genotypes and oateoporosis is Koreans. J Clin Endocrinol Metab, 1995, 80(12): 3677-3681
    24. Tsaik S, Hsu S H, Chen C K, et al. Bone mineral density and markers in relation to vitamin D receptor gene polymorphisms in Chinese men and women. Bone, 1996, 19(5): 513-518
    25.廖应新,朱汉民,朱晓颖,等.上海地区汉人维生素D受体因多态性与骨密度的初步分析.中国骨质疏松杂志,2002,8(1):20-22
    26. Ferrari S, Manen D, Bonjour J P, et al. Bone mineral mass and calcium and phosphate metabolism in young men: relationship with vitamin D receptor allelic polymorphisms. J Clin Endocrinol Metab, 1999, 84(6): 2043-2048
    27. Heilberg IP, Teixeira SH, Martini LA, et al. Vitamin D receptor gene polymorphism and bone mineral density in hypercalciuric calcium-stone-forming patients. Nephron. 2002,90(1):51-57.
    28. Vezzoli G, Soldati L, Proverbio MC, et al. Polymorphism of vitamin D receptor gene start codon in patients with calcium kidney stones. J Nephrol. 2002, 15(2): 158-164.
    29. Zerwekh JE, Hughes MR, Reed BY, et al. Evidence for normal vitamin D receptor messenger ribonucleic acid and genotype in absorptive hypercalciuria. J Clin Endocrinol Metab. 1995 , 80(10):2960-2965.
    
    30." Sellers EA, Sharma A, Rodd C. Adaptation of Inuit children to a low-calcium diet. CMAJ. 2003,168(9):1141-1143
    
    31. Wang SG, Liu JH,Hu SQ, et al. Association of Vitamin D receptor gene polymorphisms with Calcium Oxalate Calculus Disease. Journal of Huazhong University of Science and Technology[Med Sci].2003, 23(1):38-41
    
    32. Chen WC, Chen HY, Hsu CD, et al. No association of vitamin D receptor gene BsmI polymorphisms with calcium oxalate stone formation. Mol Urol. 2001, 5(1) :7-10.
    
    33. Nishijima S, Sugaya K, Naito A, et al. Association of vitamin D receptor gene polymorphism with urolithiasis. J Urol. 2002 ,167(5):2188-2191.
    
    34. McDermott M F, Ramachandran A, Ogunkolade B W, et al. Allelic variation in the vitamin D receptor influences susceptibility to IDDM in Indian Asians. Diabetologia, 1997, 40: 971-975
    
    35. Hitman GA, Mannan N, McDermott M F, et al. Vitamin D receptor gene polymorphisms influence insulin secretion in Bangladeshi Asians. Diabetes, 1998 ,47: 688-690.
    
    36. Chang T J, Lei H H, Yeh J I, et al. Vitamin D receptor gene polymorphism influence susceptibility to type 1 diabetes mellitus in the Taiwanese population. Clin Endocrinol (Oxf), 2000, 52: 575-580
    
    37. Chiu K C, Chuang L M, Yoon C. The vitamin D receptor polymorphism in the translation initiation codon is a risk factor for insulin resistance in glucose tolerant Caucasians. BMC Med Genet, 2001, 2: 2-11.
    
    38. Ban Y, Ban Y, Taniyama M, et al. Vitamin D receptor initiation codon polymorphism in Japanese patients with Graves disease. Thyroid, 2000, 10: 475-480
    
    39. Ban Y, Taniyama M, Ban Y. Vitamin D receptor gene polymorphism is associated with Graves disease in the Japanese population. J Clin Endocrinol Metab, 2000, 85: 4639-4643
    40. Fernandez E, Fibla T, Betriu A, et al. Association between vitamin D receptor gene polymorphism and relative hypoparathyroidism in patients with chronic renal failure. J Am Soc Nephrol, 1997, 10: 1546-1552
    
    41. Mawer EB, Walls J, Howell A, et al. Serum 1, 25-dihydroxyvitamin D may be related inversely to disease activity in breast cancer patients with bone metastases. J Clin Endocrinol Metab, 1997, 82(1):118 - 122
    
    42. Lyakhovich A, Aksenov N, Pennanen P, et al. Vitamin D induced up-regulation of keratinocyte growth factor (FGF - 7/ KGF) in MCF - 7 human breast cancer cells. Biochem Biophys Res Commun, 2000,273(2):675 - 680
    
    43. Lundin AC, Soderkvist P, Eriksson B, et al. Association of breast cancer progression with a vitamin D receptor gene polymorphism. South - East Sweden Breast Cancer Group. Cancer Res, 1999, 59(10): 2332 - 2334
    
    44. Curran JE, Vaughan T, Lea RA, et al. Association of A vitamin D receptor polymorphism with sporadic breast cancer development. Int J Cancer. 1999,83(6): 723-726.
    
    45. RuggieroM, Pacini S, Aterini S, et al. Vitamin D receptor gene polymorphism is associated with metastatic breast cancer. Oncol Res, 1998, 10(1) : 43 - 46.
    
    46. Ingles SA, Garcia DG, Wang W, et al . Vitamin D receptor genotype and breast cancer in Latinas (United States). Cancer Causes Control, 2000, 11 (1): 25 - 30.
    
    47. Dunning AM, McBride S , Gregory J, et al. No association between androgen or vitamin D receptor gene polymorphisms and risk of breast cancer. Carcinogenesis, 1999,20(11): 2131 - 2135.
    
    48. Ly LH, Zhao XY, Holloway L, et al. Liarozole acts synergistically with lalpha, 25 - dihydroxyvitamin D3 to inhibit growth of DU 145 human prostate cancer cells by blocking 24 - hydroxylase activity. Endocrinology, 1999,140 (5): 2071-2076.
    
    49. Morrison NA, Qi JC, Tokita A, et al. OMIM Prediction of bone density from vitamin D receptor alleles. Nature, 1994,367(6460): 284-7.
    50. Taylor JA, Hirvonen A, Watson M, et al . Association of prostate cancer with vitamin D receptor gene polymorphism. Cancer Res, 1996,56(18): 4108 - 4110.
    
    
    51. Ma J, Stampfer MJ, Gann PH, et al. Vitamin D receptor polymorphisms , circulating vitamin D metabolites , and risk of prostate cancer in United States physicians. Cancer Epidemiol Biomarkers Prev, 1998 ,7(5):385 - 390.
    
    52. Habuchi T, Liqing Z, Suzuki T, et al. Increased risk of prostate cancer and benign prostatic hyperplasia associated with a CYP17 gene polymorphism with a gene dosage effect. Cancer Res, 2000,60(20): 5710- 5713.
    
    53. Ingles SA, Ross RK, Yu MC, et al. Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor. J Natl Cancer Inst, 1997,89 (2) : 166-170.
    
    54. Watanabe M, Fukutome K, MurataM, et al. Significance of vitamin Dreceptor gene polymorphism for prostate cancer risk in Japanese. Anticancer Res, 1999,19(50: 4511-4514.
    
    55 . Blazer DG3rd, Umbach DM, Bostick RM, et al. Vitamin D receptor polymorphisms and prostate cancer. Mol Carcinog, 2000,27 (1):18- 23.
    
    56. Madej A, Puzianowska-Kuznicka M, Tanski Z, et al. Vitamin D Receptor Binding to DNA Is Altered without the Change in Its Expression in Human Renal Clear Cell Cancer. Nephron Exp Nephrol. 2003, 93(4):E150-157
    
    57. Ikuyama T, Hamasaki T, Inatomi H, et al. Association of vitamin D receptor gene polymorphism with renal cell carcinoma in Japanese. J. Endocr 2002, 49(4): 433-438
    
    58 . Jurutka PW, Hsieh JC, Remus LS, et al. Mutation in the 1,25-dihydroxyvitamin D_3 receptor identifying C-terminal amino acid required for transcriptional activation that are functionally dissociated from hormon binding, heterodimeric DNA binding, and interaction with basal transcription factor HB, in vitro. J Biol Chem, 1997, 272: 14592-14598.
    59. Jehan-Kimmel C, Darwish HM, Strugnell SA, et al. Binding of vitamin D receptor to vitamin D responsive elements induces DNA distortion. J Bone Miner Res, 1996, 11(suppl): S312.
    
    60. Towers TL, Freedman LP. Granulocyte-macrophage colony-stimulating factor gene transcription is directly repressed by the vitamin D_3 receptor. Implications for allosteric influences on nuclear receptor structure and function by a DNA element. J Biol Chem, 1998, 273: 1038-1043.
    
    61 . Strugnell SA, Deluca HF. The vitamin D receptor structure and transcriptional activation. Proc Soc Exp Biol Med, 1997, 215: 223-228.
    
    62. Gill RK, Atkins LM, HollisBW, et al. Mapping the domains of the interaction of the Vitamin D receptor and steroid receptor coactivator-1. Mol Endocrinol, 1998, 12: 57-65.
    
    63. Jurutka PW, Hsieh JC, Nakajima S, et al. Human vitamin D receptor phosphorylation by casein kinase II at ser-208 potentiates transcriptional activation. Proc Natl Acad Sci USA, 1996, 93: 3519-3524.
    
    64. Desai RK, van WijnenAJ, Stein JL, et al. Control of 1, 25-dihydroxyvitamin D_3 receptor-mediated enhancement of osteocalcin gene transcription: effects of perturbing phosphorylation pathways by okadaic acid and staurosporine. Endocrinology, 1995, 136: 5685-5692.
    
    65. Ingles SA, HaileRW, Henderson BE, et alo Strength of linkage disequilibrium between two vitamin D receptor markers in five ethnic groups: implications for association studies. Cancer Epidemiol Biomarkers Prev, 1997,6(2) : 93-98.
    1. Groskreutz D, Schenborn ET. Reporter systems. Methods in Molecular Biology, 1997, 63: 11-30.
    
    2. Naylor LH. Reporter gene technology: the future looks bright. Biochem Pharmacol. 1999, 58: 749-757.
    
    3. Lewis JC. Applications of reporter genes. Analytical Chemistry, 1998, 70(17): 579-585.
    
    4. Lim K, Chae CB. A simple assay for DNA transfection by incubation of the cells in culture dishew with substrates for galatosidase. Bio Techniques, 1989, 7(6): 576-579.
    
    5. Zezulak M, Snyder JJ, Needleman SB. Simultaneous analysis of codeine, morphine, and heroin after B2glucuronidase hydrolysis. J Forensic Sci, 1993, 38(6): 1275-1285.
    
    6. Hauksson JB, Andresson OS, Asgeirsson B. Heat-labile bacterial alkaline Phosphatase from a marine Vibrio sp. Enzyme and Microbial Technology, 2000, 27(122): 66-73.
    
    7. Funk CJ. Alkaline Phosphatase activity in whitefly salivary glands and saliva. Arch Insect Biochem Physiol, 2001, 46(4): 165-174.
    
    8. Amidon WJ, Pfeil J E, Gal S. Modification of luciferase to be a substrate for plant aspartic Proteinase. Biochem J, 1999, 343 (pt 2): 425-433.
    
    9. Leclerc GM, Boockfor FR, Faught WJ, et al. Development of a destabilized firefly luciferase enzyme for measurement of gene expression. Biotechniques, 2000, 29(3): 590-1, 594-596.
    
    10. Welsh S, Kay S. Reporter gene expression for monitoring gene transfer. Curt Opin Biotechnol, 1997, 8: 617-622.
    
    11. Suto CM, Ignar DM. Selection of an optimal reporter gene for cell-based high throughput screening assays. J Biomol Screen, 1997, 2: 7-9.
    
    12. Foster BJ, Kern JA. HER2-targeted gene transfer. Hum Gene Ther. 1997, 8: 719-727.
    13. Prasher DC, Eckenrode VK, Ward WW, et al. Primary structure of the Aequorea victoria green fluorescent protein. Gene, 1992, 111(2): 229-233.
    14. Cormack B. FACS—optimized mutants of the green fluorescent protein (GFP). Gene, 1996, 173(1 Spec No): 33-38.
    15. Ozawa T, Nogami S, Sato M, et al. A fluorescent indicator for detecting protein-protein interactions in vivo based on protein splicing. Anal Chem, 2000, 72(21): 5151-5157.
    16. Gambhir SS, BarrioJn, Herschman HR, et al. Assays for noninvasive imaging of reporter gene expression. Nucl Med Biol, 1999, 26: 481-490.
    17. Tavare JM, Fletcher LM, Welsh GI. Using green fluorescent protein to study intracellular signaling, J Endoerinol, 2001, 170: 297-306.
    18. Heim R, Tsien RY. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol, 1996, 6(2): 178-182.
    19. Periasamy A, Kay SA, Day RN. Fluorescence resonance energy transfer(FRET) imaging of a single living cell using green fluorescence protein. Proc Int Soc Optical Eng, 1997, 2983: 58-66.
    20.张晓伟,王福山,童坦君.绿色荧光蛋白cDNA在腺病毒重组载体转染中的应用.生物化学与生物物理进展.1998,25:266~268.
    21. Zolotukhin S, Potter M, Hauswirth WW, et al. A "humanized" green fluorescent protein cDNA adapted for high-level expression in mammalian cells. Journal of Virology. 1996, 70(7):4646-54.
    22. Bierhuizen MF, Westerman Y, Visser TP, et al. Green fluorescent protein variants as markers of retroviral-mediated gene transfer in primary hematopoietic cells and cell lines. Biochemical & Biophysical Research Communications. 1997, 234(2): 371-5.
    23. Muldoon RR, Levy JP, Kain SR, et al. Tracking and quantitation of retroviral-mediated transfer using a completely humanized, red-shifted green fluorescent protein gene. Biotechniques. 1997, 22(1):162-7.
    
    24. Wilson LE, Wilkinson N, Marlow SA, et al. Identification of recombinant baeulovirus using green fluorescent protein as a selectable marker. Biotechniques, 1997, 22: 674-682.
    
    25. Cormaek BP, Bertram G, Egerton M, et al. Yeast-enhancedgreen fluorescent protein(y-EGFP) : a reporter of gene expression in Candida albieans. Microbiology, 1997, 143: 303-311.
    
    26. Wan g W , Wu J, Zhang Z, et al. Charaterization of regulatory elements on the promoter region of pl6INK4a that contribute to overpression of pl6 in senescent fibroblasts. J Biol Chem, 2001, 276: 48655-48661
    
    27. Baird GS, Zacharias DA, Tsien RY. Bioc hemistry, mutagenesis, and oligomerization of DsRed. a red fluorescent protein from coral. Proc Natl Acad Sci USA, 2000, 7: 1984-1989.
    
    28. Terskikh A, Fradkov A, ErmakovaG, et al. "Fluorescent timer" : protein that changes color with time. Science. 2000, 290: 1585 - 1588.
    
    29. Jiang Y, Liu AH, Huang QB, et al. p38 MAPK signal is necessary for TNF- α gene expression in RAW cells. Acta Biochimica et Biophysica Sinica, 1999, 31: 9-15.
    
    30. Casey JL, Coley AM, Tilley LM, et al. Green fluorescent antibodies: novel in vitro tools. Protein Eng, 2000,13(6): 445-452.
    
    31. Yang B, Petersen D, Pepper KA, et al. Transduction of green fluorescent protein increased oxidative stress and enhanced sensitivity to cytotoxic drugs in neuroblastoma cell lines. Molecular Cancer Therapeutics, 2003, 2(9) :911-7.
    
    32. Truong K , Lkura M. The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo. Curr Opin Stru Biol, 2001, 11: 573-578.
    
    33. Deming JW. Deep ocean environmental biotechnology. Curr Opin Biotechnol, 1998, 9: 283-287.
    34. Grifin BA, Adams SR, Tsien RY. Specific coralent labeling of recomb inant protein molecules inside live eeHs. Science. 1998, 281: 269—272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700