用户名: 密码: 验证码:
硫化物/金纳米粒子应用于汞离子光谱分析的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汞是对人类具有严重生理毒性的化学元素之一。水体中的汞可由食物链在生物有机体内蓄积,对人类健康造成极大威胁。因此,对环境样品中汞离子(Hg~(2+))的检测是评估环境质量的重要指标之一,开发具有高选择性、高灵敏度、低成本且简单易行的Hg~(2+)分析方法成为关注焦点和研究热点。
     纳米材料所具备的独特性质可望满足构建功能传感器的基本要求,如功能广、灵敏度高、响应速度快、检测范围宽、选择性好、稳定性好等等。本文用简便的方法制备了几种粒子形态的纳米材料,并成功用于Hg~(2+)的光谱分析。所用方法简便、快速、灵敏度高且对汞离子有很好的选择性,应用于环境样品中汞离子测定不需要对样品进行特殊的前处理。其主要内容如下:
     (1)利用DNA作为模板,采用交替透析-层层组装的方法在水溶液中合成了CdS纳米颗粒(~5 nm),同时应用于Hg~(2+)的光分析测定。利用透射电镜、紫外可见光谱、荧光光谱和共振光散射光谱进行了系统表征,所合成的目标物分散性良好,在394 nm附近表现出强烈共振散射峰和339 nm处具有特征的荧光发射峰。更有趣的是,体系光散射的增强和荧光的淬灭程度与Hg~(2+)浓度之间有良好的线性,这归结于Hg-S键的生成。经过优化条件,该传感器在0.01-100μmol/L Hg~(2+)浓度范围内成良好的线性关系,最低检测浓度可达10-9 mol/L,且对Hg~(2+)具有很好选择性。?
     (2)在室温下以柠檬酸三钠为稳定剂,采用相似的方法在水相中分别合成了CuS和PbS纳米粒子,并探索了合成条件,如不同浓度Cu~(2+)或Pb~(2+)与S2-的配比和不同pH值。所制备的纳米粒子的共振光散射(RLS)光谱强度(IRLS)的变化与不同浓度的Hg~(2+)加入直接相关。结果表明,在最佳实验条件下,CuS和PbS体系的IRLS分别对c(Hg~(2+))在0.01-100μmol/L和0.001-100μmol/L区间内呈现出良好的线性变化,据此建立了水中的微量汞的测定方法。
     (3)酸性介质中氯化亚锡与Hg~(2+)反应可生成金属汞(Hg),金溶胶存在时,Hg可与金纳米粒子表面作用形成纳米复合物,体系在395 nm处的最大共振散射峰强度IRLS响应与体系Hg~(2+)浓度相关。由此实现了共振光散射法测定水中的微量汞,在0.1-50μmol/L浓度范围内与光散射强度的变化成正比,其线性回归方程的相关系数为0.991,检出限可达0.068μmol/L。
Mercury is one of the most toxic elements on human beings and higher organisms. Soluble mercury can enter the human body from the food chain and accumulate in human body, resulting in great harm to human health. Therefore, mercury ions analysis of environmental samples is one of the most important indicators to assess environmental quality. The development of Hg~(2+) sensor of high selectivity, high sensitivity, low cost and simple operation has become research focus.
     The unique nature of nano-materials is expected to meet the basic requirements for building a sensor, such as extensive function, high sensitivity, fast response, wide detection range, good selectivity and good stability and so on. In this paper, several forms of nano- material have been prepared by means of simple methods, and successfully applied to the spectral analysis for Hg~(2+). These methods that applied to the determination of mercury ion in environmental samples are simple, rapid, high sensitivity for mercury ions analysis, and do not require a special pre-treatment. The major contents are as follows:
     (1) Based on DNA as a template, CdS nanoparticles (~5 nm) has been synthesized in aqueous solution using alternate dialysis and layer-by-layer assembly method, and is applied to spectral analysis of Hg~(2+). The resultant well-dispersed CdS nanoparticles present a strong ?uorescence peak at 339 nm and RLS bands around 394 nm, which is characterized by TEM, UV-vis, ?uorescence and resonance light scattering (RLS) spectra. Interestingly, it was found that the quenching of ?uorescence and the enhancing of RLS intensity are strongly dependent on the concentration of Hg~(2+), which is due to the forming of Hg-S bond. In optimized conditions, the sensor show a good linear relationship over the range of 0.01-100μM, with a remarkable low detection limit as low as ~ 1 nm, and show a good selectivity to mercury ions.
     (2) Using citrate as a stabilizing agent at room temperature, we synthesize CuS and PbS nanoparticles in aqueous phase via a similar method. And the synthetic conditions under different pH values and the ratio of sodium sulfide and copper sulfate or lead sulfate on concentration have been studied. The intensity change of resonance light scattering (IRLS) of nano-particles as-prepared directly relates to different concentrations of Hg~(2+). We have studied the effects of RLS between CuS or PbS nanoparticles and mercury ions under the conditions of different pH values and the different ratio of sodium sulfide and copper sulfate or lead sulfate on concentration. The results show that in the optimum experimental conditions, the IRLS of CuS and PbS corresponding to c(Hg~(2+)) has a good linearity in the range of 0.01-100μM and 0.001-100μM seperately. Thus, the method of determine trace mercury in water is established.
     (3) SnCl_2 can react with the Hg~(2+) to form metal mercury in acid medium, and metal mercury react with gold nanoparticles once again to form nanocomposites, which has a maximum RLS peak at 395nm. According to these phenomena, the trace mercury in the water was determined by RLS technique. Experiments showed that the change of RLS intensity (IRLS) against the nanocomposites is proportional to the concentration of Hg~(2+) in the range of 0.1-50μmol/L. The correlation coefficient of linear equations is 0.991 with the detection limit of 0.068μmol/L.
引文
[1]李瑶.纳米材料的特性、应用及制备[J].山西科技,2001,(4):46-47.
    [2]杨光义,陈东,王国元等.纳米材料及其前景展望[J].青岛建筑工程学院学报,2001,22(4):96-99.
    [3]刘冰,任兰亭.21世纪材料发展的方向‐纳米材料[J].青岛大学学报,2000,13(3):91-95.
    [4]蔡传英,陈枫,李青山等.1999年聚合物/无机纳米材料最新进展与21世纪发展的战略[J].化工时刊, 2000,14(1):13-18.
    [5]张雪梅,付多才.材料科学新宠——纳米材料[J].安徽农业技术师范学院学报,2000,14(1):56-58.
    [6]卢柯.纳米晶体Cu的室温超塑延展性[J].中国科学院院刊,2001,16(1):29-31.
    [7]Henglein A. Small-Particle research: Physicochemical Properties of extremely small colloidal metal and semieonduetor Particles[J]. Chem.Rev.,1989.89(8):1861-1873.
    [8]张立德,牟手美.纳米材料与纳米结构[M].北京:科学出版社,2001.
    [9]巩雄,张桂兰,汤国庆等.纳米晶体材料研究进展[J].化学进展,1997,9(4):349-360.
    [10]姚保利,侯询.纳米光生物分子材料——菌紫质及其在信息科学中的应用[J].自然杂志,2000,22(5):253- 258.
    [11]华中一.美国的国家纳米技术倡议[J].世界科学,2000,52(11):7-9.
    [12]王静海,姚松年.生物材料及其仿生学的研究进展与展望[J].材料研究学报,2000, 14(4):337-343.
    [13]郭景坤.纳米化学研究及其展望[J].科学,1999,51(2):13-16.
    [14]胡文,刘云圻.纳米碳管[J].化学通报,2000,63(2):2-6.
    [15]Hagfeldt, A.; Gratzel, M. Light-Induced Redox Reactions in Nanocrystalline Systems[J]. Chem.Rev., 1995, 95(1):49-68.
    [16]Harperin, W. P. Quantum size effects in metal particles[J]. Rev.Mod.Phys.,1986,58(3):533–606.
    [17]Wang, Y.; Herron, N. Nanometer-sized semiconductor clusters: materials synthesis, quantumsize effects, and PhotoPhysical Properties[J]. J.Phys.Chem.,1991.95(2):525-532.
    [18]李泉,曾广赋,席时权.纳米粒子[J].化学通报,1995,(6):29-34.
    [19]朱建君,林西平,都有为等.纳米结构材料[J].自然杂志,1999,21(6):315.
    [20]C. N. R. Rao; G. U. Kulkarni; P. J. Thomas. Metal nanoparticles and their assemblies[J]. Chem.soc.Rev., 2000,29(1):27-36.
    [21]Yin, H. B.; Wada, Y.; Kitamura, T. et al. Novel synthesis of phase-pure nano-particulate anatase and rutile TiO2 using TiCl4 aqueous solutions[J]. J.Mater.Chem.,2002,12(2):378-383.
    [22]Zhang, Z. P.; Han, M. Y. Template-directed growth from small clusters into uniform silver nanoparticles[J]. Chem.Phys.Lett.,2003,374(l-2):91-94.
    [23]Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots[J]. Science,1996,271 (5251):933-937.
    [24]王占国,陈涌海,叶小玲.纳米半导体技术[M].北京:化学工业出版社,2006.
    [25]王伟.功能化金纳米材料的合成、性质及其在化学发光传感器中的应用研究[D].合肥:中国科学技术大学,2008.
    [26]Link S.; El-Sayed M.A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals[J]. Int.Rev.Phys.Chem.,2000,19(3):409-543.
    [27]严东生.纳米材料的制备[J].无机材料学报,1995,1(l0):l-7.
    [28]Qun-Hui yuan; Li-Jun Wan; Hershel Jude; Peter J. Stang. Self-Organization of a self-Assembled Supramolecular Reetangle, Square, and Three-Dimensional Cage on Au(Ⅲ) Surfaces[J]. J.Am.Chem.Soc.,2005, 127(46):16279-16286.
    [29]Jin-Song Hu; Ling-Ling Ren; Yu-Guo Guo; Han-Pu Liang; An-Min Cao; Li-Jun Wan; Chun-Li Bai. Mass Production and High Photocatalytic Activity of ZnS Nanoporous NanoParticles[J]. Angew.Chem.Int.Ed., 2005,l44(8):1269-1273.
    [30]An-Min Cao; Jin-Song Hu; Han-Pu Liang; Li-Jun Wan. Self-Assembled Vanadium Pentoxide(V2O5) Hollow Microspheres from Nanorods and Their Application in Lithium-Ion Batteries[J]. Angew.Chem.Int.Ed.,2005, l44(28):4391-4395.
    [31]Gleiter H. Nanocrystalline materials[J]. Progress in Mater.Sci.,1989,33(4):223-315.
    [32]王广厚,韩民.纳米微晶材料的结构和性质[J].物理学进展,1990,10(3):248-289.
    [33]苏品书.超微粒子材料技术[M].中国台南:复汉出版社,1989.
    [34]Hahn H.; Averback R. S. The production of nanocrystalline powders by magnetron sputtering[J]. J.Appl.Phys.,1990,67(2):1113-1115.
    [35]田永君,曹茂盛,曹传宝.先进材料导论[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [36]徐国财.纳米科技导论[M].北京:高等教育出版社,2005.
    [37]Feng, S. H.; Li, H. J. Lietal, Super-Hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers[J]. Angew.Chem.Int.Ed.,2002,41(7):1221-1223.
    [38]蒋治良,刘绍璞,江洪流等.[AuI4]--RDG+缔合物纳米微粒体系的共振散射增强与荧光猝灭[J].应用化学,2002,19(12):1133-1136.
    [39]邹彩霞,蒋治良,尹文清,四苯硼钠-甲苯胺蓝缔合物纳米微粒体系减色效应研究[J].分析测试技术与仪器,2002,8(2):81-84.
    [40]王力生,尹文清,蒋治良.DBS-BRDB缔合物有机复合纳米微粒体系的共振散射与荧光猝灭机理研究[J].广西师范大学学报,2002,20(l):114-118.
    [41]刘庆业,蒋治良,蒙冕武.钯纳米微粒的微波高压液相合成及共振散射光谱研究[J].分析测试技术与仪器,2001,7(4):199-203.
    [42]Jeon S.; Braun P. V. Hydrothermal synthesis of Er-doped luminescent TiO2 nanoparticles [J]. Chem.Mater., 2003,15(6):1256-1263.
    [43]Fu Z.; Zhou S. Combustions synthesis and luminescence properties of nanocrystalline monoclinic SrAl2O4: Eu2+[J]. Chem.Phys.Lett.,2004,395(4-6):285-289.
    [44]Kim G. C. Emission color tuning from blue to green through cross-relaxation in heavily Tb3+-doped YAlO3[J].Mate.Res.Bull.,2001,36(9):1603-1605.
    [45]Kim J. H.; Germer T. A.; Mulholland G. W., et al. Size-monodisperse metal nanoparticles via hydrogen-free Spray pyrolysis[J]. Adv.Mater.,2002,14(7):518-521.
    [46]Chen D. H.; He X. R. Synthesis of nickel ferrite nanoparticles by sol-gel method[J]. Mater.Res.Bull., 2001,36(7-8):1369-1377.
    [47]张纪红,杨红健.微乳液法制备纳米粒子的研究进展[J].河北化工,2004,6:16-21.
    [48]W. Q. Han; S. S. Fan; Q. Q. Li; Y. D. Hu. Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction[J]. Science,1997,277:1287-1289.
    [49]A. M. Morales; C. M. Leiber. A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires[J]. Science,1998,279:208-211.
    [50]李廷盛,尹其光.超声化学[M].北京:科学出版社,1995.
    [51]Colby A. Foss Jr.; Michael J. Tierney; Charles R. Martin. Template synthesis of infrared-transparent metal microcylinders: comparison of optical properties with the predictions of effective medium theory[J]. J.Phys.Chem.,1992,96(22):9001-9007.
    [52]B. M. I. vanderZande; M. R. Bohmer; L. J. J. Fokkinketal. Aqueous Gold Sols of Rod-Shaped Particles[J]. J.Phys.Chem.B.,1997,101(6):852-854.
    [53]C. R. Martin. Membrane-Based Synthesis of Nanomaterials[J]. Chem.Mater.,1996,8(8): 1739-1746.
    [54]张立德.纳米材料[M].北京:化学工业出版社,2000.
    [55]G. F. Goya; H. R. Rechenberg; M. Chen; W. B. Yelon. Magnetic irreversibility in ultrafine ZnFe2O4 particles[J]. J.Appl.Phys.,2000,87(11):8005-8007.
    [56]Brown K. R.; Fox A. P.; Natan M. J. Morphology-Dependent Electrochemistry of Cytochrome c at Au Colloid-Modified SnO2 Electrodes[J]. J.Am.Chem.Soc.,l996,118(5):1154-1157.
    [57]Schaaff T. G.; Knight G.; Shafigullin M. N.; Borkiman R. F.; Wheten R. L. Isolation and Selected Properties of a 10.4 kDa Gold:Glutathione Cluster Compound[J]. J.Phys.Chem.B., 1998,102(52):10643-10646.
    [58]Buining P. A.; Humbel B. M.; Philipse A. P.; Verkleij A. J. Preparation of Functional Silane-Stabilized Gold Colloids in the (Sub)nanometer Size Range[J]. Langmuir,1997,13(15): 3921-3926.
    [59]Chen S.; Murray R.W. Arenethiolate Monolayer-Protected Gold Clusters[J]. Langmuir, 1999,15(3):682-689.
    [60]Liu Y. L.; Male K. B.; Bouvrete P.; Luong J. H. T. Control of the Size and Distribution of Gold Nanoparticles by Unmodified Cyclodextrins[J]. Chem.Master.,2003,15(22):4172-4180.
    [61]王莉艳.从环境保护谈汞的用途及汞污染的防治[J].重庆广播电视大学学报,2001, (4):46-48.
    [62]安建博,张瑞娟.低剂量汞毒性与人体健康[J].国外医学医学地理分册,2007,28(1):39-42.
    [63]Burg R. V. Inorganic Mereury-Toxicology update[J]. Journal of Applied Toxieology,1995, 15(6):483-493.
    [64]Clarkson T. W.; Magos L.; Myers G J. The toxicology of mereury-current exposure and clinical manifestations[J]. New England Journal of Medicine,2003,349(18):1731-1737.
    [65]尚仰震.物理化学与胶体化学[M].成都:四川科学技术出版社,1986.
    [66]张立德.纳米材料的研究现状和发展趋势[J].现代科学仪器,1998,(Z1):27-29.
    [67]梅燕,梁惠峰,胡章红.用电镜及XRD衍射仪表征不同晶型的纳米TiO2粉末[J].现代仪器,2002,8(4):28-29.
    [68]刘绍璞,刘忠芳,蒋治良等.镉(Ⅱ)-碘化物-碱性占吨染料体系的倍频散射和二级散射及其分析应用[J].化学学报,2001,9(11):1843-1869.
    [69]蒋治良.金原子团簇的分频散射光谱研究[J].光子学报,2001,30(4):460-464.
    [70]王永康,王立.纳米材料科学与技术[M].杭州:浙江大学出版社,2002.
    [71]Liu J.; Alvarez J.; Ong W.; Roman E.; Lynn M.J.; Kaifer A.E. Phase Transfer of Hydrophilic, Cyclodextrin-Modified Gold Nanoparticles to Chloroform Solutions[J]. J.Am.Chem.Soc.2001,123(45):11148- 11154.
    [72]Kim H. S.; Lee S. J.; Kim N. H.; Yoon J. K.; Park H. K.; Kim K. Adsorption Characteristics of 1,4-Phenylene Diisocyanide on Gold Nanoparticles: Infrared and Raman Spectroscopy Study[J]. Langmuir,2003,19(17):6701- 6710.
    [73]Riva B. S. V.; Costa-Fernandez F. M.; Pereiro R.; Snaz-Medel A. Fluorimetric method for the determination of trace levels of mercury in sea water using 6-mercaptopurine[J]. Anal.Chim.Acta.,2000,419(1):33-40.
    [74]Llobet J. M.; Faleo G.; Casas C., et al. Concentrations of Arsenie, Cadmium, Mereury, and Lead in Common Foods and Estimated Daily Intake by Children, Adoleseents, Adults, and Seniors of Catalonia, Spain[J]. Journal of Agricultural and Food Chemistry,2003,51(3):838- 842.
    [75]Walker G. S.; Ridd M. J.; Brunskill G. J. A comparison of inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry for determination of mereury in Great Barrier Reef sediments[J]. Rapid Communieations in Mass Speetrometry,1998,10(1):96-99.
    [76]Emons H.; Sehladot J. D.; Sehwuger M. D. Potential for secondary poisoning and biomagnification in marine or ganisms[J]. Chemosphere,1997,35(9):1875-1885.
    [77]Renzoni A.; Zino F.; Franchi E. Mercury levels along the food chain and risk for exposed populations[J]. Environmental Research,1998,77(2):68-72.
    [78]Yoon S.; Albers A. E.; Wong A. P. et al. Screening Mereury Levels in Fish with a Selective Fluorescent Chemosensor[J]. J.Am.Chem.Soc.,2005,127(46):16030-16031.
    [79]Wang J.; Qian X.; Qian J. Et al. Micelle-induced versatile performance of amphiphilic intramolecular charge-transfer fluorescent molecular sensors[J]. Chemistry-A EuropeanJournal,2007,13(26):7543-7552.
    [80]Yoon S.; Albers A. E.; Wong A. P. and Chang C. J. Screening Mereury Levels in Fish with a Selective Fluorescent Chemosensor[J]. J.Am.Chem.S.,2005,127(46):16030-16031.
    [81]Yoon S.; Miller E. W.; He Q. et al. A Bright and Specific Fluorescent Sensor for Mereury in Water, Cells, and Tissue[J]. Angewandte Chemie International Edition,2007,46(35):6658-6661.
    [82]Liu w.; Xu L.; Zhang H. et al. Dithiolane linked thiorhodamine dimer for Hg2+ recognition in living cells[J]. organie & Biomolecular Chemistry,2009,7(4):660-664.
    [83]Chen X.; Nam S-W.; Jou M. J. et al. Hg2+ Selective Fluorescent and Colorimetric Sensor: Its CrystalStructure and Application to Bioimaging[J].Organic Letters,2008,10(22):5235-238.
    [84]Ren X. S.; Xu Q. H. Highly Sensitive and Selective Detection of Mercury Ions by Using Oligonucleotides, DNA Intercalators, and Conjugated Polymers[J]. Langmuir,2009,25(1):29-31
    [85]Zhan G. Y., Zhu C. Q. Determination of mercury in aquatic life by resonance light scattering technique[J]. Journal of Anhui Normal University: Natural Science Edition, 2007,30(4):474-476.
    [86]马春琪,刘瑛,李克安,童沈阳.瑞利光散射及其在生物化学分析中的应用研究[J].科学通报,1999,44(7): 682-690.
    [87]陈国珍,许金钩,王贤智等.荧光分析法[M].北京:科学出版社,1990.
    [88]赵藻藩,周性尧,张悟铭等.仪器分析[M].北京:高等教育出版社,1990.
    [89]周公度,段连运.结构化学基础[M].北京:北京大学出版社,1995.
    [90]蒋治良,李芳,梁宏.磷钼杂多酸-罗丹明S体系的共振散射光谱研究[J].化学学报,2000,58:1059-1062.
    [91]蒋治良.纳米粒子与共振散射光谱学[M].南宁:广西师范大学出版社,2003.
    [92]Liu S. P., Liu Z. E., Zhou G. M. Resonace Ryaleigh Sacettering method for the determination of trace amounts of mecury with chiocyanate and Basic Triphenyl-methane Dyes[J].Anal.Lett.,1998,31(7):1247-1259.
    [93]D.P. Shcherbov. Fluorometry in the Chemical Analysis of Raw Mnierals (in Russia)[J]. Izd.Nebra,1965:14.
    [94]崔凤灵,秦利霞,李芳,王丽.?甲基三苯基溴化鏻-碘化钾-汞体系的共振光散射光谱及其应用[J].冶金分析,2009,29(3):41-44.
    [95]王文忠.紫外可见分光光度法测定水中微量汞[J].化工标准.计量.质量,2002,(8):24-25.
    [96]Yu C. -J.; Tseng W. -L.? Colorimetric Detection of Mercury(II) in a High-Salinity Solution Using Gold Nanoparticles Capped with 3-Mercaptopropionate Acid and Adenosine Monophosphate[J].? Langmuir, 2008, 24(21):12717-12722.
    [1]Xiao, Y.; Barker, P. E., Semiconduntor nanoewstal probes for human metaphase chromosomes[J]. Nucleic Acids Res.,2004.32(3):28-34.
    [2]Stsiapura, V.; Sukhanova, A.; Anemyev, M, et al. Quasi-nanowires from fluorescent semiconductor nanocrystals on the surface of oriented DNA molecules[J]. OPt.SPeetrose., 2006.100(6):854-861.
    [3]Yu, D. D.; Meng z.; Lu, J., et al. synthesis of closed PbS nanowires with regular geometric morphologies[J]. Mater.Chem.,2002.12(3):403-405.
    [4]Gao, T.; Li, Q. H.; Wang, T. H.; Sonochemical synthesis, optical properties, and electrical Properties of core/shell-type ZnO nanorod/CdS nanoparticle composites[J]. Chem.Mater., 2005.17(4):887-892.
    [5]Wang, W. Z.; Germanenko, I.; Samy, M. Room-temperature synthesis and characterization of nanocrystalline CdS, ZnS andCdxZn1-xS[J]. Chem.Mater.,2002.14(7):3028-3033.
    [6]Chen, C. C.; Lin, J. J. Controlled growth of cubic cadmium sulfide nanoparticles using patterned seif-assembled monolayers as a template[J]. Adv.Mater,2001.13(2):136-139.
    [7]Le, J. D.; Pinto, Y.; Seeman, N. C.; Musier-Forsyth, K.; Taton, T. A.; Kiehl, R. A. DNA-Templated Self-Assembly of Metallic Nanocomponent Arrays on a Surface[J]. Nano Lett.,2004,4(12):2343-2347.
    [8]Li, H. Y.; Park, S. H.; Reif, J. H.; LaBean, T. H.; Yan, H. DNA-Templated Self-Assembly of Protein and Nanoparticle Linear Arrays[J]. J.Am.Chem.Soc.2004,126(2):418-419.
    [9]Dittmer, W. U.; Simmel, F. C. Chains of semiconductor nanoparticles templated on DNA[J]. Appl.Phys.Lett.,2004,85(4):633-635.
    [10]Berti, L.; Alessandrini, A.; Facci, P. DNA-Templated Photoinduced Silver Deposition[J]. J.Am.Chem.Soc.,2005,127(32):11216-11217.
    [11]Hinds, S.; Taft, B. J.; Levina, L.; Sukhovatkin, V.; Dooley, C. J.; Roy, M. D.; MacNeil, D. D.; Sargent, E. H.; Kelley, S. O. Nucleotide-Directed Growth of Semiconductor Nanocrystals[J]. J. Am.Chem.Soc.,2006,128(1):64-65.
    [12]Green, M.; Smith-Boyle, D.; Harries, J.; Taylor, R. Nucleotide passivated cadmium sulfide quantum dots[J]. Chem.Commun.,2005,(38):4830-4832.
    [13]Kumar, A.; Mital, S. Synthesis and photophysics of purine-capped Q-CdS nanocrystallites [J]. Photochem.Photobiol.,2002,1(10):737-741.
    [14]Kumar, A.; Mital, S. Electronic properties of Q-CdS clusters stabilized by adenine[J]. J. Colloid Interface Sci.,2001,240(2):459-466.
    [15]Dooley, C. J.; Rouge, J.; Ma, N.; Invernale, M.; Kelley, S. O. Nucleotide-stabilized cadmium sulfide nanoparticles[J]. J.Mater.Chem.,2007,17(17):1687-1691.
    [16]Shenton W.; Pum D.; Sleytr U. B., et al. Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers[J]. Nature,1997,389(6651):585-587.
    [17]Wang J. Y.; Uphaus R. A.; Ameenuddin S., et al. Formation of nanoscale size cadmium sulfide within a channel protein monolayer[J]. Thin Solid Films,1994,242(1-2):127-131.
    [18]Berti L.; Alessandrini A.; Bellesia M. and Facci P. Fine-Tuning Nanoparticle Size by Oligo(guanine)n Templated Synthesis of CdS: An AFM Study[J]. Langmuir,2007,23(22):10891- 10982.
    [19]Yao Y.; Song Y. H. and Wang L. Synthesis of CdS nanoparticles based on DNA network templates[J]. Nanotechnology,2008,19(40):405601.
    [20]Coffer, J. L.; Bigham, S. R.; Li, X. Dictation of the Shape of Mesoscale Semiconductor Nanoparticle Assemblies by Plasmid DNA[J]. Appl.Phys.Lett.,1996,69(25):3851-3853.
    [21]Kundu S.; Lee H. and Liang H. Synthesis and Application of DNA?CdS Nanowires within a Minute using Microwave Irradiation[J]. Inorg.Chem.,2009,48(1):121-127.
    [22]Aven, M.; Prener, J. S. Physics and Chemistry of II-VI Compounds[M]. American Elsevier Publishing:New York,1967.
    [23]Seeger, K. Semiconductor Physics[M]. Springer-Verlag:New York,1973.
    [24]Harris, D. C. Quantitative Chemical Analysis, 7th ed.; W. H. Freeman & Co.: New York, 2007.
    [25]R. A. Arndt; W. J. Briscoe; I. I. Strakovsky; R. L. Workman. Extended partial-wave analysis ofπN scattering data[J]. Phys.Rev.C.,2006,74(4):045205.
    [26]Chakraborty, I.; Mitra, D.; Moulik, S. P. Spectroscopic studies on nanodispersions of CdS, HgS, their core-shells and composites prepared in micellar medium[J]. J.Nanopart.Res.,2005, 7(2-3):227-236.
    [27]Benoit, J. M.; Gilmour, C. C.; Mason, R. P.; Heyes, A. Sulfide Controls on Mercury Speciation and Bioavailability to Methylating Bacteria in Sediment Pore Waters[J]. Environ.Sci.Technol.1999,33(6):951-957.
    [28]Fabbri, D.; Locatelli, C.; Snapeb, C. E.; Tarabusi, S. Sulfur speciation in mercury-contaminated sediments of a coastal lagoon: the role of elemental sulfur[J]. J.Environ.Monit.,2001,3(5):483-486.
    [29]Rittner, E. S.; Schulman, J. H. Studies on the Coprecipitation of Cadmium and Mercuric Sulfides[J]. J.Phys.Chem.,1943,47(8):537-543.
    [30]Kremheller, A.; Levine, A. K.; Gashurov, G. J. Hydrothermal Preparation of Two-Component Solid Solutions from II–VI Compounds[J]. Electrochem.Soc.,1960,107(1):12- 15.
    [31]Hinds, S.; Taft, B. J.; Levina, L.; Sukhovatkin, V.; Dooley, C. J.; Roy, M. D.; MacNeil, D.D.; Sargent, E. H.; Kelley, S. O. Nucleotide-Directed Growth of Semiconductor Nanocrystals [J]. J.Am.Chem.Soc.,2006,128(1):64-65.
    [32]Green, M.; Smith-Boyle, D.; Harries, J.; Taylor, R. Nucleotide passivated cadmium sulfide quantum dots[J]. Chem.Commun.,2005,(38):4830-4832.
    [33]Hannah N. Barnhill; Stephanie Claudel-Gillet; Raymond Ziessel; Loic J. Charbonniere, and Qian Wang.? Prototype Protein Assembly as Scaffold for Time-Resolved Fluoroimmuno Assays[J]. J.Am.Chem.Soc.,2007,129(25):7799-7806.
    [34]Chen, G. Z.; Huang, X. Z.; Zheng, Z. Z.; Xu, J. G. and Wang, Z. B. Fluorometric Analysis, 2nd Edn. 1990.
    [35]Brian A. K.; Harold G. M. Controlled Synthesis of Mixed Core and Layered (Zn,Cd)S and (Hg,Cd)S Nanocrystals within Phosphatidylcholine Vesicles[J]. Langmuir,2000,16(8):3588- 3594.
    [1]Mane, R. S.; Lokhande, C. D. Chemical deposition method for metal chalcogenide thin films[J]. Mater.Chem.Phys.,2000,65(1):1-31.
    [2]Chung, J. S.; Sohn, H. J. Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries[J]. J.Power Sources,2002,108(1-2):226-231.
    [3]Tang, K.; Chen, D.; Liu Y. F. et al. Shape-controlled synthesis of copper sulfide nanocrystals via a soft solution route[J]. Journal of Crowth,2004,263(1-4):232-236.
    [4]刘金库,吴庆生,丁亚平等.银、铜硫化铜纳米球的活性模板合成及其光学性能研究[J].功能材料,2004,6(35):739-741.
    [5]Zhang, Y. C.; Hu, X. Y.; Qiao, T. Shape controlled synthesis of CuS nanaocrystallites via a facile hydrothermal route[J]. Solid State Communications,2004,132(11):779-782.
    [6]Gao, L.; Wang E. B.; Lian, S. Y. et al. Microemulsion-dircted synthesis of different CuS nanocrystals[J]. Solid State Communications,2004,130(5):309-312.
    [7]吕维忠,刘波,韦少慧等.纳米硫化铜的超声波化学合成及其表征[J].电子元件与材料, 2004,23(10):4-5.
    [8]Nomura, R.; Miyawaki, K.; Toyosaki, T. Preparation of copper sulfide thin layers by a single-source MOCVD process[J]. Chem.Vap.Depos,2004,2(5):174-179.
    [9]王贺军.豆天蛾在河北省发生严重[J].植物保护,1988,14(1):55.
    [10]王迷珍.复播大豆豆天蛾的发生与防治[J].山西农业,2002,(10):37.
    [11]李立志,王化玲.豆天蛾的发生与防治[J].现代农业科技,2007,(16):85.
    [12]戴美学,张红梅,李世国等.苏云金杆菌SD-5菌剂对豆天蛾的防治研究[J].山东师范大学学报:自然科学版,1995,10(2):187-206.
    [13]叶正楚,吴汝麒,张跃霞等.青虫菌6号液防治豆天蛾的研究[J].昆虫天敌,1988,10(2):76 -80.
    [14]Benoit J. M.; Gilmour C. C.; Mason R. P.; Heyes A. Sulfide Controls on Mercury Speciation and Bioavailability to Methylating Bacteria in Sediment Pore Waters[J]. Environ. Sci. Technol [J],1999,33(6):951-957.
    [15]Fabbri D.; Locatelli C.; Snapeb C. E.; Tarabusi S. Sulfur speciation in mercury- contaminated sediments of a coastal lagoon: the role of elemental sulfur[J]. J.Environ. Monit.,2001,3(5):483-486.
    [16]Zhong Wei-zhuo (仲维卓),Hua Su-kun (华素坤). Crystal growth morphology (1st Edn) (晶体生长形态学(第1版))[M].Beijing(北京):Science Press(科学出版社),1999,208.
    [17]Long Y. F.; Jiang D. L.; Zhu X.; Wang J. X.; Zhou F. M. Trace Hg2+ Analysis via Quenching of the Fluorescence of a CdS-Encapsulated DNA Nanocomposite[J]. Anal.Chem., 2009,81(7):2652–2657.
    [1]Kowshik, M.; Vogel, W.; Urban, J.; Kulkarni, S. K.; Pakni-kar, K. M. Microbial Synthesis of Semiconductor PbS Nanocrystallites[J]. Adv.Mater.,2002,14(11):815-818.
    [2]Li, D.; Liang, C.-J.; Liu, Y.; Qian, S.-X. Femtosecond nonlinear optical properities of PbS nanoparticles[J]. J.Lumin.,2007,122-123(26):549-551.
    [3]Lifshitz, E.; Brumer, M.; Kigel, A.; Sashchiuk, A.; Bashouti, M.; Sirota, M.; Galun, E.; Burshtein, Z.; Le Quang, A.-Q.; Ledoux-Rak, I. Air-Stable PbSe/PbS and PbSe/PbSexS1-x Core?Shell Nanocrystal Quantum Dots and Their Applications[J]. J.Phys.Chem.B.,2006,110 (50):25356-25365.
    [4]Zhou, Y.; Itoh, H.; Uemura, T.; Naka, K.; Chujo, Y. Preparation, Optical Spectroscopy, and Electrochemical Studies of Novelπ-Conjugated Polymer-Protected Stable PbS Colloidal Nanoparticles in a Nonaqueous Solution[J]. Langmuir,2002,18(13):5287-5292.
    [5]Xu, C. Q.; Zhang, Z. C.; Wang, H. L. A novel way to synthesize lead sulfide QDs viaγ-ray irradiation[J]. Master.Sci.Engin.B,2003,104(1-2):5-8.
    [6]Pan, L. J.; He, P. S.; Zou, Q. PbS/epoxy resin nanocomposite prepared by a novel method[J]. Mater.Lett.,2004,58(1-2):176-178.
    [7]Khiew, P. S.; Radiman, S.; Huang, N. M. Studies on the growth and characterization of CdS and PbS nanoparticles using sugar-ester nonionic water-in-oil microemulsion[J]. J.Cyrst.Growth.,2003,254(1-2):235-243.
    [8]Wang, H.; Zhang, J. R.; Zhu, J. J. Sonochemical preparation of lead sulfide nanocrystals in an oil-in-water microemulsion[J]. J.Cyrst.Growth.,2002,246(1-2):161-168.
    [9]Wang, C.; Zhang, W. X.; Qian, X. F. A room temperature chemical route to nanocrystalline PbS semiconductor[J]. Master.Lett.,1999,40(6):255-258.
    [10]Mo, M. S.; Shao, M. W.; Hu, H. M. Growth of single-crystal PbS nanorods via a biphasic solvothermal interface reaction route[J]. J.Cyrst.Growth.,2002,244(3-4):364-368.
    [11]Zhuang, H.; Zuo, M.; Tan, S. Carbothermal reduction/sulfidation synthesis and structural characterization of PbS nanobelts and nanowires[J]. Nanotechnology.,2006,17(12):2931-2936.
    [12]Leontidis, E.; Orphanou, M.; Kyprianidou-Leondidou, T. Composite Nanotubes Formed by Self-Assembly of PbS Nanoparticles[J]. Nano.Lett.,2003,3(4):569-572.
    [13]陈广大,褚海斌,李雪梅等.星形树枝状硫化铅纳米晶的制备[J].北京大学学报(自然科学版),2006,42(4):427-430.
    [14]Benoit, J. M.; Gilmour, C. C.; Mason, R. P.; Heyes, A. Sulfide Controls on Mercury Speciation and Bioavailability to Methylating Bacteria in Sediment Pore Waters[J]. Environ.Sci.Technol.,1999,33(6):951-957.
    [15]Fabbri, D.; Locatelli, C.; Snapeb, C. E.; Tarabusi, S. Sulfur speciation in mercury-contaminated sediments of a coastal lagoon: the role of elemental sulfur[J]. J.Environ. Monit,2001,3(5):483-486.
    [16]Zhong Wei-zhuo(仲维卓),Hua Su-kun(华素坤). Crystal growth morphology (1st edition)(晶体生长形态学(第1版)) [M]. Beijing(北京): Science Press(科学出版社), 1999, 208.
    [1]Vander Zande, B. M. I.; Bohmer, M. R.; Fokkink, L. G.; Schoneberger, C. queous Gold Sols of Rod-Shaped Particles[J]. J.Phys.Chem.B,1997,101(6):852-854.
    [2]Fink, J.; Kiely, C. J.; Bethell, D.; Schiffrin, D.? Self-Organization of Nanosized Gold Particles[J]. J.Chem.Mater.,1998,10(3):922-926.
    [3]Brust, M.; Bethell, D.; Kiely, C.J.; Schiffrin, D.J. Self-Assembled Gold Nanoparticle Thin Films with Nonmetallic Optical and Electronic Properties[J]. Langmuir,1998,14(19):5425- 5429.
    [4]Boyer, D; Tamarat, P.; Maakli, A.; Lounis. B,; Orrit, M. Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers[J]. Science,2002,297(5584):1160-1163.
    [5]Cao, Y. C.; Jin, R.; Markin, C. A. Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection[J]. Science,2002,297(5586):1536-1540.
    [6]Authier, L.; Grossiord, C.; Brossier, P.; Limoges, B. Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes[J]. Anal.Chem.2001,73(18):4450-4456.
    [7]Wang, J.; Xu, D.; Kawde Abdel-Nasser; Polsky, R. Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization[J]. Anal.Chem,2001,73(22):5576- 5581.
    [8]Stoscheck, C. M. Protein assay sensitive at nanogram levels[J]. Anal.Biochem,1987,160(2): 301-305.
    [9]Zhang, C.; Zhang, Z. -Y.; Yu, B. -B.; Shi, J. -J.; Zhang, X. -R. Application of the biological conjugate between antibody and colloid Au nanopar-ticles as analyte to inductively coupled plasma mass spectrometry[J]. Anal.Chem,2002,74(1):96-99.
    [10]Zhang, C. -X.; Zhang, Y.; Wang, X.; Tang, Z. -M.; Lu, Z. -H. Hyper-Rayleigh scattering of protein-modified gold nanoparticles[J]. Anal.Biochem.2003,320(1):136-140.
    [11]Chen, S. -J.; Chang, H. -T. Nile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation[J]. Anal.Chem,2004,76(13): 3727–3734.
    [12]Darbha, G. K.; Ray, A.; Ray, P. C. Gold Nanoparticle-Based Miniaturized Nanomaterial Surface Energy Transfer Probe for Rapid and Ultrasensitive Detection of Mercury in Soil, Water, and Fish[J]. ACS Nano.,2007,1(3):208-214.
    [13]Ray, P. C. Diagnostics of Single Base-Mismatch DNA Hybridization on Gold Nanoparticles by Using the Hyper-Rayleigh Scattering Technique[J]. Angew.Chem.Int.Ed.,2006,45(7):1151- 1154.
    [14]Darbha, G. K.; Rai, U. S.; Singh, A. K.; Ray, P. C. Gold-Nanorod-Based Sensing ofSequence Specific HIV-1 Virus DNA by Using Hyper-Rayleigh Scattering Spectroscopy[J]. Chem.Eur.J.2008,14(13):3896-3903.
    [15]Ray, P. C.; Fortner, A.; Darbha, G. K. Gold Nanoparticle Based FRET Asssay for the Detection of DNA Cleavage[J]. J.Phys.Chem.B.,2006,110(42):20745-20748.
    [16] Kim, C. K.; Kalluru, R. R.; Singh, J. P.; Fortner, A.; Griffin, J.; Darbha,G. K.; Ray, P. C. Gold-nanoparticle-based miniaturized laser-induced fluorescence probe for specific DNA hybridization detection: studies on size-dependent optical properties[J]. Nanotechnology, 2006, 17(13):3085-3093.
    [17]李秀燕,杨志林,周海光.金纳米球吸收光谱特性研究——尺寸对纳米粒子吸收光谱的影响[J].漳洲师范学院学报,2004,(02):32-35.?

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700