用户名: 密码: 验证码:
FATP1和FATP4基因在浙东白鹅和朗德鹅中的发育性表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,很多的学者研究发现了在长链脂肪酸摄取中一些候选蛋白如脂肪酸转运蛋白(FATP),脂肪酸合成蛋白(FABP),长链脂肪酰基辅酶A合成酶(ACSL)和脂肪酸易位酶(FAT/CD36)对长链脂肪酸的摄取和代谢具有重要作用,其中FATP对脂质代谢和脂肪相关疾病有着重要的影响,为此,FATPs基因家族的研究成为了当前的热点。
     本研究以浙东白鹅和朗德鹅为试验材料,采用SYBR green I定量PCR技术,以β-actin为内参基因,分析了浙东白鹅和朗德鹅在1d、14d、21d、28d、35d、42d、49d、56d、63d等这9个时间点FATP1和FATP4基因表达的组织差异,以及在胸肌、腿肌、心脏、肝脏、肠、腹脂、皮脂等组织中FATP1和FATP4基因表达量的发育性变化。结果表明:浙东白鹅和朗德鹅胸肌中FATP1基因的表达在35d均达到表达最高峰,在49d进入表达最低谷:腿肌中浙东白鹅FATP1基因的表达量在63d达到了最大,而朗德鹅是在35d达到了最大;皮脂中浙东白鹅在21d出现表达最高峰,而朗德鹅在14d出现最高峰,之后就急剧下降;腹脂中浙东白鹅在42d出现表达最高峰,而朗德鹅35d出现第一个峰也是最高峰;两个品种均在56d进入表达量最低谷;肝脏中浙东白鹅和朗德鹅分别在1d和28d时达到了最大:心脏中浙东白鹅FATP1基因的表达量在56d达到了最大,而朗德鹅是在63d达到了最大。
     结果还表明,浙东白鹅和朗德鹅胸肌中FATP4基因的表达分别在63d和35d达到表达最高峰;腿肌中浙东白鹅和朗德鹅两个品种均在56d达到表达最高峰:皮脂中浙东白鹅在21d出现表达最高峰,而朗德鹅在14d出现最高峰,之后就急剧下降;腹脂中浙东白鹅在35d出现表达最高峰,而朗德鹅除了14d不同以外,其他时间点的表达量较为平稳;肝脏中浙东白鹅和朗德鹅分别在56d和14d时达到了最大;心脏中浙东白鹅FATP4基因的表达量在56d达到了最大,而朗德鹅是在63d达到了最大。FATP1基因和FATP4基因在两个鹅品种和不同组织不同时间点均有表达,组织表达丰度不一样,其中腿肌是两个基因的优势表达组织,表达量显著高于其他各组织(P<0.05)。
     FATP1基因在两个品种间的表达差异是在腿肌和胸肌差异显著(P<0.05),而其他组织差异不显著(P>0.05);FATP4基因在两个品种间的表达差异不显著(P>0.05)。通过对FATP1基因与FATP4基因表达量的倍比关系分析得出,FATP1基因的表达量高于FATP4基因的表达量。
     本研究首次发现,FATP1基因在浙东白鹅和朗德鹅小肠中均有微量表达。由此,在FATPs家族中FATP4基因不再是唯一在小肠表达的成员。
At present, several candidate proteins have been proposed to be involved in the uptake process of LCFAs including fatty acid transport proteins (FATPs),fatty acid binding protein (FABPs), long-chain fatty acyl-CoA synthetases (ACSL) and fatty acid translocase (FAT/CD36).Although many of the above-mentioned proteins have important role in the proceeding of LCFAs uptake and metabolism, recent in vivo studies have particularly highlighted the contribution of FATPs to lipid metabolism and fatty acid-associated disorders. So,the studies about FATP are being focused in today because of FATP special character and biological function.
     In the studies, we adopted East White Geese and Landes Geese as materials. We used the real-time PCR (SYBR green I) method to test the expression quantity of FATP1 and FATP4 gene in different tissues and the expression quantity at different growth points.The results showed that:the expression quantity of FATPl gene in breast muscle reached the highest expression in 35 day,and reached the lowest expression in 49 day in the two breeds;the expression quantity of FATP1 gene in leg muscle reached the highest expression in Zhedong White Geese in 63 day,and reached the highest expression in Landes Geese in 35 day; the expression quantity of FATP1 gene in Sebum reached the highest expression in 21 day in Zhedong White Geese,and reached the highest expression in Landes Geese in 14 day,and after sharply;the expression quantity of FATP1 gene in abdominal fat reached the highest expression in Zhedong White Geese in 42 day,and reached the highest expression in Landes Geese in 35 day; the expression quantity of FATP1 gene in liver reached the highest expression respectively in Zhedong White Geese and Landes Geese in 1 and 28 day; the expression quantity of FATP1 gene in heart reached the highest expression in Zhedong White Geese in 56 day,and reached the highest expression in Landes Geese in 63 day.
     The results also show that the expression quantity of FATP4 gene in breast muscle reached the highest expression respectively in Zhedong White Geese and Landes Geese in 63 and 35 day; the expression quantity of FATP4 gene in leg muscle reached the highest expression in 56 day in the two breeds; the expression quantity of FATP4 gene in Sebum reached the highest expression in 21 day in Zhedong White Geese,and reached the highest expression in Landes Geese in 14 day,and after sharply; the expression quantity of FATP4 gene in abdominal fat reached the highest expression in Zhedong White Geese in 35 day,and the expression of Landes Geese except 14 day the other times points is relatively stable quantity of expression; the expression quantity of FATP4 gene in liver reached the highest expression respectively in Zhedong White Geese and Landes Geese in 56 and 14day; the expression quantity of FATP4 gene in heart reached the highest expression in Zhedong White Geese in 56 day,and reached the highest expression in Landes Geese in 63 day. the expression quantity of FATP1 and FATP4 had many expressions between the two breeds and at different growth points and tissues.Moreover,the expression of abundance have difference. The expression of advantage tissue is leg muscle between the two breeds and the expression is significantly higher than other organizations (P<0.05).
     The results showed that the expression quantity of FATP1 had significant difference between the two breeds in leg muscle and breast muscle, the difference of expression is significantly(P<0.05),and the other tissues had no significant differences(P>0.05);the expression quantity of FATPA had no significant difference between the two breeds(P>0.05). The expression of FATP1 gene is higher than FATP4 gene.
     In the studies,we found that the expression quantity of FATP1 gene had small trace expression in intestine.This is belong to first discovered in Landes geese and Zhedong White geese. Thus, the expression of FATP4 gene in the small intestine is not the only members in FATPs family.
引文
[1]谢广富.鹅肉营养成分分析及营养价值评定.肉品卫生,1999,(4):2-3
    [2]王家富.鹅的习性与经济价值.云南农业科技,1997,(2):38-39
    [3]蒋云升,董杰.常吃鹅益处多.餐饮世界,2003,(11):44
    [4]雅君.鸡、鸭、鹅,营养价值哪种高.家庭医生,2010,(2):22-24
    [5]唐修君,陈宽维,高玉时,等.影响鹅肉品质的主要因素.水禽世界,2008,(4):38-40
    [6]高晶,于伟东,潘宁.羽绒纤维的形态结构表征.纺织学报,2007,28(1):1-4
    [7]蒋春水,高儒松.动物的脂肪代谢与调控.上海畜牧兽医通讯,2009,(6):70-71
    [8]郑云峰,高玉鹏,杨烨.家禽脂肪代谢调控机理的研究进展.饲料工业,2005,26(17):24-26
    [9]徐冲,徐国恒.脂肪代谢的整合调控.生物学通报,2007,42(9):15-17
    [10]Zhao Y, Su B,Jacobs R L, et al. Lack of phosphatidylethanolamine N-methyltransferase alters plasma VLDL phospholipids and attenuates atherosclerosis in mice. Arterioscler Thromb Vasc Biol,2009, 29(9):1349-1355
    [11]Vanderlaan P A, Reardon C A, Thisted R A, et al. VLDL best predicts aortic root atherosclerosis in LDL receptor deficient mice. J Lipid Res,2009,50(3):376-385
    [12]Strom K, Gundersen T E, Hansson O, et al.Hormone-sensitive lipase (HSL) is also a retinyl ester hydrolase:evidence from mice lacking HSL. FASEB J,2009,23(7):2307-2316
    [13]蒋越,高运臻,潘玉春,等.固醇调节元件结合蛋白及其靶基因在脂肪代谢中的研究进展.猪业科学,2009,26(11):94-98
    [14]Schwenk R W, Holloway G P, Luiken J J, et al. Fatty acid transport across the cell membrane: Regulation by fatty acid transporters. Prostaglandins Leukot Essent Fatty Acids,2010,
    [15]Nickerson J G, Alkhateeb H, Benton C R, et al. Greater transport efficiencies of the membrane fatty acid transporters FAT/CD36 and FATP4 compared with FABPpm and FATP1 and differential effects on fatty acid esterification and oxidation in rat skeletal muscle. J Biol Chem,2009,284(24): 16522-16530
    [16]Jain S S, Chabowski A,Snook L A, et al.Additive effects of insulin and muscle contraction on fatty acid transport and fatty acid transporters, FAT/CD36, FABPpm, FATP1,4 and 6. FEBS Lett,2009, 583(13):2294-2300
    [17]Holloway G P, Benton C R, Mullen K L, et al. In obese rat muscle transport of palmitate is increased and is channeled to triacylglycerol storage despite an increase in mitochondrial palmitate oxidation. Am J Physiol Endocrinol Metab,2009,296(4):E738-E747
    [1 8]户国,王守志,李辉.PPAR-γ基因对脂质代谢调控机制的生物信息学分析.东北农业大学学报,2009,40(12):66-70
    [19]杜荣,秦健,等.动物脂质代谢调控的关键及其研究进展.动物科学与动物医学,2002,19(10):16-19
    [20]亓立峰,许梓荣.过氧化物酶体增殖剂受体与脂质代谢调控.中国兽药杂志,2003,37(7):33-35
    [21]Harasim E, Kalinowska A, Chabowski A, et al.The role of fatty-acid transport proteins (FAT/CD36, FABPpm, FATP) in lipid metabolism in skeletal muscles. Postepy Hig Med Dosw (Online),2008,62: 433-441
    [22]Schaffer J E, Lodish H F. Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell,1994,79(3):427-436
    [23]Stanl A.A current review of fatty acid transport proteins (SLC27). Pflugers Arch,2004,447(5): 722-727
    [24]Schmuth M, Ortegon A M, Mao-Qiang M, et al. Differential expression of fatty acid transport proteins in epidermis and skin appendages. J Invest Dermatol,2005,125(6):1174-1181
    [25]Gimeno R E. Fatty acid transport proteins. Curr Opin Lipidol,2007,18(3):271-276
    [26]Herrmann T, Buchkremer F, Gosch I, et al.Mouse fatty acid transport protein 4 (FATP4): characterization of the gene and functional assessment as a very long chain acyl-CoA synthetase. Gene,2001,270(1-2):31-40
    [27]Lewis S E, Listenberger L L, Ory D S, et al. Membrane topology of the murine fatty acid transport protein 1.J Biol Chem,2001,276(40):37042-37050
    [28]Herrmann T, Grone H J, Langbein L, et al. Disturbed epidermal structure in mice with temporally controlled fatp4 deficiency. J Invest Dermatol,2005,125(6):1228-1235
    [29]Herrmann T, van der Hoeven F, Grone H J, et al. Mice with targeted disruption of the fatty acid transport protein 4 (Fatp 4, Slc27a4) gene show features of lethal restrictive dermopathy.J Cell Biol, 2003,161(6):1105-1115
    [30]Gertow K, Pietilainen K. H, Yki-Jarvinen H, et al. Expression of fatty-acid-handling proteins in human adipose tissue in relation to obesity and insulin resistance. Diabetologia,2004,47(6):1118-1125
    [31]Hatch G M, Smith A J, Xu F Y, et al.FATP1 channels exogenous FA into 1,2,3-triacyl-sn-glycerol and down-regulates sphingomyelin and cholesterol metabolism in growing 293 cells. J Lipid Res, 2002,43(9):1380-1389
    [32]Marotta M, Ferrer-Martnez A, Parnau J, et al.Fiber type-and fatty acid composition-dependent effects of high-fat diets on rat muscle triacylglyceride and fatty acid transporter protein-1 content. Metabolism,2004,53(8):1032-1036
    [33]冯爱娟,陈东风,樊丽琳,等.FATP4在大鼠非酒精性脂肪肝中的表达及相关性.重庆医学,2007,36(8):707-708,711页
    [34]Palanivel R, Sweeney G.Regulation of fatty acid uptake and metabolism in L6 skeletal muscle cells by resistin. FEBS Lett,2005,579(22):5049-5054
    [35]王远孝,朱秋凤,黄进,等.过氧化物酶体增殖物激活受体对脂肪代谢的调控.畜牧与兽医,2008,40(7):100-104
    [36]Kaplins'Kyi S P, Shysh A M, Nahibin V S, et al. Omega-3 polyunsaturated fatty acids stimulate the expression of PPAR target genes. Fiziol Zh,2009,55(2):37-43
    [37]Wierzbicki M,Chabowski A,Zendzian-Piotrowska M, et al.Differential effects of in vivo PPAR alpha and gamma activation on fatty acid transport proteins expression and lipid content in rat liver. J Physiol Pharmacol,2009,60(1):99-106
    [38]Seo Y S, Kim J H, Jo N Y, et al.PPAR agonists treatment is effective in a nonalcoholic fatty liver disease animal model by modulating fatty-acid metabolic enzymes. J Gastroenterol Hepatol,2008, 23(1):102-109
    [39]Zhou X R, Sun C H,Liu J R,et al.Dietary conjugated linoleic acid increases PPAR gamma gene expression in adipose tissue of obese rat, and improves insulin resistance. Growth Horm IGF Res, 2008,18(5):361-368
    [40]Schaiff W T, Bildirici I, Cheong M, et al.Peroxisome proliferator-activated receptor-gamma and retinoid X receptor signaling regulate fatty acid uptake by primary human placental trophoblasts. J Clin Endocrinol Metab,2005,90(7):4267-4275
    [41]Frohnert B I, Hui T Y, Bernlohr D A. Identification of a functional peroxisome proliferator-responsive element in the murine fatty acid transport protein gene. J Biol Chem,1999,274(7):3970-3977
    [42]Schaiff W T, Knapp F J, Barak Y, et al. Ligand-activated peroxisome proliferator activated receptor gamma alters placental morphology and placental fatty acid uptake in mice. Endocrinology,2007, 148(8):3625-3634
    [43]Memon R A, Feingold K R, Moser A H, et al. Regulation of fatty acid transport protein and fatty acid translocase mRNA levels by endotoxin and cytokines. Am J Physiol,1998,274(2 Pt 1):E210-E217
    [44]Wiczer B M, Bernlohr D A.A novel role for fatty acid transport protein 1 in the regulation of tricarboxylic acid cycle and mitochondrial function in 3T3-L1 adipocytes. J Lipid Res,2009,50(12): 2502-2513
    [45]Jeukendrup A E.Regulation of fat metabolism in skeletal muscle. Ann N Y Acad Sci,2002,967: 217-235
    [46]Kerner J,Hoppel C.Fatty acid import into mitochondria. Biochim Biophys Acta,2000,1486(1):1-17
    [47]Schaffer J E. Fatty acid transport:the roads taken. Am J Physiol Endocrinol Metab,2002,282(2): E239-E246
    [48]Hamilton J A, Kamp F. How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids?. Diabetes,1999,48(12):2255-2269
    [49]Pohl J, Ring A, Hermann T, et al. Role of FATP in parenchymal cell fatty acid uptake. Biochim Biophys Acta,2004,1686(1-2):1-6
    [50]Guitart M,Andreu A L,Garcia-Arumi E,et al. FATP1 localizes to mitochondria and enhances pyruvate dehydrogenase activity in skeletal myotubes. Mitochondrion,2009,9(4):266-272
    [51]Wiczer B M, Lobo S,Machen G L, et al.FATP1 mediates fatty acid-induced activation of AMPK in 3T3-L1 adipocytes. Biochem Biophys Res Commun,2009,387(2):234-238
    [52]Gertow K, Skoglund-Andersson C, Eriksson P, et al. A common polymorphism in the fatty acid transport protein-1 gene associated with elevated post-prandial lipaemia and alterations in LDL particle size distribution.Atherosclerosis,2003,167(2):265-273
    [53]Meirhaeghe A, Martin G, Nemoto M, et al.Intronic polymorphism in the fatty acid transport protein 1 gene is associated with increased plasma triglyceride levels in a French population. Arterioscler Thromb Vasc Biol,2000,20(5):1330-1334
    [54]柳晓峰,李辉.PPAR基因与脂肪代谢调控.遗传,2006,28(2):243-248
    [55]Ouali F, Djouadi F, Merlet-Benichou C, et al. Regulation of fatty acid transport protein and mitochondrial and peroxisomal beta-oxidation gene expression by fatty acids in developing rats. Pediatr Res,2000,48(5):691-696
    [56]Martin G,Nemoto M, Gelman L, et al.The human fatty acid transport protein-1 (SLC27A1;FATP-1) cDNA and gene:organization, chromosomal localization, and expression. Genomics,2000,66(3): 296-304
    [57]Thomas C E, Abordo-Adesida E, Maleniak T C, et al. Gene transfer into rat brain using adenoviral vectors. Curr Protoc Neurosci,2001, Chapter 4:4-24
    [58]Bower J F, Davis J M, Hao E, et al.Differences in transport of fatty acids and expression of fatty acid transporting proteins in adipose tissue of obese black and white women. Am J Physiol Endocrinol Metab,2006,290(1):E87-E91
    [59]Bower J F, Deshaies Y, Pfeifer M, et al.Ethnic differences in postprandial triglyceride response to a fatty meal and lipoprotein lipase in lean and obese African American and Caucasian women. Metabolism,2002,51(2):211-217
    [60]Bower C M, Hays R D, Devinsky O, et al. Expectations prior to epilepsy surgery:an exploratory comparison of men and women. Seizure,2009,18(3):228-231
    [61]Bower J F, Hadi H, Barakat H A.Plasma lipoprotein subpopulation distribution in Caucasian and African-American women with gestational diabetes. Diabetes Care,2001,24(1):169-171
    [62]Hirsch D, Stahl A, Lodish H F. A family of fatty acid transporters conserved from mycobacterium to man. Proc Natl Acad Sci U S A,1998,95(15):8625-8629
    [63]Fitscher B A, Riedel H D, Young K C, et al. Tissue distribution and cDNA cloning of a human fatty acid transport protein (hsFATP4). Biochim Biophys Acta,1998,1443(3):381-385
    [64]Moulson C L, Lin M H, White J M, et al. Keratinocyte-specific expression of fatty acid transport protein 4 rescues the wrinkle-free phenotype in Slc27a4/Fatp4 mutant mice. J Biol Chem,2007, 282(21):15912-15920
    [65]Rios-Licea M M, Bosques F J,Arroliga A C, et al. Quadruplex real-time quantitative PCR assay for the detection of pathogens related to late-onset ventilator-associated pneumonia. A preliminary report. J Microbiol Methods,2010,
    [66]Abad S,Kitz K, Hormann A, et al. Real-time PCR-based determination of gene copy numbers in Pichia pastoris. Biotechnol J,2010,5(4):413-420
    [67]Cikos S, Koppel J. Transformation of real-time PCR fluorescence data to target gene quantity. Anal Biochem,2009,384(1):1-10
    [68]Varga A, James D.Detection and differentiation of Plum pox virus using real-time multiplex PCR with SYBR Green and melting curve analysis:a rapid method for strain typing. J Virol Methods,2005, 123(2):213-220
    [69]Kesanopoulos K, Tzanakaki G, Levidiotou S,et al.Evaluation of touch-down real-time PCR based on SYBR Green I fluorescent dye for the detection of Neisseria meningitidis in clinical samples. FEMS Immunol Med Microbiol,2005,43(3):419-424
    [70]Plumet S, Gerlier D. Optimized SYBR green real-time PCR assay to quantify the absolute copy number of measles virus RNAs using gene specific primers. J Virol Methods,2005,128(1-2):79-87
    [71]Madani M, Subbotin S A, Moens M. Quantitative detection of the potato cyst nematode, Globodera pallida, and the beet cyst nematode, Heterodera schachtii, using Real-Time PCR with SYBR green I dye. Mol Cell Probes,2005,19(2):81-86
    [72]Hunter S E, Jung D, Di Giulio R T, et al. The QPCR assay for analysis of mitochondrial DNA damage, repair, and relative copy number. Methods,2010,
    [73]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))Method. Methods,2001,25(4):402-408
    [74]Ordovas L, Roy R, Zaragoza P, et al.Structural and functional characterization of the bovine solute carrier family 27 member 1 (SLC27A1) gene. Cytogenet Genome Res,2006,115(2):115-122
    [75]王彦.鸡FATP1/FATP4基因的克隆、表达及其与屠体性状的关联分析[博士学位论文].四川农业大学,2009
    [76]Song Y, Feng J, Zhou L, et al. Molecular cloning and ontogenesis expression of fatty acid transport protein-1 in yellow-feathered broilers. J Genet Genomics,2008,35(6):327-333
    [77]Evans A J. In vitro lipogenesis in the liver and adipose tissues of the female Aylesbury duck at different ages. Br Poult Sci,1972,13(6):595-602
    [78]顾志良,赵万里.肉鸡脂肪沉积规律的研究.中国家禽,1993,(1):24-26
    [79]Simon J,Leclercq B.Longitudinal study of adiposity in chickens selected for high or low abdominal fat content:further evidence of a glucose-insulin imbalance in the fat line. J Nutr,1982,112(10): 1961-1973

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700